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ABSTRACT 
 

Asynchronous machines are considered nowadays the most commonly used electrical machines, 
which are mainly used as electrical induction motors. The induction motors, which is considered as 
the backbone of industrial applications and operation, demand a reliable and efficient starting 
method to minimize mechanical stress and electrical disturbances. This research study presents a 
comparative analysis of Direct Online (DOL) and Soft Starter techniques for three-phase induction 
motors, utilizing MATLAB/Simulink software for simulation and performance evaluation. The 
simulation results highlight the effectiveness of the soft starter in achieving a faster and more 
controlled start-up, making it a superior choice in applications where reducing start-up transients 
and mechanical wear is critical such as conveyors, pumps and compressors. This was achieved by 
deploying a 35-kW induction motor to analyze the performance of direct online (DOL) starters and 
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soft starters, with a particular focus on the latter's use of a thyristor block to mitigate inrush current. 
The analysis was carried out at different load conditions, such as no load, 25% load, 50% load, 75% 
load, and 100% load. The result obtained shows that, the direct online takes longer transient than 
the soft starter, for example, during no load test direct online transient time was 0.4 second while 
soft starter was 0.2 second. This study underscores the significance of advanced simulation tools in 
optimizing motor startup strategies, thereby enhancing the efficiency and longevity of three-phase 
induction motors. 
 

 
Keywords: Induction motors; soft starter; direct online starter; rotor speed; electromagnetic torque and 

stator current. 
 

1. INTRODUCTION 
 

Asynchronous machines are considered 
nowadays the most commonly used electrical 
machines, which are mainly used as electrical 
induction motors. The induction motors, which is 
considered as the backbone of industrial 
applications and operation, demand a reliable 
and efficient starting method to minimize 
mechanical stress and electrical disturbances 
[1,2,3]. Starting of a three-phase induction motor 
has a significant transient effect on the power 
system stability due to high starting current [4] 
[5,6]. The value of transient parameters, and its 
during can impair negatively on a given system if 
not properly managed. The starting transient 
parameters must satisfy the transient 
characteristics requirements with minimized 
starting current and settling time suitable for 
operation within some electrical and electronics 
system with sensitive that components that cant 
withstand sudden current rise. If the starting 
technique is suitable, the life of the induction 
would be prolonged, and this can lead to some 
economic benefits. 
 

Gonzalez, Zenginobuz, Hammid, Umoette, 
Umoette, Umoette, Reddy, Okpo [7-14]. Some 
works have been done in the induction motor 
starting techniques, aiming at improving the 
transient parameter values. 
 

According to [7], who proposed a saturation and 
a deep bar effect for the study of transients of 
three-phase squirrel-cage type induction motors. 
The researchers use mathematical model of an 
induction motor to expressed the six differential 
equations of three-phase instantaneous voltage 
and current. Similarly, [8] presents a quality 
mathematical model of induction machine based 
on the steady state and dynamic equations and 
D-Q transformation technique. The model was 
used for steady state as well as transient 
analysis of squirrel cage or wound rotor 
structure. Simulation of three phase induction 
motor in MATLAB with Direct and Soft starting 

methods was carried out in [9], The theory 
behind the research was based on representing 
the real motor by a set of equations and values in 
MATLAB using the subsystem feature, forming a 
corresponding idealistic motor in a way where all 
the physical effects are similar. The motor was 
started under different loads in two methods: 
Direct and Soft starting. Each method was 
studied and discussed using supporting 
simulation of currents, torque, speed, efficiency 
and power factor curves. Linear and nonlinear 
controllers can also be used to control the 
starting operation of an induction motor driving a 
system which can include system powered by 
renewable energies [11,15,4,5]. 
 
