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A remote monitoring system with the intelligent compaction index CMV as the core is designed and developed to address the
shortcomings of traditional subgrade compaction quality evaluationmethods. Based on the actual project, the correlation between
the CMV and conventional compaction indexes of compaction degree K and dynamic resilient modulus E is investigated by
applying the one-dimensional linear regression equation for three types of subgrade fillers, clayey gravel, pulverized gravel, and
soil-rock mixed fill, and the scheme of fitting CMV to the mean value of conventional indexes is adopted, which is compared
with the scheme of fitting CMV to the single point of conventional indexes in the existing specification. (e test results show
that the correlation between the CMV and conventional indexes of clayey gravel and pulverized gravel is much stronger than
that of soil-rock mixed subgrades, and the correlation coefficient can be significantly improved by fitting CMV to the mean of
conventional indexes compared with single-point fitting, which can be considered as a new method for intelligent rolling
correlation verification.

1. Introduction

Subgrade soil settlement beneath pavements is a major
concern for engineers [1]. Compaction plays an important
role in improving the strength of the subgrade and pavement
[2], and in long-term engineering practice, a variety of
compaction quality evaluation indexes have been formed at
home and abroad, mainly including two categories of
physical testing indexes represented by compaction degree
and mechanical indexes represented by elastic modulus
[3, 4], although the testing methods and principles of these
evaluation indexes are different, but most of them have low
testing efficiency, poor representation, lagging results, and
other disadvantages. With the continuous development of
the engineering industry, there is an urgent need for a device
that can test compaction with the vehicle, which can display
the compaction test results in real time and guide the op-
erator to operate reasonably. (e corresponding detection
systems have been developed in Sweden, Germany, USA,

Japan, and China, and various compaction control indica-
tors based on the harmonic method have been proposed,
such as CMV [5–7] in Sweden and CCV [8–10] in Japan.
Intelligent compaction technology can continuously and
comprehensively reflect the compaction information of the
subgrade, and when using the intelligent compaction system
to quantitatively evaluate the compaction quality, the cor-
relation between CMV and conventional indicators needs to
be established, but this relationship is not fixed because
CMV indicators are affected by multiple factors such as
roller type, vibration frequency, and soil type. It is stipulated
in JT/T 1127-2017 [11] that, before carrying out intelligent
compaction control, the one-dimensional linear regression
equation between the intelligent compaction index and the
conventional index is established by point-to-point coor-
dinate correspondence, and the correlation coefficient must
be ensured to be above 0.7.

(e existing intelligent compaction equipment is mainly
oriented to the use of compaction operators, and the
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secondary development is difficult and expensive to meet the
requirements of actual projects. In view of this, this paper
designs a subgrade intelligent compaction system with CMV
as the core, using GPS technology [12], sensor technology
[13], wireless transmission [14], and other key technologies
to realize the real-time remote monitoring of compaction
quality information.

Because the conventional fitting method does not
consider the influence of the two testing methods in the
roller wheel width direction on the correlation coefficient,
this paper proposes an improved scheme for fitting CMV
with the average value of conventional indicators along the
wheel width direction, and relying on the Nanning Shajing-
Wuxu Expressway project, three filler types of subgrades are
selected to fit the relationship between CMV and conven-
tional quality control indexes of compaction K and dynamic
resilient modulus E [15–17], respectively.

2. Intelligent Laminating System

2.1. System Architecture. In order to realize the compre-
hensive real-time control of highway subgrade compaction
and meet the integrated management needs of the com-
pactor operator, construction unit, establishment unit, and
owner, the design and development of the subgrade intel-
ligent compaction system is carried out with the thinking of
Internet of (ings [18] as the guide. (e overall architecture
of the system is shown in Figure 1, which mainly contains
the data acquisition layer, compaction data transmission
layer, and application layer at the local end of the roller,
where the data acquisition layer mainly includes hardware
such as piezoelectric vibration sensors, GNSS antennas, 4G/
WiFi antennas, data processing units, and intelligent display
terminals. In the process of roller rolling, the vibration signal
and high-precision positioning coordinate data of the vi-
brating wheel are unified and summarized with the data
processing unit, and after certain algorithms are solved,
compaction trajectory, compaction number, compaction
thickness, compaction degree, and other compaction quality
parameters are formed. (e intelligent display terminal will
visualize these data and provide key information in the form
of images, figures, sounds, etc., to guide the compactor
operator to operate reasonably.

