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Abstract
In this paper, we study an inverse spectral problem for the Sturm-Liouville equation on a three-star
graph with the Neumann and Dirichlet boundary conditions in the boundary vertices and matching
conditions in the internal vertex. As spectral characteristics, we consider the spectrum of the main
problem together with the spectra of two Neumann-Dirichlet problems and one Dirichlet-Dirichlet
problem on the edges of the graph and investigate their properties and asymptotic behavior. We
prove that if these four spectra do not intersect, then the inverse problem of recovering the potential
is uniquely solvable . We give an algorithm for the construction of the potential corresponding to
this quadruple of spectra.
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1 Introduction
This paper is devoted to the study of the inverse spectral problem for Sturm-Liouville operators on a
three-star graph with the Neumann and Dirichlet boundary conditions in the boundary vertices and
matching conditions in the internal vertex. The inverse problem consists of recovering the potential on
a graph from the given spectral characteristics. Differential operators on graphs(networks, trees) often
appear in mathematics, mechanics, physics, geophysics, physical chemistry, electronics, nanoscale
technology and branches of natural sciences and engineering(see (2; 5; 6; 11; 12; 13; 22; 33) and
the bibliographies thereof). In recent years there has been considerable interest in the spectral
theory of Sturm-Liouville operators on graphs(see (1; 31; 32)). The direct spectral and scattering
problems on compact and noncompact graphs, respectively, were considered in many publications(
see, for example (4; 9; 20)). Inverse spectral problems of recovering differential operators on arbitrary
trees(i.e., graphs without cycles) and specially star-type graphs with the boundary conditions or
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spectral characteristics other than considered here, were studied in (8; 21; 25; 35; 36) and other
papers. Hochstadt-Liberman type inverse problems on star-type graphs were invesigated in (25; 34).

We consider a three-star graphGwith vertex set V = {v0, v1, v2, v3} and edge setE = {e1, e2, e3},
where v1, v2, v3 are the boundary vertices, v0 is the internal vertex and ej = [vj , v0] for j = 1, 2, 3.
We assume that the length of every edge is equal to a, a > 0. Every edge ej ∈ E is viewed as an
interval [0, a]. Parametrize ej ∈ E by x ∈ [0, a], the following choice of orientation is convenient for
us: x = 0 corresponds to the boundary vertices v1, v2, v3 and x = a corresponds to the internal
vertex v0. A function Y on G may be represented as a vector Y (x) = [yj(x)]j=1,2,3, x ∈ [0, a] and the
function yj(x) is defined on the edge ej . Let q(x) = [qj(x)]j=1,2,3 be a function on G which is called
the potential and qj(x) ∈ L2(0, a) is a real-valued function defined on the edge ej . Let us consider
the following Sturm-Liouville equations on G:

− y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a], j = 1, 2, 3, (1.1)

where λ is the spectral parameter. The functions yj(x) and y′j(x) are absolutely continuous and
satisfy the following matching conditions in the internal vertex v0:

yj(a) = yj′(a) for j, j′ = 1, 2, 3, (continuity condition),
3∑
j=1

y′j(a) = 0 (Kirchhoff’s condition).

 (1.2)

In electrical circuits, (1.2) expresses Kirchhof’s law; in an elastic string network, it expresses the
balance of tension and so on. Let us denote by L0 the boundary-value problem for (1.1) with the
matching conditions (1.2) and the following boundary conditions at the boundary vertices v1, v2, v3:

y′1(0) = y′2(0) = y3(0) = 0. (1.3)

The problem of small transverse vibrations of a three-star graph consisting of three inhomogeneous
smooth strings whose two free ends can move without friction in the directions orthogonal to their
respective equilibrium positions and one fixed end can be reduced to this problem by the Liouvile
transformation. This problem occurs also in quantum mechanics when one considers a quantum
particle subject to the Shrödinger equation moving in a quasi-one-dimensional graph domain.

