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Potential field data are of great significance to the study of geological

characteristics. Downward continuation of the potential field converts

potential field data from a high plane to a low plane. Since this method is

mathematically an inverse problem solution, it is unstable. The Tikhonov

regularization strategy is an effective means of the downward continuation

of the potential field. However, achieving high-precision requirements in the

stage of precise geophysical exploration is still challenging. Deep learning can

effectively solve unstable problems with excellent nonlinear mapping

capabilities. Inspired by this, for the downward continuation of the potential

field, we propose a new neural network architecture for downward

continuation named D-Unet. This study uses the potential field data of a

high horizontal plane and the initial model as the network’s input, with the

corresponding low-level data serving as the output for supervised learning.

Moreover, we add noise to 10% of the data in the training dataset. Model testing

shows that our D-Unet has higher accuracy, validity, and stability. In addition,

adding noise to the training data can further improve the robustness of the

model. Finally, we use the actual potential data of a particular place in northeast

China to test our model and satisfactory results have been obtained.
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1 Introduction

Downward continuation of a potential field is an effective means to improve the

accuracy of data interpretation, which plays an essential role in the crustal structure (Lou,

2001; Zhang et al., 2013a), construction of a geomagnetic navigation database (Xu, 2007;

Zeng et al., 2009; Wang and Tian, 2010), geological structure identification (Liu, 2008),

and disaster prevention. Downward continuation of the potential field is a method to

convert potential field data from a high horizontal plane to a low one, making the

potential field data closer to the field source and increasing geological interpretation

resolution (Zeng et al., 2011a; Wang et al., 2012). At the same time, it is also the core

algorithm for potential field data processing, inversion, or other subsequent steps. The
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process of potential field downward continuation is

mathematically an ill-posed problem. It can be concluded as

the solution of the first Fredholm integral equation (Yang, 1997;

Wang, 2007). Therefore, its accuracy, stability, and effectiveness

have become the focus of extensive research by many scholars

(Zhang, 2013).

Since Bateman (1946) and Peters (1949) used the Taylor

series method to carry out the downward continuation of the

potential field in the 1940s, many scholars have researched these

problems. Research in this problem can be divided into two

categories: spatial domain and wave-number domain methods.

The first one has high accuracy, but there are some disadvantages

(e.g., complex calculation formula, complicated process, and low

efficiency). Also, it is unsuitable for many quantity calculations

because of its poor practicability (Zeng et al., 2013). The spatial

domain calculation methods mainly include the boundary

element method (Liu et al., 1990; Xu et al., 2004), equivalent

source method (Dampney, 1969; Syberg, 1972; Emilia, 1973; Hou

et al., 1984; Hou et al., 1985; Xia et al., 1993; Xu et al., 2004; Liu

et al., 2007; Hunag et al., 2009), and integral iterative method (Xu,

2006; Xu, 2007). Among these, the equivalent source method is

one of the most extensive continuation methods. Its main

shortcoming lies in that the calculation accuracy is related to

the distribution of the equivalent field source, and the calculation

is time-consuming (Bhattacharyya and Chan, 1977; Ivan, 1994;

Zhang, 2013). The integral iterative method has a tremendous

effect, achieving an extended depth of 20 times the point distance

or even more significantly (Xu, 2006). Despite the excellent effect

and strong convergence (Zhang et al., 2009), it also has problems

such as noise amplification (Zeng et al., 2011b). The Fast Fourier

Transform method (FFT) has the advantages of high

computational efficiency and suitability for many quantity

calculations. However, the calculation process will magnify the

high-frequency noise, resulting in the limited accuracy of the

frequency domain method (Zeng et al., 2011a). Therefore, many

scholars have reformed downward continuation operators,

including the Wiener filtering method (Clarke, 1969;

Pawlowski, 1995; Zeng et al., 2014), optimization filtering

method (Guo et al., 2012), regularization method (Luan, 1983;

Liang, 1989; Ivan, 1994; Ma et al., 2013; Zeng et al., 2013), and

derivative and compensation method (Mao and Wu, 1998;

Cooper, 2004). The Wiener filtering method has a small

continuation depth and is affected by the potential field’s

noise and power spectrum ratio (Zeng et al., 2014). The

regularization method is a potential field downward

continuation method widely used nowadays, including the

Tikhonov regularization and Landweber regularization

methods. However, its down progression process also has the

disadvantages of poor stability, low continuation depth, and high

parameter sensitivity (Zhang, 2013). Most scholars only focus on

solving the continuation process by using mathematical

methods. Vaníček et al. (2017) proposed that it is meaningless

to seek an accurate solution under the influence of noise due to

the unique nature of downward continuation calculations and to

preferably regard the problem as the optimal estimation of

statistical problems.

