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Abstract: With widespread non-linear loads and the increasing penetration of distributed genera-
tions in the power system, harmonic pollution has become a great concern. The causes of harmonic
pollution not only include the integer harmonics, but also interharmonics, which exacerbate the
complexity of harmonic analysis. In addition, the output variability of highly non-linear loads
and renewables such as electric arc furnaces and photovoltaic solar or wind generation may lead
to weakly time-varying harmonics and interharmonics in both frequency and magnitude. These
features present challenges for accurate assessment of associated power-quality (PQ) disturbances. To
tackle such increasing time-varying PQ problems, a hybrid detection method using synchrosqueezing
wavelet transform (SSWT) is proposed. The proposed method first obtains the proper parameter
values for the mother wavelet according to numerical computations. The wavelet transform-based
synchrosqueezing and a clustering method are applied to determine each frequency component
of the waveform under assessment. The time-domain waveform and the associated magnitude of
each frequency component is then reconstructed by the inverse SSWT operation. The novelty of the
proposed method is that it can decompose the measured waveform containing both harmonics and
interharmonics into intrinsic mode functions without the need for fundamental frequency detection.
Compared to other time–frequency analysis methods, SSWT has better anti-noise and higher resolu-
tion of time–frequency curves; even the measured signal has close frequency components. Simulation
results and actual measurement validations show that the proposed method is effective and relatively
accurate in time-varying harmonic and interharmonic detection and is suitable for applications in
power networks and microgrids that have high penetration of renewables or non-linear loads causing
time-varying voltage or current waveforms.

Keywords: non-linear load; renewables integration; power quality; clustering method

1. Introduction

It is well known that harmonics and interharmonics may cause transformer overheat-
ing, malfunctions of metering devices, or resonances that cause detrimental effects on the
other power system components. In recent years, harmonic and interharmonic pollution
in the power system has drawn much attention because of the increasing widespread
applications of non-linear loads and integration of renewables.

There are many techniques proposed for the detection of harmonics and interharmon-
ics, including discrete Fourier transform and window function, wavelet neural network,
Prony-based, maximum likelihood and optimization, Kalman filter, and sparse decompo-
sition combined with discrete trigonometric transform-based methods [1–10]. However,
most of these detection methods assume that the measured waveforms are stationary.
When the measured waveform contains interharmonics or has time-varying magnitude
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and frequency, the traditional methods present inaccurate results. To tackle the non-
stationary harmonic and interharmonic measurement problems, several techniques have
been proposed to perform more accurate assessment of such time-varying signals. These
techniques for measuring dynamic harmonics and/or interharmonics include enhanced
phase-locked loop mechanism, steepest descent gradient, or Gauss–Newton-based iter-
ative techniques, extended Kalman filter, improved fast Fourier transform with sliding
window, compressed sensing-based Taylor–Fourier transform, and deep-learning-based
methods [11–17]. Though these methods have been proved to be efficient in time-varying
harmonic and/or interharmonic measurements, the drawbacks are that most of these
methods are not effective to show the time–frequency characteristics, and they are more
suitable for either near-stationary magnitude-varying or frequency-varying signals.

In recent years, time–frequency (TF) analyses have drawn much attention in the field
of electric power engineering for the analysis of time-varying non-stationary waveforms,
especially when the distorted waveforms contain oscillating components with slowly time-
varying magnitudes and instantaneous frequencies. There are several linear TF methods
proposed, such as short-time Fourier transform (STFT), S-transform, continuous wavelet
transform (CWT), Fourier-based synchrosqueezing transform (FSST), and synchrosqueez-
ing wavelet transform (SSWT) [18–26]. Much effort has been made to improve the TF
resolution of the different time–frequency ridges (TFRs) of a signal. Among these methods,
CWT is the most common for power-quality (PQ) analysis. Both STFT and S-transform
are also popular for TF analysis [18,21]. However, the results are sufficiently accurate only
when the measured waveforms are close to stationary. Both FSST and SSWT have the ability
for signal reconstruction. The advantage of SSWT is that it is good for sharpening the
time–frequency representation of the measured time-varying signal through the allocation
of the CWT coefficient value to a different location in the time–frequency plane compared
to FSST. The other advantages include better anti-noise features and higher resolution of
time–frequency curves; even the measured signal has close frequency components. It is
proved that the SSWT is robust and is suitable for TF analysis for weakly time-varying
signals [26].