In this paper, we study the inverse problem of recovering the potential q(x) = [qj(x)]j=1,2,3

from the spectral characteristics. Similar inverse spectral problems on star-type graphs with three
and arbitrary number of edges but only with the Dirichlet conditions at the boundary vertices was
considered in (25; 27). Our method follows (25; 27). As spectral characteristics, we consider the set
of eigenvalues of problem L0 together with the sets of eigenvalues of the following two Neumann -
Direchlet problems and one Dirichlet- Dirichlet problem on the edges of the graph G:{

−y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a],

y
(nj)

j (0) = yj(a) = 0, j = 1, 2, 3, n1 = n2 = 1, n3 = 0,
(1.4)

which we denote these problems by Lj , j = 1, 2, 3. We obtain conditions for four sequences of
real numbers that enable one to reconstruct the potential q(x) = [qj(x)]j=1,2,3 so that one of the
sequences describes the spectrum of the boundary-value problem L0 and other three sequences
coincide with the spectra of the problems Lj , j = 1, 2, 3. We give an algorithm for the construction of
the potential from these four sequences.

The main idea of the solution of the inverse problem for the considered system is its reduction to
three independent inverse problems of reconstruction of the functions qj(x) ∈ L2(0, a), j = 1, 2, 3, on
the basis of two spectra, namely, the spectrum of the problem Lj and the spectrum of the following
boundary-value problem on the edge ej :{

−y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a],

y
(nj)

j (0) = y′j(a) = 0, j = 1, 2, 3, n1 = n2 = 1, n3 = 0.
(1.5)
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Let us denote this problem by L′
j(j = 1, 2, 3). Since the solutions of the later inverse problems are

known(see (18, Sec.3.4), (7, Sec.1.5)), this reduction gives an algorithm for the reconstruction of the
potential of the boundary-value problem L0.

Let us consider the operator-theoretical interpretation of our problem. Denote by A the operator
acting in the Hilbert space H = L2(0, a) ⊕ L2(0, a) ⊕ L2(0, a) with standard inner product (., .)H ,
according to the formulas

AY = A

 y1(x)
y2(x)
y3(x)

 =

 −y′′1 (x) + q1(x)y1(x)
−y′′2 (x) + q2(x)y2(x)
−y′′3 (x) + q3(x)y3(x)

 , (1.6)

D(A) =


 y1(x)

y2(x)
y3(x)

∣∣∣∣∣∣
yj(x) ∈W 2

2 (0, a) for j = 1, 2, 3,
yj(a) = yj′(a) for j, j′ = 1, 2, 3,∑3
j=1 y

′
j(a) = 0, y′1(0) = y′2(0) = y3(0) = 0

 , (1.7)

where W 2
2 (0, a) is a Sobolev space. Let us show that D(A) is dense in H. Suppose that F =

(f1(x), f2(x), f3(x))
t ∈ H is orthogonal to all G = (g1(x), g2(x), g3(x))

t ∈ D(A)(t denotes the
transpose of a matrix), i.e.,

⟨F,G⟩H =

3∑
j=1

∫ a

0

fj(x)gj(x) = 0.

Since C∞
0 [0, a] ⊕ 0 ⊕ 0 ⊆ D(A)(Here 0 is a function that identically zero on [0, a]), then G =

(g1(x), 0, 0) ∈ C∞
0 [0, a]⊕ 0⊕ 0 is orthogonal to F , i.e.,

⟨F,G⟩H =

∫ a

0

f1(x)g1(x) = 0.

Since C∞
0 [0, a] is dense in L2(0, a), we must have f1(x) = 0. Similarly, we get that f2(x) =

f3(x) = 0. Thus, D(A) is dense in H. We prove that A is self-adjoint in the Hilbert space H.
Let F = (f1(x), f2(x), f3(x))

t and G = (g1(x), g2(x), g3(x))
t be arbitrary elements of D(A). By twice

integration by parts, we have

⟨AF,G⟩H = ⟨F,AG⟩H +

3∑
j=1

(fjg
′
j − f ′

jgj)
∣∣a
0
.