For example, [12] developed a model of 
induction motor drive for speed control using a 
hybrid controller consisting of proportional 
integral derivative (PID) and fuzzy logic, and the 
target load was a nonlinear load like a pump. The 
model gave an improved response when 
compared to either fuzzy logic or PID controller. 
In [16], dynamic response using a fuzzy logic 
controller (FLC) was compared with a 
proportional integral (PI) controller; the latter 
showed superior performance at from the current 
and Electromagnetic torque response In [17], 
particle swarm optimization (PSO) was used in 
getting an optimized value of starting current, 
while [18] proposed a novel hybrid control of IM 
based on the combination of direct torque control 
(DTC) and genetic algorithm. The control method 
showed good performance at only one operating 
speed. A novel research algorithm was proposed 
in [15] and [6] to improve the design of the FLC 
and FLC-PIC, respectively, for IM starting current 
and electromagnetic torque. The proposed 
algorithm provides an easy approach for 
obtaining membership functions. The developed 
controller provided the needed stability and good 
dynamic response under speed and mechanical 
load change [6]. Developed an optimized hybrid 
controller model for vector speed control 
technique on variable speed and intermittent 
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loading operating conditions. The speed range 
considered was lower in the region of 5 to 30 
rad/sec. The study was useful in the Lower 
speed applications [19]. Studied the different 
methodologies of IM drives control. The study 
showed that speed, power, and efficiency of IM 
have been controlled by various techniques like 
frequency control, supply voltage control, and the 
multiple stator winding method. Implementation 
of IFOC on IM drive with PI control was 
presented in [11], and the results show a good 
dynamic response on intermittent loading 
operating conditions [10]. Used a finite element 
analysis approach to obtain the dynamic 
performance of IM under intermittent loading 
conditions without control. 
 

The simulation results of the cited literature show 
that sensitive parameters like starting current and 
settling time of the transients response still need 
a research attention modern  industrial 
applications   like cranes, and robotics. 
 

2. METHODOLOGY 
 

From the flow chart, literature reviewed on three-
phase induction motor transient effects on direct 
online starter and soft starter was first carried 
out, this follows by developing and mathematical 
expression to size the three-phase induction 
motor parameter, and the torque equation was 
used as shown in Fig. 1. After sizing the 
induction motor, a review was carried out again 
to choose a situation software for modelling and 
simulating of the system. MATLAB/Simulink 
simulation soft was chosen because it provides a 
comprehensive environment for modeling, 
simulating, and analyzing complex systems. It’s 
also allowed for detailed modeling of the 
behavior of induction motors under different 
operating conditions as well as integrating 
seamlessly with other MATLAB toolboxes and 
software packages, enabling engineers to 
perform multidomain simulations and incorporate 
additional functionalities such as signal 
processing, control system design, and 
optimization. The system for both direct on-line 
and soft starter was modeled with appropriate 
functional block in Simulink library 
The modeled was simulated and their output 
waveform was studied and improve upon where 
it is necessary. The Simulink model of direct on 

line starter and soft starter are shown in Figs. 2 
and 3 respectively. 
 

3. ANALYTICAL MODELLING OF SCIM 
 

SCIM is an AC machine whose speed at loading 
conditions is always less than the synchronous 
speed, and it operates on the principle of 
electromagnetic induction [7] and [20] analyzed 
the performance of SCIM in steady-state 
conditions [21,22]. Also outlined the design 
strategy for achieving a desired performance. 
 

The voltage  equations of SCIM in dq0 axis using 
analytical method are given equation (1) – (4): 
 

𝑣𝑞𝑠 =  𝑅𝑠𝑖𝑞𝑠 +
𝑑𝜑𝑞𝑠

𝑑𝑡
+  𝜔𝑒𝜑𝑑𝑠                      (1) 

 

𝑣𝑑𝑠 =  𝑅𝑠𝑖𝑑𝑠 +
𝑑𝜑𝑑𝑠

𝑑𝑡
−  𝜔𝑒𝜑𝑞𝑠         (2) 

 

𝑣𝑞𝑟 =  𝑅𝑟𝑖𝑞𝑟 +
𝑑𝜑𝑞𝑟

𝑑𝑡
+ (𝜔𝑒 − 𝜔𝑟)𝜑𝑑𝑟          (3) 

 

𝑣𝑑𝑟 =  𝑅𝑟𝑖𝑑𝑟 +
𝑑𝜑𝑑𝑟

𝑑𝑡
− (𝜔𝑒 − 𝜔𝑟)𝜑𝑞𝑟          (4) 

 

and  
 

𝑣𝑞𝑟 =  𝑣𝑑𝑟 = 0  

 

The flux equation: 
 