Therefore, this paper proposes a time-varying harmonic and interharmonic detection
method based on combining synchrosqueezing wavelet transform and the clustering
method of density-based spatial clustering of applications with noise (DBSCAN) [27,28].
The proposed method is first to obtain time–frequency plots of the measured waveform and
the clustering methods are then adopted to accurately detect each frequency component.
Next, inverse SSWT is performed to reconstruct the time-domain waveform and obtain
the corresponding magnitude of each harmonic and interharmonic component. Thus, the
measured waveform is decomposed into separate intrinsic mode functions (IMF) for the
corresponding harmonic and interharmonic components.

2. Review of Synchrosqueezing Wavelet Transform

As with the demodulation of vibration signals resulted from rolling element bearing
defects in mechanical engineering [29,30], TF analysis also can be applied to detect the
frequency and magnitude of non-stationary signals in power systems [31]. Regarding appli-
cations in voltage or current waveform measurement, TF analysis (TFA) has been exploited
for PQ assessment in recent years. In [23], the authors proposed the synchrosqueezing
wavelet transform method by resetting the time–frequency spectra of SSWT. The time–
frequency ridges are substantially improved. SSWT is an empirical mode decomposition
(EMD)-like method [32]. It is the TF signal analysis algorithm designed to decompose the
signal s(t) of Equation (1) into several IMF.

s(t) =
K

∑
k=1

sk(t)+e(t) (1)
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where the k-th component sk(t) = Ak(t) cos θk(t) is a Fourier-like non-stationary mode with
time-varying magnitude, Ak(t), and phase, θk(t). e(t) represents the noise or measurement
error; the instantaneous frequency is fk(t) = θ′k(t)/2π. The goal is to recover the magnitude
Ak(t) at the instantaneous frequency fk(t) for each component k. The SSWT starts from the
complex CWT of the signal s(t) and is defined by Equation (2).

Ws(a, b) =
〈
s(t), ψa,b(t)

〉
=

1√
a

∫
s(t)ψ∗(

t− b
a

)dt (2)

where a and b are scaling and localization parameters of the mother wavelet, and ψ is a
properly selected complex mother wavelet in which the lognormal wavelet is adopted.
Take a wavelet ψ that is concentrated on the positive frequency axis; we have the Fourier
transform of the wavelet at ς, ψ̂(ς) ≈ 0 for ς < 0. By Plancherel’s theorem, we can rewrite
Ws(a, b), the CWT of s(t) with respect to ψ, as

Ws(a, b) =
∫

ŝ(ς)
√

a
2π ψ̂∗(aς)eibςdς

= A
4π

∫
[δ(ς−ω) + δ(ς + ω)]

√
a ψ̂∗eibςdς

= A
4π

√
aψ̂∗(aω)eibω

(3)

Ws(a, b) will be concentrated around a = ω0/ω.
However, Ws(a, b) will be spread out over a region around the horizontal line a = ω0/ω

on the time-scale plane. Assume that Wa(a, b) 6= 0 for any (a, b), the instantaneous fre-
quency ωs(a, b) can be obtained from Equation (4).

ωs(a, b) = −i(2πWs(a, b))−1 ∂

∂b
Ws(a, b) (4)

Then, the information is transferred from the time-scale plane to the time–frequency
plane by relocating points at (b, a) to (b, ωs(a, b)). The resulting SSWT representation
Ts(ωl , b) is given by

Ts(ωl , b) = (∆ω)−1 ∑
ak :|ω(ak ,b)−ωl |≤∆ω/2

Ws(ak, b)ak
−3/2∆ak (5)

where (5) is calculated only at discrete central frequencies, ωl , separated by a frequency
step, ∆ω, i.e., (5) is performed at the center ωl of the interval [(ωl − ∆ω/2), (ωl + ∆ω/2)].
In a similar manner, since the scale a and time b are discrete values, a scaling step ∆ak =
ak − ak−1, is presented, separating discrete scales ak for which the wavelet decomposition
of (3) is calculated [23].