It follows from (1.2) and (1.3) that
∑3
j=1 (fjg

′
j − f ′

jgj)
∣∣a
0
= 0. This yields,

⟨AF,G⟩H = ⟨F,AG⟩H .

Therefore, A is symmetric in H. It remains to show that if (AY, V )H = (Y,U)H for all Y =
(y1(x), y2(x), y3(x))

t ∈ D(A), then V ∈ D(A) and AV = U , where V = (v1(x), v2(x), v3(x))
t

and U = (u1(x), u2(x), u3(x))
t, i.e., (i) vj(x) ∈ W 2

2 (0, a) (j = 1, 2, 3); (ii) v′1(0) = v′2(0) = v3(0) = 0;
(iii) vj(a) = vj′(a) (j, j′ = 1, 2, 3); (iv)

∑3
j=1 v

′
j(a) = 0; (v) ℓjyj = uj (j = 1, 2, 3), where ℓjyj :=

−y′′j + qjyj .
For all Y ∈ C∞

0 (0, a)⊕ 0⊕ 0 ⊆ D(A)(0 denotes the function identically zero on [0, a] ), we have∫ a

0

(ℓ1y1)v1dx =

∫ a

0

y1u1dx.

So by standard Sturm–Liouville theory v1(x) ∈ W 2
2 (0, a) and u1 = ℓ1v1. Similarly we get vj(x) ∈

W 2
2 (0, a) and uj = ℓjvj (j = 2, 3). Thus (i) and (v) hold. Now using (v) equation (AY, V )H = (Y, U)H

for all Y ∈ D(A) becomes
3∑
j=1

∫ a

0

(ℓjyj)vjdx =

3∑
j=1

∫ a

0

yjℓjvjdx.
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However by twice integration by parts, we have
3∑
j=1

∫ a

0

(ℓjyj)vjdx =

3∑
j=1

∫ a

0

yjℓjvjdx+

3∑
j=1

(
yjv

′
j − y′jvj

)∣∣a
0
.

Hence
3∑
j=1

(
yjv

′
j − y′jvj

)∣∣a
0
= 0. (1.8)

According to Naimark’s patching lemma(see (23, p. 63, Lemma 2)), there exists a Y ∈ D(A) such
that y1(0) = 1, y2(0) = y′3(0) = y1(a) = y′1(a) = y2(a) = y′2(a) = y3(a) = y′3(a) = 0. Then on
account of equality (1.8), we have v′1(0) = 0. Similarly, we get v′2(0) = v3(0) = 0. So (ii) holds. Using
Naimark’s patching lemma again one can show that (iii) and (iv) hold. consequently the operator A is
self-adjoint.

The operator A has a discrete spectrum and its eigenvalues coincide with the squares of the
eigenvalues of the boundary-value problem L0. Furthermore, integrating by parts, we obtain the
following equality for any vector function Y = (y1(x), y2(x), y3(x))

t ∈ D(A):

(AY, Y )H =

3∑
j=1

∫ a

0

(|y′j(x)|2 + qj(x)|yj(x)|2)dx. (1.9)

Thus, for all eigenvalues of the boundary-value problem L0 to be real and nonzero, it is necessary
and sufficient that the operator A be strictly positive(A≫ 0). Relation (1.9) yields the following simple
sufficient condition for the strict positivity of the operator A:

qj(x) ≥ 0 a.e. on [0, a], j = 1, 2, 3. (1.10)

On the other hand, if A ≫ 0, then all eigenvalues of the operator A are real and positive, otherwise
the strict positivity of the operator A can be realized by shifting the spectral parameter λ2−q0, q0 > 0,
in (1.1). For this reason, we assume in what follows without loss of generality that the condition (1.10)
is valid. Thus the eigenvalues of the boundary-value problems L0 and Lj for j = 1, 2, 3 are nonzero
real numbers.