With the rapid development of computer technology,

computing ability is greatly improved. New solutions for

downward continuation may exist, such as deep learning

(DL). DL is a thinking mode that simulates the mechanism

of the human brain. Based on the sample dataset, the multi-level

network structure model is trained to analyze and calculate the

sample data outside the scene (Yin et al., 2015). Composed of

multiple layers of single neurons, DL transmits parameters back

and changes the weight of connections to obtain powerful

nonlinear mapping ability after several training rounds

(Lecun et al., 2015). Hinton and Salakhutdinov (2006)

proposed that the multi-layer neural network has a

significant learning ability of features and can achieve

network optimization through pre-training, which led to

DL’s blossoming. DL has made achievements in various

fields, especially in medical imaging (Li et al., 2018),

semantic image segmentation (Krizhevsky et al., 2012),

machine translation (Bahdanau et al., 2014; Sutskever et al.,

2014), speech recognition (Dahl et al., 2011; Hinton G. et al.,

2012), extensive data analysis (Sun et al., 2014), and other fields.

Due to the aforementioned characteristics and advantages, DL

has been increasingly widely applied in geophysics (Wang et al.,

2020). The main contents of DL include seismic data

interpretation and processing (Xi and Huang, 2018; Li et al.,

2019), magnetotellurics inversion (Puzyrev, 2019), gravity and

magnetic inversion (Zhang et al., 2021), and data noise

elimination (Han et al., 2018; Li et al., 2020; Tian et al.,

2020), and all obtained satisfactory results.

FIGURE 1
Position diagram of the layered projection prism.
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Based on this, we try to introduce the DL method into the

downward continuation of the potential field to improve the

solution accuracy of the ill-posed continuation of the potential

field by using DL’s more efficient mapping ability. This study first

generates a random-like anomalous body model by the layered

point-throwing method. The forward modeling results are used

as the output of the DL network. The high plane potential field

theory data are generated by the upward continuation of the

potential field as the network’s input. At the same time, the wave-

number domain iterative Tikhonov regularization method (Zeng

et al., 2013) was used for downward continuation results of high-

plane potential field data as the initial model and input of the

network to form a joint drive. The aforementioned three parts of

data were combined into sample data pairs, and 10% of the

sample data were randomly selected for adding noise. Then,

based on Densenet, nested Unet, the network structure is

constructed to form the DL network model of downward

continuation in this study, which is called D-Unet. Then the

proposed method is tested by theoretical and practical data to

verify its accuracy, effectiveness, and stability.

2 Methodology of dataset
construction and the DL network

2.1 Downward continuation of the original
dataset construction

Since the theory is the same as the method in the downward

continuation of gravity and magnetic potential field data, the

difference only lies in the physical property and information

carrier. The gravity field is temporarily selected as the calculation

carrier for constructing the original dataset of downward

continuation of the potential field in this study. At the same

time, the innovation of the downward continuation method of

the potential field not only works on the horizontal plane but also

on curved surface data. However, our work in this study did not

cover the curve surface data. This content can be studied in more

depth later.

2.1.1 Low horizontal plane theory data
generation

Yu (2009) proposed using potential field separation cutting

and downward continuation to obtain underground anomalies

caused by sources at different depths, including the surface and

the top of deep layers. The inversion operation of the anomaly

can determine the physical properties and conditions of

geological bodies at different depths. Using this method for

reference, we first divide layers at different depths into lattice

points. Layers at different depths are cut into prismatic

aggregates of equal size and different physical properties,

called stratification. Then, on each layer of prism assembly,

different rectangular prisms are randomly selected for

differential residual density assignment to simulate the

abnormal body with different conditions, the casting point.

Then the overall potential field data observed in the low plane

can be simulated by the forward calculation of the rectangular

prism in each layer and related mathematical processing. This

method is the theoretical basis for generating original potential

field data by the hierarchical point casting method.

Since the research focus of this study is to improve the

accuracy of downward continuation by using deep learning

methods, a fast, stable, and large-scale model forward

algorithm is urgently needed to construct sufficient sample

datasets of potential field downward continuation required for

typical deep learning model training. In this study, the frequency

domain forward method provided by Yu (2009) is used to

generate many datasets. Compared with the forward modeling

method in the space domain, the frequency domain is

characterized by fast forward modeling and a simplified

formula, which meets the requirements of this study. The

process is as follows.