Ts(ωl, b) presents the time–frequency rigid (TFR) of the signal s(t) and is synchrosqueezed
along the frequency axis. As with CWT, the SSWT is reversible. It can be shown that the
signal can be reconstructed after the synchrosqueezing and is approximated by Equation (6)
in the piecewise constant approximation corresponding to the binning in a [23].

s(b) ≈ <e

[
C−1

ψ ∑
k

Ws(ak, b)ak
−3/2(∆ak)

]
= <e

[
C−1

ψ ∑
l

Ts(ωl , t)(∆ω)

]
(6)

where Cψ = 1
2π

∞∫
−∞

ψ̂∗(aξ)dξ and CΨ is a constant dependent on the selected wavelet. The

k-th component of the multi-component signal can be reconstructed by

sk(b) = lim
α→0

1
Cψ′

∫
|ξ−φ

′
k (b)|<ρ

Ts(ξ, b)dξ (7)
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where ρ is the width of the zone to be summed up around the ridge corresponding to the
instantaneous frequency of the k-th component. In the discrete format, the k-th component is

sk(tm) =
2

Cψ
<e

 ∑
l∈Lk(tm)

T̃s̃(ωl , tm)

 (8)

where T̃s̃(ωl , tm) is the discretized estimate of Ts(ωl , b), and where tm is the discrete time
tm = t0 + m∆t for m = 0, 1, . . . , n − 1 and n is the total number of samples in the discrete
waveform, s̃. The reconstruction of the k-th component from T̃s̃(ωl , tm) is the inverse CWT
over a small frequency band l ∈ Lk(tm) around the k-th component.

Figure 1 illustrates the application of SSWT on extracting the time–frequency ridges
and reconstruction of each extracted frequency component of the input time-domain signal.
In case the frequencies of harmonics and interharmonics in a time-domain signal are too
close to each other, it is likely to cause blurry ridges or even ridges to be mixed up. SSWT
can further improve this effect by setting parameters near a central frequency ωl of (5) or
combining with the clustering method for an accurate frequency detection. It is helpful
to analyze TF ridges since it can keep the ridges more concentrated and thus reduce the
detection errors.
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Figure 1. (a) Input time-domain signal, (b) SSWT modulus, (c) the ridges extracted from SSWT, (d) signal reconstruction in
intrinsic mode functions.

3. DBSCAN Clustering Method

Clustering is a commonly used unsupervised technique in machine learning, data min-
ing, and pattern recognition. For clustering, the classes of objects are non-predetermined
and the basic task is to locate a group of objects which are similar between them and are
dissimilar to the objects belonging to other clusters. Each clustering method may need to
identify groups where member objects are different. Each of the clustering methods has
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its own classification form, depending on the procedure of the method. In the study, after
performing a literature survey and numeric tests over affinity propagation, mean shift,
and DBSCAN clustering methods [27,33,34], the authors adopted a DBSCAN to detect
the number of TF ridges in the TF spectrum obtained by SSWT since it is not necessary
to identify the number of harmonic and interharmonic frequency clusters in advance.
It is effective to estimate the frequency components with time-varying magnitudes of a
measured waveform.

The DBSCAN that recognizes the clusters is the density of points in each cluster,
which is considerably higher than outside of those clusters [27,28]. Data with low density
is considered to be noise. Figure 2 illustrates the results of DBSCAN clustering, where the
points can be easily detected as clusters of points, with the noise points not belonging to
any clusters.
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Figure 2. Results of DBSCAN clustering.