This paper has the following structure: In section 2 the direct problem is considered. Aspects
of the theory of operator pencils in combination with methods of the theory of entire functions are
used as tools for a description of the set of eigenvalues of the boundary-value problem L0 and the
spectra of the auxiliary problems Lj for j = 1, 2, 3 associated with this system. As a consequence we
prove that the eigenvalues of the main problem and the spectra of the auxiliary problems interlace in
some sense. In section 3 we solve the inverse spectral problem for L0 within the framework of the
statement indicated above.

2 Direct problem
In this section, we describe the properties of sequences of eigenvalues of the boundary-value problems
L0 and Lj for j = 1, 2, 3 that are necessary for what follows.

Let us denote by cj(x, λ), sj(x, λ) the solutions of (1.1) on the edge ej for j = 1, 2, 3 which satisfy
the initial conditions

c′j(0, λ) = cj(0, λ)− 1 = 0, sj(0, λ) = s′j(0, λ)− 1 = 0, j = 1, 2, 3. (2.1)

For each fixed x ∈ [0, a], the functions c(ν)j (x, λ) and s
(ν)
j (x, λ), ν = 0, 1, j = 1, 2, 3 are entire in

λ. Since {cj(x, λ), sj(x, λ)} is a fundamental system of solutions of (1.1) on the edge ej , then the
solutions of (1.1) for j = 1, 2, 3 that satisfy the conditions (1.3), are

yj(x, λ) =

{
Cjcj(x, λ), j = 1, 2,
C3s3(x, λ), j = 3,

(2.2)
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where Cj , j = 1, 2, 3 are constants. Substituting (2.2) into (1.2), we establish that the eigenvalues of
the boundary-value problem L0 are zeros of the entire function

φ1(λ) :=

∣∣∣∣∣∣
c1(a, λ) −c2(a, λ) 0
c1(a, λ) 0 −s3(a, λ)
c′1(a, λ) c′2(a, λ) s′3(a, λ)

∣∣∣∣∣∣
or

φ1(λ) = c1(a, λ)c
′
2(a, λ)s3(a, λ) + c′1(a, λ)c2(a, λ)s3(a, λ) + c1(a, λ)c2(a, λ)s

′
3(a, λ). (2.3)

Let us represent φ1(λ) by three equivalent formulas

φ1(λ) = ψj1(λ)uj1(λ) + ψj2(λ)uj2(λ), j = 1, 2, 3, (2.4)

where ψ11(λ) ψ12(λ)
ψ21(λ) ψ22(λ)
ψ31(λ) ψ32(λ)

 =

 c1(a, λ)c
′
2(a, λ) + c′1(a, λ)c2(a, λ) c1(a, λ)c2(a, λ)

c1(a, λ)s
′
3(a, λ) + c′1(a, λ)s3(a, λ) c1(a, λ)s3(a, λ)

c2(a, λ)s
′
3(a, λ) + c′2(a, λ)s3(a, λ) c2(a, λ)s3(a, λ)

 , (2.5)

 u11(λ) u12(λ)
u21(λ) u22(λ)
u31(λ) u32(λ)

 =

 s3(a, λ) s′3(a, λ)
c2(a, λ) c′2(a, λ)
c1(a, λ) c′1(a, λ)

 . (2.6)

Lemma 2.1. All zeros of the functions ψj1(λ), j = 1, 2, 3 are simple.

Proof. The zeros of the function ψ11(λ) coincides with the spectrum of the problem
−y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a], j = 1, 2,

y′1(0) = y′2(0) = 0,
y1(a) = y2(a),

y′1(a) + y′2(a) = 0

or what is the same, with the spectrum of the problem

− ỹ′′(x) + q̃(x)ỹ(x) = λ2ỹ(x), x ∈ [0, 2a], (2.7)

ỹ′(0) = ỹ′(2a) = 0, (2.8)

where

ỹ(x) =

{
y1(x) if x ∈ [0, a],

y2(2a− x) if x ∈ (a, 2a],

q̃(x) =

{
q1(x) if x ∈ [0, a],

q2(2a− x) if x ∈ (a, 2a].