(e data transmission layer is mainly for 4G signal
remote transmission to achieve effective data upload and
data sharing among rollers. In view of the weak 4G network
in some areas, wireless AP bridging network is used to solve
the data transmission problem, and data transmission and
sharing are realized through the WiFi module of the vehicle
system.

(e application layer mainly includes application ser-
vice, data service, cloud platform access, and key indicator
warning. With the background of the raster map [19],
computer graphics and numerical values are used to dy-
namically display roller operation information, and man-
agers can log in to the website to query the real-time
dynamics of the roller, historical playback, quality reports,
and many other contents, which can effectively improve
management efficiency and save management costs, while

the early warning system on the cell phone can push the
information of the warning unqualified area in real time to
achieve early detection of problems and early treatment and
improve the process of construction quality control
management.

2.2. Core Metrics Algorithm. (e basic principle of intel-
ligent compaction is to view the roller as a loading system
acting on the subgrade and to reflect the compaction
degree of the subgrade by using the spectrum analysis of
the dynamic corresponding signal between the vibrating
wheel and the soil, so as to realize the compaction quality
detection of the whole rolling surface. (e intelligent
compaction system reflects the compaction degree size by
the distortion degree of the acceleration signal, and its key
index is the CMV, which is calculated by first collecting
the compaction signal into the acceleration signal col-
lector and then using the fast Fourier transform (FFT)
[20, 21] technique for spectrum analysis to obtain the
amplitude of each frequency component under different
force states and find the fundamental frequency signal
amplitude and the first harmonic amplitude. (e intel-
ligent compaction CMV corresponding to the intelligent
compaction system can be expressed by the following
equation [22]:

CMV � C
A1

A0
, (1)

where A1 is the first harmonic amplitude, A0 is the fun-
damental frequency signal amplitude, and C is a fixed
constant.

As the data processing unit for acceleration signal
processing, it is not possible to calculate all signals but only
selectively intercept one section for calculation and analysis,
which requires the use of window functions [23] to achieve;
the common window functions are the rectangular window,
triangular window, Hanning window, etc. After a com-
prehensive comparison of the applicability of the window
functions, the Hanning window [11] is selected for signal
calculation, and its function is

f(t) �

1
T

1
2

+
1
2
cos

πt

T
􏼒 􏼓, 0≤ |t|≤T,

0, |t|≥T.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

For every 20 cm of roller travel, the intelligent rolling
system performs a data calculation, and the CMV over the
full width of the roller’s vibrating wheel is considered to be
the same value.

3. Regression Analysis Field Test Protocol

3.1. Overview of the Test Site. (e new project of Nanning
Shajing-Wuxu Expressway is 25.8 km long, divided into two
sections, most areas are filled with clay gravel and powdery
gravel, and a few areas are filled with earth rock mixture; the
basic physical properties of the filler are shown in Table 1.

2 Advances in Materials Science and Engineering



3.2. Test Equipment. (is test involves the data collection
of intelligent compaction index CMV and conventional
compaction evaluation index, intelligent rolling equip-
ment has been described in the previous section, con-
ventional compaction index using compaction degree and
dynamic resilient modulus, of which compaction degree is
strictly in accordance with the “Highway Road Base
Pavement Field Determination Procedure” JTG E60-2008
[24] requirements using the sand filling method of ex-
perimental determination, dynamic resilient modulus
using KFD- 100A light falling hammer bending, and
sinking instrument (PFWD); the basic parameters of the
instrument are shown in Table 2.

Lightweight drop hammer-type bending instrument
obtains load by impacting a rigid bearing plate located on the
surface of the subgrade with the hammer falling freely, and
the impact load and displacement due to the falling hammer
are measured by load and acceleration sensors. (e dis-
placements are obtained by quadratic integration of the
accelerations. In determining the modulus of resilient of the
subgrade, the elastic half-space theory model was used for
calculation [25, 26]. (e dynamic resilient modulus is cal-
culated as

E �
1 − v

2
􏼐 􏼑p

2rD
, (3)

where E represents the dynamic resilient modulus measured
by the system (MPa), P represents the load (N), D represents
the displacement (m), r represents the radius of the bearing
plate (m), and V represents Poisson’s ratio.