Assume that the center coordinates of each small rectangular

prism are (x0j, y0j). The assigned residual density is

ρj, j � (1, 2, . . . ,MN). The embedding depth between the top

surface of the prism and the observation surface is dh. MN

means to divide the layer into M × N prisms. The following is a

formula for calculating the spectrum ~uj(kx, ky) of the gravity

anomalies uj(x, y) generated by a single prism at the observation

plane (x, y) :

~uj(kx, ky) � 2πGρj ·
4

kxky
sin(lkx

2
) · sin(bky

2
)

· e
−h·ω

ω
(1 − e−dhω) · e−i(kx ·x0j+ky ·y0j). (1)

The following is a formula for calculating the spectrum
~u(kx, ky) of the gravity anomalies u(x, y) generated by a

single prism at the observation plane (x, y) in the whole

depth layer:

~u(kx, ky) � 2πG · 4
kxky

sin(lkx
2
) · sin(bky

2
) · e

−h·ω

ω

(1 − e−dhω) ∑MN

j�1
ρje

−i(kx ·x0j+ky ·y0j), (2)

where kx and ky are wave numbers in x and y directions. G is the

universal gravitational constant. ω �
������
k2x + k2y

√
is the angular

frequency.

The final monolayer gravity anomaly result u(x, y) is

obtained by inverse Fourier transform of ~u(kx, ky).
To better simulate the measured potential field data under

natural working conditions and avoid the subsequent long-

distance continuation distortion due to the small selection

range of the measured area, the area is expanded to 256 × 256

prisms in this study. Each prism is 50m in length, width, and

height, thus, forming a layer source with a single depth. The
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depth of the top surface of all source layers is selected in the range

of 300 − 800m below the observation plane. The height of the

single layer and prism is 50m, with 10 layers in total. The residual

density of a single prism in each layer was randomly assigned

with a range of [−0.6, 0.6](g/ cm3) to form the original

anomalous body distribution. The position diagram of the

layered projection prism is shown in Figure 1.

The prism of each depth layer is substituted into Eqs 1, 2 for

calculation, and then the inverse Fourier transform is performed

to obtain the monolayer gravity anomaly results. After all the

depth layers in the 300 − 800m interval below the observation

surface are completely calculated, all their contents are

superimposed to obtain the final single potential field data on

the observation surface.

2.1.2 Calculation of the potential field at the high
horizontal plane

This study extends the low plane potential field data in the

frequency domain to obtain the high plane potential field data.

Through this step, the gravity and magnetic potential field data

obtained from the airborne geophysical survey can be simulated,

providing primary sample data for subsequent calculation and

model training.

The upward continuation of the potential field is relatively

stable (Xu, 2006; Zeng et al., 2011a; Xiong, 2016). The main

methods include the wave-number domain and spatial domain.

The wave-number domain includes FFT methods and sampling

grouping, which are simple, fast, and suitable for large-scale

model calculation. Therefore, in constructing the high plane

potential field theory dataset in this study, we use the FFT

method to carry out the upward continuation to obtain

specific and sufficient sample data.

Many pieces of potential field data at the observation

plane(z � 0) are generated through the steps in Section

2.1.1. u(x, y, 0) represents the potential field at the height

z � 0. The potential field data are converted from the spatial

domain to the wave-number domain through the FFT method,

as expressed in Eq. 3.

FIGURE 2
Logical diagram of the D-Unet network architecture.
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~u(kx, ky, 0) � F[u(x, y, 0)], (3)

where F[u(x, y, 0)] is expressed as the Fast Fourier

Transform of u(x, y, 0). We introduce an upward

continuation operator: φ(ω) � e−ωh. The h (h> 0) is the height

of upward continuation, which means that the potential field is

continued upward to the plane z � 0. Inverse FFT is performed

on the generated potential field data in the wave-number domain,

which is the upward continuation formula, Eq. 4:

u(x, y, h) � F−1[φ(ω) · ~u(kx, ky, 0)]. (4)

F−1 is the inverse Fourier transform. The formula is proven to be

very stable. (Xu, 2007)

Qiu et al. (2017) proposed that the Gibbs effect is a possible

potential field based on frequency domain upward continuation.

There will be leakage problems such as frequency, high-

frequency confusion, and boundary effect. Thus, it leads to a

calculated value to produce the phenomenon of deviation.

Therefore, we effectively use Zhang et al.’s (2013b) proposed

continuation method in wave-number domain transformation in

the spatial domain. The Gibbs effect in the continuation process

is reduced and the continuation accuracy is improved.

2.1.3 Initial model construction
The Tikhonov method was used to construct the initial

model. The Tikhonov regularization method provides a new

downward continuation operator, which attempts to improve its

low-pass filtering ability, adaptability, and stability by

suppressing its high-pass characteristics and filtering high-

frequency interference (An and Guan, 1985). Zeng et al.