There are two parameters, min_pts and eps (i.e., ε), defined for the DBSCAN algorithm,
where min_pts indicates the minimum number of neighbors of the core point, and eps
indicates the distance from any core. A higher min_pts or lower eps indicates a higher
density necessary to form a cluster. As shown in Figure 3, given a sample P, it is classified
as the core point if at least min_pts points are within the distance eps, and then any point
that is not the core point and is out of the distance eps from any core point is considered to
be noise data.
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Next, the group range is extended outward to find data points that satisfy the density-
reachable and density-connected conditions of the group, and allocated these data to
the group. The points that do not belong to any group are considered to be noise. This
process continues until the density-connected cluster is completely found. As illustrated in
Figure 4, if point A can reach point C by going through point B, then it can be considered
to be a reachable point. Point F to point D are reachable points and point F to point H are
reachable points as well. Thus, point D to point H is density-connected.
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4. Proposed Solution Procedure for Harmonic and Interharmonic Detection

The proposed analysis procedure includes three steps: detection by SSWT, cluster-
ing, and estimation. The detection step is designed to implement TFA to harmonic and
interharmonic contaminated waveforms, where the parameters for TFA are predetermined.
The clustering step is mainly used to identify the exact frequencies of harmonics and
interharmonics in the TF domain. Then, the estimation step is to detect the magnitudes of
harmonics and interharmonics by implementing inverse SSWT for each of the correspond-
ing frequencies obtained in the clustering step.

4.1. Setting the Value of Parameter σ for Time–Frequency Analysis

We select Morlet wavelet as the wavelet function, which is defined in (9).

φ(t) = ceiωte(−t2/2σ2) (9)

where c = σ/
√

π,ω is the center angular frequency of the window, σ is the factor of Morlet
wavelet width. The corresponding frequency band covered by the window is actually
limited in the range [ ω

2π −
σ
2 , ω

2π + σ
2 ]. When increasing the parameter, σ, the width of the

Gaussian window is also increased and consequently increases the frequency resolution of
the TF analysis. Based on the Heisenberg uncertainty principle of signal processing, the
higher the required resolution in time, the lower resolution in frequency must be [35]. The
comparison of time–frequency resolution under different sizes of time resolution, ∆t, is
shown in Table 1.

Table 1. The performance of time–frequency resolution under different sizes of ∆t.

When ∆t Is Large When ∆t Is Small

Large scaling factor(|a|), low frequency Small scaling factor(|a|), high frequency
Good frequency resolution Poor frequency resolution

Poor time resolution Good time resolution

The width of the window determines the frequency resolution of the wavelet trans-
form. A better resolution can improve the accuracy of the frequency detection, but the
width of the window will affect the computational efficiency and the length of the calcu-
lation time. Therefore, a useful method proposed in [36] is adopted to find the optimal σ
value used in the Morlet wavelet. In (10), it defines the entropy-magnification factor, em(σ),
for the selection of the optimal σ value. The optimal value of σ can result the maximum
value of em(σ).

em(σ) =
cr(σ)

E(σ)
(10)
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where the magnification factor cr(σ) is defined in (11).

cr(σ) =
MNmax(Cw(i, j))√

∑ij Cw(i, j)2
(11)

and where the matrix Cw(i, j) = |Ws(i, j)| is developed based on the magnitudes of the
elements of the complex matrix Ws(i, j) of (2) with discrete signal of s(j), j = 1, 2, . . . , M,
and M is the number of samples. The i-th row of Ws is associated with a specific center
frequency, fi, and the j-th column is associated with a different time instant. The elements
of Cw are the values of the envelopes of the signal at each frequency band i and each time
instant j.

E(σ) of (11) is the Shannon entropy defined by (12).

E(σ) = −
M

∑
p=1

dp log dp (12)

where dp =
∣∣cp
∣∣/ ∑M

j=1
∣∣cj
∣∣. The optimal value of σ for (12) is the one yielding the minimal

entropy E of Cw.
The optimal value of em(σ) is then the σ that leads to the maximum value of (10), which

is selected for use in the Morlet wavelet of (9). The entropy-magnification factor em is tested
on a simulated signal includes a set of harmonics and interharmonics. For one simulated
signal tested for a range of values of σ, one can obtain the set of entropy-magnification factor
em(σ). To obtain an optimal value of σ for detection of general harmonic and interharmonic
data, a great number of simulated waveforms can be used for test. The optimal σ is then
obtained and results in the maximum value of em(σ).