𝜑𝑞𝑠 =  𝐿𝐼𝑠𝑖𝑞𝑠 + 𝐿𝑚( 𝑖𝑞𝑠 + 𝑖𝑞𝑟)            (5) 

 
𝜑𝑞𝑟 =  𝐿𝐼𝑟𝑖𝑞𝑟 + 𝐿𝑚( 𝑖𝑞𝑠 + 𝑖𝑞𝑟)           (6) 

 
𝜑𝑑𝑠 =  𝐿𝐼𝑠𝑖𝑑𝑠 + 𝐿𝑚( 𝑖𝑑𝑠 + 𝑖𝑑𝑟)        (7) 
 
𝜑𝑑𝑟 =  𝐿𝐼𝑟𝑖𝑑𝑟 + 𝐿𝑚( 𝑖𝑑𝑠 + 𝑖𝑑𝑟)         (8) 

 

where 𝑣𝑞𝑠  , 𝑣𝑑𝑠  are the applied voltages to the 

stator, 𝑖𝑑𝑠 , 𝑖𝑞𝑠 , 𝑖𝑑𝑟  , 𝑖𝑞𝑟  are the corresponding d 

and q axis stator current and rotor currents. 
𝜑𝑞𝑠,𝜑𝑞𝑟, 𝜑𝑑𝑠 , 𝜑𝑑𝑟  , are the rotor flux component, 

𝑅𝑠  , 𝑅𝑟  are the stator and rotor resistances, 𝐿𝐼𝑠 , 

𝐿𝐼𝑟  denotes stator and rotor inductances, 

whereas 𝐿𝑚  is the mutual inductance [23,24,25-
30]. Combining the flux equation with (1), (2), (3) 
and (4), the electrical transient model in term of 
voltage and current can be represents in matrix 
form as: 

 

[

𝑣𝑞𝑠

𝑣𝑑𝑠
𝑣𝑞𝑟

𝑣𝑑𝑟

] = [

𝑅𝑠 + 𝑆𝐿𝑆 𝜔𝑒𝐿𝑆 𝑆𝐿𝑚                 𝜔𝑒𝐿𝑚

−𝜔𝑒𝐿𝑆 𝑅𝑠 + 𝑆𝐿𝑆 −𝜔𝑒𝐿𝑚              𝑆𝐿𝑚

𝑆𝐿𝑚

−(𝜔𝑒 − 𝜔𝑟)𝐿𝑚

(𝜔𝑒 − 𝜔𝑟)𝐿𝑚

𝑆𝐿𝑚

𝑅𝑠 + 𝑆𝐿𝑆

−(𝜔𝑒 − 𝜔𝑟)𝐿𝑟

(𝜔𝑒 − 𝜔𝑟)𝐿𝑟

𝑅𝑟 + 𝑆𝐿𝑟

] [

𝑖𝑞𝑠

𝑖𝑑𝑠

𝑖𝑞𝑟

𝑖𝑑𝑟

]                           (9) 
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where, S is the Laplace operator.               (9): 
 
The electromagnetic torque equation given in equation (10): 
 

𝑇𝑒 =  
3𝑃𝐿𝑚

4𝐿𝑟
(𝜑𝑑𝑟𝑖𝑞𝑠 − 𝜑𝑞𝑟𝑖𝑑𝑠)                                (10) 

 
where P, denote the pole number of the motor. If the vector control is fulfilled, the q component of the 
rotor field 𝜑𝑞𝑟 would be zero. Then the electromagnetic torque is controlled only by q-axis stator 

current and is shown in equation (11): 
 

𝑇𝑒 =  
3𝑃𝐿𝑚

4𝐿𝑟
(𝜑𝑑𝑟𝑖𝑞𝑠)                        (11) 

 

 
 

Fig. 1. Flow chart of the research research 



 
 
 
 

Jackson et al.; J. Eng. Res. Rep., vol. 26, no. 10, pp. 308-322, 2024; Article no.JERR.125075 
 
 

 
312 

 