(2011a) pointed out that the Tikhonov regularization method

has a saturation effect. The error estimation between the solution

obtained by the Tikhonov regularization method and the

theoretical solution cannot achieve order optimization, so

there is room for improvement.

The time problem of calculating is one of the reasons why we

use the Tikhonov method. The spatial domain method trades

computation time for accuracy. However, most researchers and

we do not have high computing power and we do not have

enough time. Additionally, a dataset consisting of a large number

of samples is much more necessary for DL. It provides the target

and preliminary information for model training and indicates the

characteristic direction domain, which can significantly improve

the rapid convergence ability of model training while saving time

and computation power. Thus, as the main content of this study

is to improve the accuracy of the downward continuation of the

FIGURE 3
Diagram of the pooling method.

FIGURE 4
Dense block mechanism (A) and its details of data shape growth (B).
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potential field through deep learning, Tikhonov’s downward

continuation part can be used and it is not the final result.

We can use Eq. 5, which is the transformation of Eq. 4, to

compute the downward continuation:

u(x, y, h) � F−1[φ−1(ω) · ~u(kx, ky, 0)]. (5)

The downward continuation operator is φ−1(ω). The

downward continuation operator increases exponentially with

the increase in ω. Because of this, the original downward

continuation operator amplifies the noise infinitely for

possible high-frequency noise. Therefore, this method has

poor stability and is unsuitable for our study. Zeng et al.

(2011a) deduced the operator in the wave-number domain

corresponding to Tikhonov regularization, and the calculation

formula of the operator is as follows:

Φ(ω) � φ(ω)
φ2(ω) + α

. (6)

α is the regularization parameter used to improve the stability

and smoothness of the continuation process. In this study,

empirical data α were set to 0.01 (Tikhonov et al., 1977;

Liang, 1989; Chen and Xiao, 2007). First, the potential field

data are converted from the spatial domain to the wave-number

domain by Eq. 3. Then, the downward continuation operator

φ−1(ω) in Eq. 5 is replaced by the Tikhonov regularization

downward continuation operator (Eq. 6). The final

continuation formula Eq. 7 is obtained as follows:

u(x, y, h) � F−1[Φ(ω) · ~u(kx, ky, 0)]. (7)

2.1.4 Construction of the data sample and add-
noise sample

The three parts of the dataset formed from Sections

2.1.1–2.1.3 are combined to form the theoretical training

dataset. We use the numerical model of synthetic data of

2,000 sample data. Owing to this article’s sample data for

simulation data, there are some differences between the

actual data. To further improve the calculation scene of

generality, we randomly choose 10% theory samples, adding

5% random noise to enhance the convergence ability and

robustness of the model.

2.2 D-Unet neural network architecture

2.2.1 Introduction to D-Unet network
architecture

Among deep learning methods, Unet and Densenet are two

excellent network structures. As an improved structure of the full

convolutional neural network (FCN) (Long et al., 2015), the Unet

adopts a completely symmetrical “U”-type coding–decoding

structure to extract sample data features through

downsampling and fusion, splicing channel numbers, and

improving the effectiveness and generalization ability of

information (Ronneberger et al., 2015). However, due to the

operation mode of the Unet, the overlapping part of the

neighborhood will be repeatedly calculated so that when the

network layer is deep, the model occupies a large amount of GPU

memory and the computing speed is too slow (Li et al., 2018). If

the parameters are not correctly selected, there may be a gradient

explosion or gradient disappearance (Tong et al., 2020). Given

these problems, we try to replace the downsampling part of the

Unet network with the Densenet network structure to form a new

network structure named D-Unet. Densenet (Huang et al., 2017)

can effectively alleviate the gradient disappearance problem of

the model. At the same time, in the case of using fewer

parameters, feature repetition is used to strengthen feature

transfer and reduce feature loss. Therefore, we can use small

samples for training and solving complex problems.

The model-building method in this study is to extract the

backbone of the Unet network structure, i.e., the backbone of the

“U-shaped” coding–decoding structure, and then extract and

process some network structure features in Densenet to form a

dense block to replace the feature extraction part of “U-shaped”

structure in the Unet network. Thus, the final D-Unet network

structure is formed. Figure 2 is the logical diagram of the D-Unet

network architecture used in this study.

2.2.2 Unet backbone network structure
The Unet network proposed by Ronneberger et al. (2015), a

deep learning network structure, is applied for image

segmentation in the biomedical field, which solved the

problem of improving the segmentation accuracy of the

model in the case of a small sample dataset. The backbone

part of the network structure mainly includes the convolution

layer, pooling layer, upsampling layer, dropout layer, and other

parts. The details of each part are described as follows.