4.2. Solution Procedure of Proposed Harmonic and Interharmonic Detection Method

This section illustrates the flowchart of the proposed solution procedure for har-
monic and interharmonic detection, as shown in Figure 5, where SSWT is used as the
demodulation method to identify magnitude- and frequency-modulated components in a
time-varying waveform represented by TF ridge curves in the plot. The ridges can reveal
the local features of the signal and show energy distribution over frequency changes from
one instant to the next. Due to the lightly blurred ridge curves detected in the TF plane
for harmonic or interharmonic estimations obtained by the proposed SSWT, the clustering
method, DBSCAN, is then used to identify the ridge curves and more accurately detect
the corresponding frequencies. After all the harmonic or interharmonic frequencies are
identified, the inverse SSWT of (8) is then applied to obtain each reconstructed time-domain
waveform and the associated magnitude of frequency component.
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5. Case Studies

To show the usefulness of the proposed hybrid method, test cases 5.1~5.4, SSWT,
and DBSACN are implemented using Matlab™ 2019 running on PC with 1.6 GHz Intel
Core i5-8250U CPU to verify the performance of the proposed algorithm [37–39]. Actual
measurements in case 5.5 obtained by a power-quality meter (HIOKI 3198) are also used
for validations. In the study, the sampling frequency is 3840 Hz and the time length of
the signal to be processed is 0.2 s. The total time length for analysis of actual measured
waveforms taken from an electric arc furnace (EAF) and an offshore wind farm is up to 1 s.
In the proposed hybrid method, the Morlet wavelet factor used in (9), σ = 6.6, is selected
according to numerical tests based on (10).

5.1. Effect of Multiple Frequency-Modulated Detection

To verify the accuracy of the multiple frequency detection, the modulated waveform
is set to include three modulation frequency components, as shown in (13). The frequen-
cies are modulated at 60, 150, and 300 Hz, respectively, and the associated modulated
magnitudes are 1, 0.15, and 0.33 p.u., respectively. Figure 6a shows the waveform of
harmonics-polluted signal. The performances in TFA results of STFT, CWT, FSST, and
SSWT are shown in Figure 6b–e, respectively. The efficiency of SSWT in this case is superior
to the other methods since it has a better TF resolution. A better TF resolution allows a
more precise TF representation with more concentrated TFR.

s(t) = sin(2π·60t) + 0.15 sin(2π·150t) + 0.33 sin(2π·300t) (13)
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5.2. Impact of Noise Included in the Measured Signal

When the signal of (13) includes Gaussian white noise, the signal-to-noise ratio is
10 dB. Figure 7 shows the detection performances of STFT, CWT, FSST, and SSWT. It is
observed that SSWT leads to the most accurate harmonic detection compared to the other
TFA methods.
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5.3. Impact of Fundamental Frequency Variations

The fundamental frequency fluctuates with the degree of unbalance between the
power generation and load demand. The simulated signal is expressed by (14), where the
fundamental frequency varies from which frequency is changed from f 1 = 40 Hz to f 2 =
60 Hz at 0.1 s. Figure 8 shows the waveform of the simulated signal and TF plots obtained
by STFT, CWT, FSST, and SSWT, respectively. It is observed that SSWT provides more
concentrated and accurate ridges to track the frequency changes than other methods.

s(t) =
{

sin(2π f1t), 0 < t ≤ 0.1 sec
sin(2π f2t), 0.1 < t ≤ 0.2 sec

(14)
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5.4. Effects Due to Proximity of Two Frequencies of Harmonics and Interharmonics

In the TF representation, when the distance (i.e., the difference between harmonic and/or
interharmonic frequencies) between two TF ridges is close enough, the interaction between two
ridges will cause low resolution of the representation and the ridges to look blurry. To show the
accurate detection of the proposed method, a test signal of (15) is examined. Figure 9a,b show
the simulated waveform and detected TF ridges, respectively. Figure 9c zooms in Figure 9b for
the two close frequency components. It shows that the two components at 116 Hz and 120.6 Hz
are mixed up. Using the DBSCAN clustering method, the two close frequency components
can be more precisely classified, as shown in Figure 9c.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19 
 

5.4. Effects Due to Proximity of Two Frequencies of Harmonics and Interharmonics 
In the TF representation, when the distance (i.e., the difference between harmonic 

and/or interharmonic frequencies) between two TF ridges is close enough, the interaction 
between two ridges will cause low resolution of the representation and the ridges to look 
blurry. To show the accurate detection of the proposed method, a test signal of (15) is 
examined. Figure 9a,b show the simulated waveform and detected TF ridges, respectively. 
Figure 9c zooms in Figure 9b for the two close frequency components. It shows that the 
two components at 116 Hz and 120.6 Hz are mixed up. Using the DBSCAN clustering 
method, the two close frequency components can be more precisely classified, as shown 
in Figure 9c. 

