Silva, Valéria Maria Araujo and Martins, Claudia Miranda and Cavalcante, Fernando Gouveia and Ramos, Karoline Alves and Silva, Leandro Lopes da and Menezes, Francisca Gleire Rodrigues de and Martins, Rogério Parentoni and Martins, Suzana Cláudia Silveira (2019) Cross-Feeding Among Soil Bacterial Populations: Selection and Characterization of Potential Bio-inoculants. Journal of Agricultural Science, 11 (5). p. 23. ISSN 1916-9752
5ca5d86dd725b.pdf - Published Version
Download (357kB)
Abstract
The biological nitrogen fixation constitutes a strategy to accelerate soil reclamation and the symbiotic systems Rhizobium-legume is the major N2-fixing in which the enzyme carboxymethyl cellulase plays a key role. As many rhizobia species are cellulase negative, the association with cellulolytic bacteria can be a strategy for the recovery of degraded ecosystems. It has been hypothesized that the sharing of resources should mostly be prevalent among phylogenetically and metabolically different species. Accordingly, twenty-seven actinobacteria isolates from Actinobacteria phyla and twenty-six rhizobia isolates from Proteobacteria phyla were selected from the bacterial collection of the Laboratory of Environmental Microbiology of the Federal University of Ceará. The presence of cellulolytic activity was observed for the rhizobia isolates at 28 °C and for actinobacteria isolates at 28, 39, 41, 43 and 45 °C. Rhizobia isolates deficient in cellulase and actinobacteria isolates with enzymatic activity detected at higher temperature were selected and characterized. The antagonism between isolates of two groups was tested and the pairs antagonistic were eliminated. The cross-feeding test between actinobacteria and rhizobia isolates was realized in a chemically defined medium containing carboxymethyl-cellulose as the only carbon and energy source. Growth of rhizobia strains in 50% of the pairwise indicated that the cellulose hydrolyzed by actinobacteria was used as substrate for the growth of the rhizobia. The Bradyrhizobium strain R10 associated with Streptomyces strains A09 and A18 and Nocardia A11 are promissory inoculants for recovery of semi-arid regions.
Item Type: | Article |
---|---|
Subjects: | AP Academic Press > Agricultural and Food Science |
Depositing User: | Unnamed user with email support@apacademicpress.com |
Date Deposited: | 11 May 2023 06:45 |
Last Modified: | 06 Jul 2024 06:52 |
URI: | http://info.openarchivespress.com/id/eprint/1244 |