2.2.2.1 Convolution layer

The convolution layer is the core operation and Unet deep

learning network component. Its original intention is

convolution operation in the mathematical sense, which

evolved into a feature extraction operation in a neural

network by adding a series of computer language

modifications and restriction rules. The convolution layer

consists of elements constantly modified by extracting image

features. The main parameters of the convolution layer include

filter, stride, and pad. The function of the receptive field is to limit

the range size of single feature extraction and extract features

dynamically according to the modified size. The larger the

receptive field is, the more complex features can be extracted.

The deeper the network is, the larger the receptive field will be.

The role of step size is to determine the position distance of the

receptive field sweeping the adjacent area. The pad’s function is

to fill the feature map with different methods to retain adequate
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edge information to the maximum extent when the feature map

is formed after receptive field scanning.

The input and output dimensions’ calculation formula (Eq.

8) of the convolution layer is as follows:

n � [m + 2p − f

s
+ 1], (8)

where m is the input size (m × m), n is the output size

(n × n), f is the filter size (f × f), sis the stride, and p is the

number of pixels of the pad.

In the convolution layer operation, we need to introduce an

activation function to improve the network’s nonlinear mapping

and generalization ability, which plays a vital role. Commonly

used activation functions include ReLU, Sigmoid, and Tanh

functions, which are expressed as follows (Eqs 9, 10, 11):

fReLU(x) � max 0, x), (9)
fsigmoid(x) � 1

1 + e−x
, (10)

fTanh(x) � e2x − 1
e2x + 1.

(11)

The ReLU function is an excellent activation function for

deep learning due to its unique properties (e.g., fast convergence,

weak gradient disappearance, and sparse expression). Therefore,

all the activation functions used in this study are ReLU functions.

2.2.2.2 Pooling layer

The primary function of the convolution layer is feature

extraction, but due to the pad, the effect of the convolution

layer on the dimension of the feature image is not apparent.

However, the high dimension of feature images has significant

disadvantages in neural network training, which will increase the

training time and quickly lead to problems such as overfitting the

model. Therefore, the pooling step, also called down-sampling, is

introduced in the Unet to reduce the dimension of the original

feature image according to the size of the pooling window, and a

value is used to replace the value of the window size area. There are

mainly two pooling methods for the pooling layer: maximum

pooling and mean pooling. Using the maximum value to replace it

is calledmaximumpooling, and using the rangemeans to replace it

is calledmean pooling. The function of the pooling layer is evident,

including reducing dimensions to improve operation speed and

preventing model overfitting from improving robustness. There is

a diagram of the pooling method in Figure 3.

Maximum pooling is a nonlinear operation process. In

contrast, mean pooling is a linear operation process. We use

the maximum pooling methodmore in this model to improve the

model’s generalization ability.

2.2.2.3 Dropout layer

Hinton G. E. et al. (2012) proposed the concept of the

dropout layer, which aims to prevent the fitting phenomenon

in the training process of large models and improve the

generalization ability of models. The operation logic of the

dropout layer is to set the probability of discarding so that the

activation value of probability P neurons is changed to zero

randomly during the operation of this step inmodel training. The

neuron is hidden to prevent features’ complex reuse and synergy

and weaken the intricate connection between neurons. This

method efficiently improves the model’s generalization ability

and has a noticeable effect.

2.2.2.4 Upsampling layer

After the operation between the previous layers, the model’s

features are fully extracted and the resolution is the lowest. The

ultimate purpose of setting up the model is to use the

continuation of the position field, which can be approximately

regarded as an image-like processing method. The input and

output are values of the same dimension (pixel values in image

processing). Therefore, the resolution needs to be raised to the

same dimension as the input data after the previous steps. At this

point, the upper sampling layer is needed to assist.

The upper sampling layer can be understood as the reverse

process of the lower sampling layer, and its function is to enlarge

the dimension of the data (the image domain is to improve the

image’s resolution). The main upsampling methods include

linear interpolation, inverse pooling, and deconvolution. In

deconvolution operation, the model will also conduct

secondary learning, which better affects the continuation and

reduction of features. Therefore, the upsampling methods

adopted in this study are all deconvolution methods.

2.2.3 Dense block model training module
A densely connected convolutional network (Densenet) is a

radical, densely connected network whose core is to establish

“short-circuit connections” between the front and back layers

that can reverse propagation gradients. A short circuit

connection means that the front layer and the back layer

directly use concatenate for channel connection so that the

front layer can directly transmit the extracted features to the

back layer without reservation to realize the goal of feature reuse

(so as) to obtain a better calculation effect and better

performance under the condition of fewer parameters and

lower calculation cost.