Table 2 lists the absolute errors between the true values and the calculated ones ob-
tained by the proposed method and fast Fourier transform (FFT). In Table 2, f1~f5 are the 
frequencies of the harmonic and interharmonic components of the simulated signal given 
in (15). The maximum absolute error between the true values and the calculated ones ob-
tained by the proposed method is 0.2898 Hz that occurs at estimating the 421.1 Hz inter-
harmonic component. It also shows that the effect of proximity of two frequencies, 116Hz 
and 120.6Hz, can be identified by the proposed method. Overall, it can be seen that the 
proposed method with DBSCAN leads to more accurate frequency detection than the 
commonly used FFT. 

( ) 100sin (2 60.3 ) 10sin (2 116 )
      30sin (2 120.6 ) 20sin (2 301.5 ) 10sin (2 421.1 )
s t t t

t t t
π π

π π π
= ⋅ + ⋅
+ ⋅ + ⋅ + ⋅

 (15)

 

 
(a) 

 
(b) 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 
(c) 

 
(d) 

Figure 9. (a) The simulated waveform, (b) the detected TF ridges, (c) zoomed-in view of two TF ridges with close frequen-
cies by the proposed method, (d) the detected central frequencies shown in color dots of each rigid of (b) using DBSCAN. 

Table 2. Performance of frequency estimation of the proposed method. 

Actual Frequency 
(Hz) 

f1 

60.3 
f2 

116 
f3 

120.6 
f4 

301.5 
f5 

421.1 

DBSCAN Detected 60.2465 116.0265 120.5671 301.7181 421.3898 
Absolute Error 0.0535 0.0265 0.0329 0.2181 0.2898 

FFT Detected 60 115 120 300 420 
Absolute Error 0.3 1 0.6 1.5 1.1 

5.5. Performance Verification with Power-Quality Analyzer 
In this section, the measured current waveform of an EAF and the voltage waveform 

at a 161kV bus connected with a 128 MW offshore wind farm by a commercialized power-
quality meter (PQM) is applied. The results obtained from the proposed method are com-
pared with the results analyzed by the PQM. Figure 10a illustrates the actual measured 
EAF current waveform by the PQM and the reconstructed one. Figure 10b depicts the 
time–frequency ridges. Figure 11 shows the reconstructed time-domain waveforms for 
selected frequency components up to 510 Hz using the inverse SSWT. For the offshore 
wind farm case, results are shown in Figure 12. Figure 13 illustrates the reconstructed 
time-domain waveforms for selected frequency components up to 690 Hz. Figure 14 also 
depicts the fundamental and major harmonic voltage magnitude variations of corre-
sponding reconstructed time-domain waveforms in Figure 13. 

Figure 9. (a) The simulated waveform, (b) the detected TF ridges, (c) zoomed-in view of two TF
ridges with close frequencies by the proposed method, (d) the detected central frequencies shown in
color dots of each rigid of (b) using DBSCAN.

Table 2 lists the absolute errors between the true values and the calculated ones
obtained by the proposed method and fast Fourier transform (FFT). In Table 2, f 1~f 5 are
the frequencies of the harmonic and interharmonic components of the simulated signal
given in (15). The maximum absolute error between the true values and the calculated
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ones obtained by the proposed method is 0.2898 Hz that occurs at estimating the 421.1 Hz
interharmonic component. It also shows that the effect of proximity of two frequencies,
116Hz and 120.6Hz, can be identified by the proposed method. Overall, it can be seen that
the proposed method with DBSCAN leads to more accurate frequency detection than the
commonly used FFT.

s(t) = 100 sin(2π·60.3t) + 10 sin(2π·116t)
+ 30 sin(2π·120.6t) + 20 sin(2π·301.5t) + 10 sin(2π·421.1t)

(15)

Table 2. Performance of frequency estimation of the proposed method.