Vibratory roller is the material carrier for the realization of
intelligent rolling technology. To ensure the reliability of the
data, XS263J, a roller model, is used for the whole experiment,
and its basic performance parameters are shown in Table 3.

3.3.TestMethodology. (e subgrade fill involved three forms
of clayey gravel, pulverized gravel, and soil-rock mixed fill,
so three test sections were selected to carry out the tests
independently, and in order to ensure the comparability of
the test results, the roller models, construction techniques,
and test methods were identical at the three test sites.

In order to avoid the data collection being too concentrated
and affecting the fitting effect, the roller was rolled 3 times and 5
times throughout 7 times along the three paths, and the system
automatically generated the CMVof the rolling area during the
rolling process. As shown in Figure 2, six inspection points
were set up uniformly in each rolling area, and the spacing
between adjacent inspection points in the same rolling stripwas
10m. In view of the lossy detection of sand filling, the dynamic
resilient modulus E was firstly detected, and then the com-
paction was detected at the same position.

3.4. FittingMethod. Depending on the number of samples per
test point and the fittingmethod, the correlation calibration can
be further refined into the following two schemes.

3.4.1. Scheme 1: CMV and Conventional Index Single-Point
Fit. From the perspective of GPS coordinate correspon-
dence, the first scheme uses the point-to-point fitting
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Figure 1: Overall system design diagram.
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method in JT/T 1127-2017. As shown in Figure 3(a), the
compaction area represented by one CMV is a rectangular area
of 2.2m in length and 20 cm in width, and the conventional
indexes are tested at the center of this area. In the end, one
CMV, one dynamic resilient modulus, and one compaction
value are collected at each test point, and a total of 18 test points
are collected for the three compaction strips, generating 18 sets
of such corresponding data for further fitting analysis.

3.4.2. Scheme 2: CMV and Conventional Index Mean Fit.
(e compaction value and dynamic resilient modulus reflect
the compaction effect of a circular area with a diameter of
about 20–30 cm, and the influence area is much smaller than
the rectangular area represented by one CMV. Considering
that the actual conventional indexes may have some vari-
ability along the wheel width direction, in order to reduce
the influence of single-point abnormal data on the fitting

effect, the test scheme was improved on the basis of scheme
1, and multiple points were carried out along the wheel
width direction of the roller. (e conventional indexes were
collected as shown in Figure 3(b), and the average value of
five detection points was used as the conventional indexes in
the region and further linearly fitted with the CMVs.

3.5. Correlation Analysis of the CMV and Conventional
Indicators

3.5.1. Establishing a Mathematical Model for the Calibration
of Intelligent Compaction Indicators and Conventional
Indicators. To establish the linear relationship between the
CMV and conventional indicators, first, draw a scatter plot
in a plane coordinate system with CMV as the x-coordinate
and conventional indicators as the y-coordinate, and seek a
straight line so that the sum of squares of the vertical

Table 1: Physical indicators of the filler.

Embankment type Maximum dry
density (g/cm3)

Optimum
moisture

content (%)

Liquid limit
(%) Plastic limit (%) Curvature factor Unevenness factor

Earthwork Clayey gravel 2.16 6.9 22.9 16.7 — —
Embankment Pulverized gravel 1.94 10.2 34.1 23.9 — —

Soil and stone mixed fill 2.35 4.3 — — 1.8 15.5

Table 3: Roller parameters.

Projects
Operating weight of
the whole machine

(kg)

Vibrating
wheel width

(mm)

Vibration
frequency

(Hz)

Nominal
amplitude
(mm)

Excitation force
(kg)

Front wheel
distribution mass

(kg)

Rear wheel
distribution
mass (kg)

Vibrating
wheel

diameter
(mm)

Parameters 26000 2170 27/32 1.9/0.95 405/290 13000 13000 1600

Table 2: PFWD performance parameters.