Densenet’s connection mechanism is that all computing

layers are connected in a dense block, in which computing in

each layer receives all previous layers as input. Subsequently, the

multiple dense blocks were connected and combined with the

transition layer to form the overall Densenet network

architecture.

The dense block mechanism and structure are shown in

Figure 4. In picture A) of Figure 4, the black arrow represents

data transmission in the figure, and the red arrow represents the

Channel-BN-Relu-Conv (CBRC) module, which means batch

normalization after channel stacking. The ReLU function is the
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FIGURE 5
Comparison of four different cases between theoretical potential field data (A), Tikhonov regularization (B), and joint driven data (2 input) (C).
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activation function, and the final stride is 3×3 convolution. In

picture B) of Figure 4, it is the detail of dense block shape growth

and the explanation. The black trend line represents the stacking

direction. The mathematical formula is described as Eq. 12:

xl � Fl([x1, x2, x3, . . . , xl−1]). (12)

Among them, the Fl mathematical function expression of the

CBRC module [x1, x2, x3, . . . , xl−1] is said to x1, x2, x3, . . . , xl−1
channel superposition.

Through such dense connection mechanisms, Densenet

realized gradient backpropagation, improved the training ease

of the network, made the network more robust, effectively

reduced the gradient disappearance effect, and improved the

robustness of the model. At the same time, when the number of

sample datasets is small, the feature utilization rate is improved

and the calculation is more efficient.

Therefore, this study found the excellence of Densenet, and

the dense block, the core of Densenet, was extracted and nested in

the D-Unet model to achieve better performance. Pleiss et al.

(2017) proposed a method to reduce GPUmemory consumption

and graphics card requirements.

2.2.4 D-Unet model generation
Based on the aforementioned two sections, the D-Unet network

architecture used in this study is finally generated. Just as in Figure 2,

we use the dense blocks to replace conventional convolution layers

instead. The connection between the network backbone of Unet and

the dense block is for direct data transmission and no other

processing. It is the core of our DL network.

D-Unet network architecture of input into two parts, respectively,

is simulated high level after upward continuation of potential field

data and Tikhonov regularization downward continuation after the

initial model of joint as D-Unet input, output, and low wave-number

domain forward generate theory plane do supervision and learning

potential field data, improve the learning ability and generalization

ability of the models and robustness.

After two parts of data were input into the D-Unet network,

rapid feature extraction was carried out through a dense block.

Convolution and maximum pooling were carried out after an

enormous number of features were extracted from a small

number of samples. The aforementioned steps were repeated

three times to form the coding part in the sense of the traditional

Unet network. When the network reaches the deepest point, the

convolution operation is carried out again, and the drop out

method is used to prevent the neural network from overfitting.

Then the decoding part of the Unet network is used for

upsampling to recover data dimensions. In the decoding part

of the operation process, the concat operation of the Unet

network is restored, and the encoding and decoding features

are related to improving the model’s generalization ability.

2.3 Dataset network training

The forward calculation of the potential field is a linear

relationship, which can be used 0.5 times and two times linear

amplification of 2,000 pairs of sample data constructed in Section

2.1 to generate 6,000 theoretical datasets, forming the initial

training dataset. The final dataset was randomly divided into the

TABLE 1 RMSE index comparison of the Tikhonov regularization
method and joint driven input (2 input).

Type Case number Average

1 2 3 4

Tikhonov 0.1470 0.1131 0.1962 0.1769 0.1583

2 input 0.1426 0.0894 0.1204 0.1277 0.1200

FIGURE 6
Trend of loss value of the training set (Loss) and loss value of
the verification set (Val_Loss) with the mean square error indicator
as the loss function in the 2 input mode.

FIGURE 7
Trend of loss value of the training set (Loss) and loss value of
the verification set (Val_Loss) with the mean square error indicator
as the loss function in the 1 input mode.
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training part, verification part, and test data part, with a ratio of

18:1:1, which means 5,400 pieces of data participated in the

training, 300 pieces of data were verified, and 300 pieces of data

were tested in the final model. In data processing, all the data to

be used should be normalized [0,1] first and then brought into

the model. After combining the models in Section 2.2, training

FIGURE 8
Comparison of four different cases between theoretical potential field data (A), single input (1 input) (B), and joint driven data (2 input) (C).
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parameters were set, in which the number of training rounds was

50, batch size was 16, and the Adam optimizer (Kingma and Ba,

2014) was used as the optimizer in the model.