Table 1. Specification of the Asynchronous Machine Rated Parameters 
 

Number   Parameters  Value  

1 Input power of the motor  37Kw 
2 Motor input voltage  400V 
3 Frequency  50Hz 
4 Motor speed 1480 RPM 
5 Mechanical input 238. 7 𝑁 ∗ 𝑚 
6 Mechanical power 37Kw 
7 Stator resistance  0.08233𝛺 
8 Stator inductance  0.000724 mH 
9 Rotor resistance 0.05037𝛺 
10 Rotor inductance  0.000724 mH 
11 Mutual inductance  0.02711H 
12 Inertia(J)  0.37 (kg.m2) 
13 Friction factor(F) 0.02791 (N.m.s) 
14 Number of pole pair 4 
15 Initial condition 10000000 

 

 
 

Fig. 2. SIMULINK model of direct online starter 
 

 
 

Fig. 3. SIMULINK model soft starter 
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The modeled was simulated and their output 
waveform was studied and improve upon where 
it is necessary. The Simulink model of direct on 
line starter and soft starter are shown in Figs. 2 
and 3 respectively. 
 

4. RESULTS AND DISCUSSION 
 

The starting performance of an induction motor 
with direct online and soft starter at different 
loading conditions is presented in this section. 
The parameters of the tested motor are listed in 
Table 1. The design and simulation were carried 
out using the Simulink toolbox of MATLAB. The 
starters were separately designed for induction 
starting technique at different levels of load. The 
speed, torque, and current responses of 
induction motors with these starters were 
studied, analyzed, and compared in terms of 
settling time and overshoot. The simulation 
results are subdivided in the subsequent 
sections. 
 

4.1 Direct Online and Soft Starter Rotor 
Speed Result   

 

The rotor speed at transient states which reflect 
the difference in starting methods between a 
DOL starter and a soft starter are analyze shown 
in this section. The rotor speed responses are 
presented in Figs. 4 to 8. 
 

The transient time of rotor speed of direct online 
and soft starter at 0% of the rated load is shown 
in Fig 4, direct. Online starter (DOL) reaches it 
transient state at 0.3 seconds while that of soft 
starter is 0.2 seconds. 
 

At 25% load, transient time of direct online is 0.5 
seconds while soft starter is 0.3 second as seen 
in Fig. 5. 
 

At 50% load, transient time of direct online is 0.7 
seconds while soft starter is 0.5 second as seen 
in Fig. 6. 
 

At 75% load, transient time of direct online is 1.4 
seconds while soft starter is 0.9 second as seen 
in Fig. 7. 
 

At 100% load, transient time of direct online is 
1.6 seconds while soft starter is 1.1 second as 
seen in Fig. 8. 
 

Table 2 shown the summary of comparison 
between direct online starter and soft starter of 
rotor speed. 
 

4.2 Direct Online and Soft Starter 
Electromagnetic Torque Result  

 

The electromagnetic torque transient states 
which reflect the difference in starting methods 
between a DOL starter and a soft starter are 
analyze below. The responses of 
electromagnetic torque are presented in Figs. 9 
to 13. 
 

At 0% load, transient time of direct online is 0.4 
seconds while soft starter is 0.3 second as seen 
in Fig. 9. 
 

At 25% load, transient time of direct online is 0.5 
seconds while soft starter is 0.4 second as seen 
in Fig. 10. 
 

At 50% load, transient time of direct online is 0.8 
seconds while soft starter is 0.5 second as seen 
in Fig. 11. 
 

At 75% load, transient time of direct online is 1.5 
seconds while soft starter is 1.2 second as seen 
in Fig. 12. 

Table 2. DOL and Soft starter transient time simulation results on rotor speed. 
 

Load % DOL transient time (sec) Soft Starter transient time (sec) 

0% 0.3 0.2 
25% 0.5 0.3 
50% 0.7 0.5 
75% 1.4 0.9 
100% 1.6 1.1 

 

Table 3. DOL and Soft starter transient time simulation results on electromagnetic torque 
 

Load % DOL transient time (sec) Soft Starter transient time (sec) 

0% 0.4 0.3 
25% 0.5 0.4 
50% 0.8 0.5 
75% 1.5 1.2 
100% 1.7 1.5 
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DOL Soft starter 
 

Fig. 4. Direct online and soft starter rotor speed at 0% load (0 N*m) 
 

 
 

  
DOL Soft starter 

 
Fig. 5. Direct online and soft starter rotor speed at 25% load (60 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 6. Direct online and soft starter rotor speed at 50% load (119 N*m) 
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DOL Soft starter 