Projects Performance parameters
Load-bearing plate diameter 100mm
Falling height 50–530mm
Load sensors Rated range 20 kN
Acceleration sensor Rated range 500m/s2

Height 1100mm
Weight 15 kg

2.
2m

10m20cm Rolling pathConventional index
collection area

�ree times
rolling area

Five times
rolling area

Seven times
rolling area

Figure 2: Overall arrangement of sampling points for conventional indicators.
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distance from each scatter point to the line is minimized,
that is, the minimum value point of the demand function:

S(a, b) � 􏽘
m

k�1
a + bxk( 􏼁 − yk􏼂 􏼃

2
. (4)

Function (4) finds the first-order partial derivatives of
the two variables a and b, respectively, giving

zS
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Letting it to be equal to 0, the regular system of equations
is obtained as

ma + 􏽘
m

k�1
bxk � 􏽘

m

k�1
yk

􏽘

m

k�1
axk + 􏽘

m

k�1
bx

2
k � 􏽘

m

k�1
xkyk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

To determine the unknown parameters a and b in the
regression equation, it is necessary to solve the regular
system of equations:
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. (7)

For each test in the field, the intelligent compaction value
CMV and a single conventional compaction index (com-
paction or dynamic resilient modulus) comprised 18 sets of
one-to-one corresponding two-dimensional data, and re-
gression fitting was performed with the clayey gravel CMV
and single-point compaction K. (e collected test data are
shown in Table 4.

A straight line fit of y� a+ bx, with a and b being the
regression coefficients, is performed on the data in Table 4,
and substituting the data into the regular set of equations
yields

18 537.6

537.6 18107
􏼢 􏼣

a

b
􏼢 􏼣 �

1656.5

50179.5
􏼢 􏼣. (8)

(e solution yields a� 81.755 and b� 0.344, so the fitted
equation for the clayey gravel CMV and single-point
compaction K is y� 0.344x+ 81.755, i.e.,
K� 0.344CMV+81.755. To further verify the reliability of
this regression equation fitting the actual data, a correlation
test needs to be carried out, and the correlation coefficient is
defined as

r �
􏽐

m
k�1 xk − x( 􏼁 yk − y( 􏼁

�������������������������
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􏽐

n
i�1 yk − y( 􏼁

2
􏽱 . (9)

Substituting the data into equation (9), the correlation
coefficient r� 0.81, and 0.7 is taken as the cutoff point for the
strength of correlation in JT/T 1127-2017, which indicates
that the clayey gravel CMV has a good correlation with the
single-point compaction K and meets the needs of engi-
neering applications.

3.6. CMV and Single-Point Conventional Index Fitting.
Figure 4 shows the correlation verification results between
the CMV and single-point compactness in the test section of
clayey gravel, pulverized gravel, and soil-rock mixed fill. (e
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Figure 3: Fitting scheme. (a) Single-point fitting. (b) Multipoint mean fit.
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correlation coefficients of the CMV and compaction in these
three test sections are 0.81, 0.78, and 0.67, respectively. (e
correlation between the CMV and compaction is stronger for
the clayey gravel and pulverized gravel sections, while the
correlation between the CMV and compaction is weaker for the
soil-rock mixed section. Figure 5 shows the correlation verifi-
cation results between the CMV and single-point dynamic
resilient modulus in the test section of clayey gravel, pulverized
gravel, and soil-rock mixed fill. (e correlation coefficients of
the CMV and dynamic resilient modulus in these three test
sections are 0.83, 0.83, and 0.54, respectively. Similarly, the
correlation between the CMV and dynamic resilient modulus is
stronger for the clayey gravel and pulverized gravel sections,
while the correlation between the CMV and dynamic resilient
modulus is weaker for the soil-rock mixed section.

3.7. CMV and Conventional IndexMean Fit. Figure 6 shows
the correlation verification results between the CMV and
compaction degree mean value, and the correlation coeffi-
cients for the clayey gravel, pulverized gravel, and soil-stone

Table 4: Statistics of the CMV and single-point compaction of clayey gravel.

Serial number CMV Compaction degree K (%) Serial number CMV Compaction degree K (%)
1 18.2 84.7 10 30 93.2
2 12.4 87.1 11 28.6 93.8
3 22.7 86.5 12 30.2 93.8
4 19.6 83.4 13 26 96.4
5 18.5 86.3 14 45.6 96.6
6 11.2 88.2 15 42.1 96.7
7 36.7 93.1 16 39.5 96.5
8 36.5 93.4 17 44.3 96.4
9 42.5 93.7 18 33 96.7
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mix sections are 0.9, 0.89, and 0.72, respectively. (e
correlation between the CMV and compaction degree
mean value is relatively weak in the soil-stone mixed
section, but it also meets the requirements of use. Figure 7
shows correlation verification results between the CMV
and dynamic resilient modulus mean value, and the
correlation coefficients for the clayey gravel, pulverized
gravel, and soil-stone mix sections are 0.89, 0.88, and 0.67,
respectively.