This study’s training method and effect test include the number

of input channels and whether it is training with noisy samples. The

image processing model of the traditional Unet network and its

variants is mainly single-channel RGB input and single-channel

output, that is, mapping from single image to single image, and its

lack of directivity may lead to reduced convergence ability. This

study hypothesizes that when the high plane potential field data and

the low one are jointly driven and input into the DL network, the

error between the initial model and the theoretical potential field

data is small, which provides high targeting, enables the model to

converge faster, and improves the generalization ability of the

model. Therefore, the model experiment in this study compares

whether the model input is a single channel. In addition, the

generalization ability and robustness of the proposed method are

tested by comparing the noiseless sample data training model with

the noise-containing sample data training model.

In this study, the evaluation index of the model training effect

is the root mean square error (RMSE), which is the mean square

error between the results of model operation and theoretical data,

and this is the loss function. Formula Eq. 13 expresses the mean

square error:

RMSE �
������������
1
n
∑n
i�1
(mi − m̂i)2

√
, (13)

where n indicates the number of potential field parameters,

mi indicates the theoretical low plane potential field value after

normalization, and m̂i indicates the experimental low plane

potential field value obtained after normalized model training.

3 Results

3.1 Results of the theoretical model
experiment

3.1.1 Comparison between deep learning and
traditional continuation methods

This study adopts four different types of the particular

abnormal body produced by theories of gravity data,

including three significant rectangular anomalies (case 1),

seven medium-sized rectangular abnormal exceptions (case

2), five medium-sized rectangular abnormal exceptions (case

3), and nine small rectangular exceptions (case 4), to test the

deep learning method and the continuation of traditional

continuation method ability. The deep learning method is

the joint-driven method (2 input) of the D-Unet model, the

conventional continuation method is Tikhonov regularization,

and the evaluation index is RMSE. Figure 5 shows the

comparison. The RMSE results are shown in Table 1. In the

figure, a represents theoretical low plane potential field data, b

represents Tikhonov potential field data, and c represents joint-

driven potential field data.

As shown in Figure 5 and Table 1, the continuation method

trained by the deep learning D-Unet model with a joint drive

significantly improves the continuation accuracy of the potential

field. When the input is the joint drive, the average accuracy

increases by 24.3%. Therefore, it can be inferred that the D-Unet

method has a relatively noticeable improvement in the

continuation of the potential field.

3.1.2 Joint drive model checking
The joint-drive model test was divided into the single input

control group (1 input) and the combined drive input (2 input)

experimental group. The basic model has the same parameters

except for the dimensions of input parameters, and the final

mapping output data have the exact dimensions. After datasets

were allocated according to the allocation method mentioned in

2.1.4, they were brought into the model for training.

In the 2 inputmode, the average single-round time of the 50-

round model training is 116 s, and the continuation time of a

single dataset is 21.5 us. The continuation speed and theoretical

mathematical method are significantly improved. The trend of

loss value of the training set (Loss) and loss value of the

TABLE 2 RMSE index compares single data input (1 input) and joint
driven input (2 input).

Type Case number Average

1 2 3 4

1 input 0.1910 0.1833 0.2182 0.1819 0.1936

2 input 0.1426 0.0894 0.1204 0.1277 0.1200

FIGURE 9
Trend of loss value of the training set (Loss) and loss value of
the verification set (Val_Loss) with amean square error indicator as
the loss function in the 2 input mode with noise.
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FIGURE 10
Comparison of four different cases between theoretical potential field data (A), joint driven data (2 input) (B), and joint driven data with noise
(add noise) (C).
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verification set (Val_Loss) with a mean square error indicator as

the loss function is shown in Figure 6.

In the 1 input mode, the average single-round time of 50-

round model training is 105 s, and the continuation time of a

single dataset is 21.5 us. The trend of loss value of the training set

and loss value of the verification set (Val_Loss) with a mean

square error indicator as the loss function is shown in Figure 7.

According to the comparison of b and c in Figure 8 and the

RMSE data in Table 2, the model training and continuation of

single potential field continuation data have a slow speed in the

convergence process due to the lack of targeting target guidance.

In addition, due to the small amount of sample data, the

generalization performance is not obvious enough and there is

an apparent boundary anomaly, which leads to the inferior effect

of the Tikhonov regularization method. Meanwhile, the results of

the joint drive have the initial model to provide targeting

information, which significantly accelerates the convergence

speed of model training. Furthermore, it can be seen from

Figure 6 that the loss curves of the model dataset and the loss

curves of the verification set coincide with each other without an

overfitting phenomenon. Nevertheless, the average accuracy of

model continuation is improved by 24.3% through the joint

drive. Therefore, it can be inferred that the joint driving method

is helpful to the downward continuation of the potential field.

