Effect of Eu3+ Concentration on the BaAl2O4/CaAl4O7: x% Eu3+ (0 ≤ x ≤ 5.5) Mixed-Phase Nanophosphors Synthesized Using Citrate Sol-Gel Method

Mahman, Bamba and Sithole, Mpho Enoch and Liang, Guang xing (2021) Effect of Eu3+ Concentration on the BaAl2O4/CaAl4O7: x% Eu3+ (0 ≤ x ≤ 5.5) Mixed-Phase Nanophosphors Synthesized Using Citrate Sol-Gel Method. Advances in Materials Science and Engineering, 2021. pp. 1-12. ISSN 1687-8434

[thumbnail of 7064183.pdf] Text
7064183.pdf - Published Version

Download (4MB)

Abstract

A series of undoped mixed-phase BaAl2O4/CaAl4O7 (hereafter called BC) and doped BC: x% Eu3+ (0 < x ≤ 5.5) nanophosphors were successfully prepared by the citrate sol-gel technique. Their structure, morphology, and optical properties were studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD and SEM showed that all the BC:x% Eu3+ samples consisted of the crystalline structure of the mixed phases of both the BaAl2O4 and CaAl4O7 materials. The structure resembles more that of the BaAl2O4 than the CaAl4O7 phase. The TEM results suggest that the crystallite sizes are in the nanometer scale with rod-like particles. PL results showed multiple emission peaks located at 436, 590, 616, 656, and 703 nm, which were assigned to the intrinsic defects within the BC matrix, 5D0 ⟶ 7F1, 5D0 ⟶ 7F2, 5D0 ⟶ 7F3, and 5D0 ⟶ 7F4 transitions of Eu3+, respectively. The decay curves evidently showed that the nanophosphors have persistent luminescence. The Commission Internationale de l’Eclairage (CIE) analysis revealed that doping has tuned the emission colour from blue to orange-red. The results indicate that the Eu3+-doped samples can potentially be used in the orange/red-emitting phosphors.

Item Type: Article
Subjects: AP Academic Press > Engineering
Depositing User: Unnamed user with email support@apacademicpress.com
Date Deposited: 31 Dec 2022 12:19
Last Modified: 20 Apr 2024 08:04
URI: http://info.openarchivespress.com/id/eprint/3

Actions (login required)

View Item
View Item