3.8. Comparative Analysis of the Fitting Effect. (e correla-
tion between the intelligent compaction index CMV and the
conventional index compaction and dynamic resilient
modulus under three kinds of subgrade fillers was estab-
lished through field tests, and the correlation was checked

for two fitting methods, point to point and point to average,
and the correlation is shown in Table 5.

In order to further compare the differences between
the two fitting methods, the correlation coefficients of
point-to-point fitting and point-to-mean fitting were
compared under different soils with the same conven-
tional indexes, and the results are shown in Figure 8,
which shows that the correlation coefficients of both the
fitting of CMV and compaction and the fitting of the
CMV and dynamic resilient modulus are higher than
those of single-point fitting; especially, the mean fitting
can improve the correlation coefficient of soil-rock mixed
subgrade. (e correlation coefficient between CMV and
compaction can be improved from 0.67 to 0.72, from a
weak correlation to a strong correlation, which is of great
significance in practical applications. (is indicates that
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Figure 7: CMV and dynamic resilient modulus mean value fit.

Table 5: Correlations of different fitting schemes.

Fitting scheme General indicators Soil type Regression equation Correlation coefficient

Single-point fit of the CMV to
conventional metrics

Compaction degree (%)

Clayey gravel Y� 0.34397x+ 81.75453 0.81
Pulverized gravel Y� 0.35442x+ 82.2894 0.78
Soil and stone
mixed fill Y� 0.07004x+ 90.53055 0.67

Dynamic resilient
modulus (MPa)

Clayey gravel Y� 0.81216x+ 3.57135 0.83
Pulverized gravel Y� 0.87405x+ 1.81463 0.83
Soil and stone
mixed fill Y� 0.38024x+ 28.39997 0.54

CMV and conventional index mean
fit

Compaction degree (%)

Clayey gravel Y� 0.32728x+ 81.99755 0.9
Pulverized gravel Y� 0.36386x+ 81.61207 0.88
Soil and stone
mixed fill Y� 0.05995x+ 90.97041 0.72

Dynamic resilient
modulus (MPa)

Clayey gravel Y� 0.87403x+ 2.65116 0.89
Pulverized gravel Y� 0.9277 + 1.39252 0.88
Soil and stone
mixed fill Y� 0.52152 + 24.67414 0.67
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the improved fitting scheme can significantly improve
the correlation between the CMV and conventional indexes.

4. Conclusion

(1) CMV of clayey gravel, pulverized gravel, and soil-
rock mixed subgrade has a certain positive corre-
lation with the conventional indexes (K and E), in
which the correlation coefficients of clayey gravel
and pulverized gravel are much higher than those of
soil-rock mixed subgrade. It is recommended that
the quality control of earth subgrade is carried out by
the CMV, and the multi-indicator control method
with CMV as the main and compaction number as
the supplement is adopted for soil-rock mixed-fill
subgrade to ensure the compaction quality meets the
standard.

(2) Twelve linear regression equations determined by
three filler types, two types of conventional indica-
tors, and two fitting methods can be used as a ref-
erence for correlation calibration between the CMV
and conventional indicators.

(3) (e correlation between the CMV and single-point
conventional indicators is weak, and the data are
more volatile, while the correlation between the
CMV and the mean value of conventional indicators
along the wheel width direction is stronger, and the
data fluctuate less, so the latter method is better to be
fitted when analyzing the correlation between the
CMV and conventional indicators.
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modulus fitting.

8 Advances in Materials Science and Engineering



[9] J. Ling, S. Lin, J. Qian, and J. Zhang, “Continuous compaction
control technology for granite residual subgrade compaction,”
Journal of Materials in Civil Engineering, vol. 30, no. 12,
Article ID 04018316, 2018.

[10] Q. Xu and G. K. Chang, “Evaluation of intelligent compaction
for asphalt materials,” Automation in Construction, vol. 30,
pp. 104–112, 2013.

[11] Ministry of Transport China, “Technical Requirements for
Continuous Compaction Control System of Fill Engineering
of Subgrade for Highway,” Ministry of Transport China,
Beijing, China, JT/T 1127-2017, 2017.

[12] M. Castro, L. Iglesias, R. Rodŕıguez-Solano, and J. A. Sanchez,
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