3.1.3 Addition of a noise training test
Through the verification of the first two sections, it can be seen

that the continuation accuracy of the joint drive method (2 input)

has reached a high level. However, various disturbances in the

actual working process will disturb many actual potential field

values, resulting in certain noises. Therefore, 5% Gaussian noise

was added to 10% random samples of the original dataset to train

themodel. The training parameters and process are the same as the

aforementioned joint driving method, and 50 training rounds are

trained. The trend of the loss value of the training set (Loss) and

loss value of the verification set (Val_Loss) with a mean square

error indicator as the loss function is shown in Figure 9.

As shown in Figure 10 and Table 3, when noise samples are

added to the training, the precision of model continuation is

significantly improved compared with the joint drive method of

the theoretical model and higher than the traditional Tikhonov

regularization method. It can be seen that the addition of noise

training improves the continuation accuracy and the robustness

of the continuation process significantly compared with the joint

drive training without noise.

3.2 Results of the real example test

This study selects a particular area’s gravity potential field data

in northeast China to test an example. Sun (2008) showed that this

area is located in the Guomi fault zone, mainly composed of two

significant faults extending roughly parallel to each other in the

direction of 60° NE. They are all large angle normal faults dipping

to the northwest. It is concluded that the normal northwest fault’s

hanging wall (descending wall) is a negative anomaly and the

footwall (uplifting wall) of the normal southeast fault is a positive

anomaly. There is also a clear indication of gravity potential field

data in the original low plane gravity field, as shown in Figure 11.

TABLE 3 RMSE index compares joint driven input (2 input) and joint
driven input with noise (add noise).

Type Case number Average

1 2 3 4

2 input 0.1426 0.0894 0.1204 0.1277 0.1200

Add noise 0.1020 0.0678 0.1118 0.1229 0.1011

FIGURE 11
Actual example test data with two faults (white lines) (A) and the data continued by Tikhonov regularization (B), joint driven data (2 input) (C), and
joint driven data with noise (add noise) (D).
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Figure 11A shows the actual gravity potential field data selected

in this study. The white lines are an indication of gravity fracture.

Due to the prominent gravity anomaly on the fault zone, the error is

significant. While the gravity anomaly value on both sides of the

two main faults is low, there is a particular numerical leap and

numerical difference. Therefore, it can be reasonably inferred that

this area conforms to the description of the Guomi fault zone.

This study’s measured data take the ground gravity potential

field data as theoretical data and extend it upward to simulate the

aerial gravity survey’s high plane potential field data.

Subsequently, the proposed D-Unet model and the joint drive

method were developed and compared with the traditional

Tikhonov regularization method to verify the high precision

and accuracy of the proposed method.

The continuation results are shown in Figure 11, and the

comparison of RMSE indexes is shown in Table 4. The figure

and table show that the noised data training in the theoretical model

experiment plays a role in this, and the robustness of data processing

by the noisedmodel has been dramatically improved, which exceeds

the accuracy of the Tikhonov method for the continuation of the

potential field. However, due to the significant noise of actual data,

the joint drive model has a weak effect on noise suppression, and its

continuation accuracy is slightly improved compared with the

Tikhonov regularization method. It can be seen that the training

of the noise-adding model is of great help to the continuation of the

actual potential field.

4 Conclusion and prospect

1) Through the D-Unet deep learning network architecture

constructed in this study and the joint driving method of

high plane potential field data and Tikhonov regularization

continuation data, the continuation precision of the

traditional Tikhonov regularization method is improved to

a certain extent, which has specific feasibility. The time

consumption of the trained model is equivalent to that of

the frequency domain method and it has an advantage of

considerable speed over the wave-number domain method.

2) After adding noise to the training set of the joint drive model,

the robustness of the model can be improved effectively, the

convergence ability of the model for potential field

continuation is more vital, and the suppression effect on

noise is more pronounced.

3) The D-Unet deep learning method and the joint drive method

were brought into the actual data of a particular area in the

Guomi fault zone of northeast China for practical operation

tests. The results show that the adaptability of this method to

the actual situation is greatly improved compared with the

traditional Tikhonov regularization method and it is feasible

in the field.

4) As the reason for the case in this study that the single input

effect in the model test in this study is not as good as the

Tikhonov regularization method, it is suspected that the

convergence may be too slow. The model may be

overfitting due to the small amount of sample data and

lack of targeted targets. Given this situation, we will

continue the research on dataset construction and model

construction and modification in the follow-up research.

5) The excellent ability reflected by the joint drive method in this

study demonstrates that the joint drive method can be actively

applied to other fields to achieve better results in the future

combination of deep learning and different directions of

geophysics.
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