 
Fig. 7. Direct online and soft starter rotor speed at 75% load (179 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 8. Direct online and soft starter rotor speed at 100% load (238 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 9. Direct online and soft starter electromagnetic torque at 0% load (0 N*m) 
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DOL Soft starter 

 
Fig. 10. Direct online and soft starter electromagnetic torque at 25% load (60 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 11. Direct online and soft starter electromagnetic torque at 50% load (119 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 12. Direct online and soft starter electromagnetic torque at 75% load (179 N*m) 
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DOL Soft starter 
 

Fig. 13. Direct online and soft starter electromagnetic torque at 100% load (238 N*m) 
 

  

  
DOL Soft starter 

 
Fig. 14. Direct online and soft starter stator current at 0% load (0 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 15. Direct online and soft starter stator current at 25% load (60 N*m) 
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DOL Soft starter 

 
Fig. 16. Direct online and soft starter stator current at 50% load (119 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 17. Direct online and soft starter stator current at 75% load (179 N*m) 

 

 
 

  
DOL Soft starter 

 
Fig. 18. Direct online and soft starter stator current at 100% load (238 N*m) 
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Rotor Speed Electromagnetic Torque 
 

Fig. 19. Direct online and soft starter Rotor speed and Electromagnetic torque 
 

 
 

Stator Current 
 

Fig. 20. Direct online and soft starter Rotor speed and Electromagnetic torque 
 

Table 4. DOL and Soft starter transient time simulation results on stator current 
  

Load % DOL transient time (sec) Soft Starter transient time (sec) 

0% 0.3 0.2 
25% 0.4 0.3 
50% 0.6 0.4 
75% 0.9 0.5 
100% 1.4 1.0 

 
At 100% load, transient time of direct online is 
1.7 seconds while soft starter is 1.5 second as 
seen in Fig. 13. 

 
Table 3 shown the summary of comparison 
between direct online starter and soft starter of 
electromagnetic torque. 
 

4.3 Direct Online and Soft Starter Stator 
Current Result 

 

The stator current transient time of both the 
direct online starter and soft starter are shown in 
Figs. 14 to 18. Direct online starter with high 
inrush current causes the voltage to dips they by 
stressing the electrical components. Soft Starter 
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reduced the high inrush current and minimizes 
the voltage dips and electrical stress. 
 
At 0% load, transient time of direct online is 0.3 
seconds while soft starter is 0.2 second as seen 
in Fig. 14. 
 
At 25% load, transient time of direct online is 0.4 
seconds while soft starter is 0.3 second as seen 
in Fig. 15. 
 
At 50% load, transient time of direct online is 0.6 
seconds while soft starter is 0.4 second as seen 
in Fig. 16. 
At 75% load, transient time of direct online is 0.9 
seconds while soft starter is 0.5 second as seen 
in Fig. 17. 
 
At 100% load, transient time of direct online is 
1.4 seconds while soft starter is 1.0 second as 
seen in Fig. 18. 
 
The direct comparison is shown in  graph of DOL 
and Soft Starter Rotor speed, Electromagnetic 
torque and Stator current represented in Figs. 19 
and 20. 
 

5. CONCLUSION 
 
In this study, the transient effects of a three-
phase induction motor using both Direct Online 
(DOL) and Soft Starter methods were analyzed. 
The modeling and simulation were done using 
MATLAB/Simulink software. The simulation 
models were meticulously developed to capture 
the dynamic behavior of the motor during startup, 
allowing for an in-depth analysis of the different 
starting load torque. 
 
The results from the simulation indicate a                    
stark contrast in performance between the                 
DOL and Soft Starter methods. The DOL starter, 
while simple and cost-effective, exhibited 
significant inrush currents and torque transients, 
leading to mechanical and electrical stresses on 
the motor and associated equipment. This 
method, although widely used, can result in 
substantial wear and tear, reducing the lifespan 
of the motor and increasing maintenance 
requirements. 
 

Conversely, the Soft Starter demonstrated a 
more controlled and gradual increase                     
in voltage, leading to a substantial                      
reduction in inrush current and smoother torque 
transition. 
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