Actual Frequency
(Hz)

f 1
60.3

f 2
116

f 3
120.6

f 4
301.5

f 5
421.1

DBSCAN
Detected 60.2465 116.0265 120.5671 301.7181 421.3898

Absolute Error 0.0535 0.0265 0.0329 0.2181 0.2898

FFT
Detected 60 115 120 300 420

Absolute Error 0.3 1 0.6 1.5 1.1

5.5. Performance Verification with Power-Quality Analyzer

In this section, the measured current waveform of an EAF and the voltage waveform
at a 161 kV bus connected with a 128 MW offshore wind farm by a commercialized power-
quality meter (PQM) is applied. The results obtained from the proposed method are
compared with the results analyzed by the PQM. Figure 10a illustrates the actual measured
EAF current waveform by the PQM and the reconstructed one. Figure 10b depicts the
time–frequency ridges. Figure 11 shows the reconstructed time-domain waveforms for
selected frequency components up to 510 Hz using the inverse SSWT. For the offshore
wind farm case, results are shown in Figure 12. Figure 13 illustrates the reconstructed time-
domain waveforms for selected frequency components up to 690 Hz. Figure 14 also depicts
the fundamental and major harmonic voltage magnitude variations of corresponding
reconstructed time-domain waveforms in Figure 13.
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In Figures 10–14, several harmonic or interharmonic components with low magnitudes
are recognized as noise. Some mismatches between actual measured and reconstructed
current waveforms are observed because the highest frequency components are considered
up to 510 Hz and 690 Hz, respectively. By observing Figures 10a and 12a, the average
errors between the reconstructed and actual measured waveforms are 2.1% and 14.7%,
respectively. The average error is calculated by taking the sum of the absolute error
between the difference of simulated and measured values at each point divided by the
measured value for all points and then the sum of errors of all points is divided by the
number of total measured points over one second. A larger average error is observed
in Figure 12a, which is caused by neglecting the high-frequency terms in the waveform
reconstruction and undetectable small-magnitude frequency components in the measured
waveform. However, the reconstructed results obtained by the proposed method agree
with the measured waveforms of PQM. Each time-varying frequency component of the
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measured waveforms can be accurately detected and the time-domain waveform for each
frequency is well reconstructed.
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6. Discussion

Observing the detected results of the study cases shows that the proposed method
can estimate time-varying harmonics and interharmonics with better accuracy than FFT
and other TFA methods provided that the optimized value of σ for the Morlet wavelet is
properly initialized for the width of wavelet window. Also, it shows that the proposed
method is effective for the measurement of time-varying signals; even two-harmonic or
interharmonic components have close frequencies and the assessed signal has noise. The
performance comparisons using a commercialized PQ meter are also shown to validate the
effectiveness of the proposed hybrid method. Though the proposed hybrid method has the
aforementioned advantages, it is seen that during the waveform reconstruction for each
harmonic and interharmonic component in the time domain, the resulting reconstructed
waveform has deviations from the actual measured waveforms. The cause of the substantial
error in performing SSWT is mainly associated with small-magnitude and high-frequency
components in the measured waveform that are difficult to accurately detect.

7. Conclusions

In this paper, the synchrosqueezing wavelet transform (SSWT)-based method for
time-varying harmonic and interharmonic detection has been proposed. The proposed
method applies synchrosqueezing wavelet transform with optimized width factors of the
mother wavelet window and a clustering method for accurate harmonic and interharmonic
frequency detection. Then the inverse SSWT is applied to reconstruct the time-domain
function for each detected frequency and the corresponding magnitude can be calculated
accordingly. It is concluded that the proposed method is more effective and accurate for the
detection of harmonics and interharmonics in a time-varying nature. The proposed method
serves as a new tool for PQ measurement, especially for weakly time-varying signals
including both magnitudes and frequencies. It is suitable for harmonic and interharmonic
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assessment in power networks and microgrids that have high penetration of renewables or
non-linear loads causing time-varying voltage or current waveforms.
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