Due to (1.10), the spectrum of the Neumann problem (2.7), (2.8) are real, nonzero and simple.
Therefore, the zeros of ψ11(λ) are simple. In the same way, we can show that the zeros of ψ21(λ)
and ψ31(λ) are simple too. The assertion of Lemma 2.1 follows.

For what follows, we need the definition presented below:

Definition 2.1. ((26)) Let {zk}∞−∞({zk}∞−∞,k ̸=0) be a sequence of complex numbers of finite multiplicities
which satisfy the following conditions: (1) the sequence is symmetric with respect to the imaginary
axis and symmetrically located numbers possess the same multiplicities; (2) any strip |Re z| ≤ p <∞
contains not more than a finite number of zk. Then, the following way of enumeration is called proper:

i. z−k = −zk(Re zk ̸= 0);
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ii. Re zk ≤ Re zk+1;

iii. the multiplicities are taken into account.

If a sequence has even number of pure imaginary elements we exclude the index zero from
enumeration to make it proper.

Throughout section 2, denote

Bj =
1

2

∫ a

0

qj(x)dx, j = 1, 2, 3.

We introduce the entire function

φ2(λ) = c1(a, λ)c2(a, λ)s3(a, λ). (2.9)

Let us denote by {τk}∞−∞,k ̸=0 the set of zeros of φ1(λ) and by {θk}∞−∞,k ̸=0 the set of zeros of the
function φ2(λ). Denote by {ν(1)k }∞−∞,k ̸=0, {ν(2)k }∞−∞,k ̸=0 and {ν(3)k }∞−∞,k ̸=0 the sets of zeros of the
functions c1(a, λ), c2(a, λ) and s3(a, λ), respectively. It is clear from (2.9) that the set {θk}∞−∞,k ̸=0 is
the union of the sets

∪3
j=1{ν

(j)
k }∞−∞,k ̸=0, i.e., the spectra of the auxiliary problems Lj for j = 1, 2, 3.

According to the remark presented in section 1, all numbers τk, ν(j)k , j = 1, 2, 3 and θk are real
and nonzero. We enumerate the sets {τk}∞−∞,k ̸=0, {ν(j)k }∞−∞,k ̸=0, j = 1, 2, 3 and {θk}∞−∞,k ̸=0 in the
proper way( τ−k = −τk, τk ≤ τk+1, ν(j)−k = −ν(j)k , ν(j)k < ν

(j)
k+1, j = 1, 2, 3 and θ−k = −θk, θk ≤ θk+1).

Note that the sets of eigenvalues {ν(j)k }∞−∞,k ̸=0, j = 1, 2, 3 behave asypmtotically as follows(see (18,
section 1.5)):

ν
(j)
k =

π
(
k − 1

2

)
a

+
Bj

π
(
k − 1

2

) +
δ
(j)
k

k
, j = 1, 2, (2.10)

ν
(3)
k =

πk

a
+
B3

πk
+
δ
(3)
k

k
, (2.11)

where {δ(j)k }∞−∞k ̸=0 ∈ l2 for j = 1, 2, 3.

Lemma 2.2. 1. If τk = θn for some k and n, then dφ2(λ)
dλ

= 0, i.e., at least two of three functions
c1(a, λ), c2(a, λ) and s3(a, λ) have (simple)zeros at λ = τk = θn.
2. If τk = θn for some k and n and dφ1(λ)

dλ

∣∣∣
λ=θn

= 0, then c1(a, λ) = c2(a, λ) = s3(a, λ) = 0 and

d2φ1(λ)

dλ2

∣∣∣
λ=θn

̸= 0.

Proof. Since θn is a zero of φ2(λ), hence, definition (2.9) implies that at least one of three functions
c1(a, λ), c2(a, λ) and s3(a, λ) has (simple) zeros at λ = τk = θn, say, s3(a, θn) = 0. Then from
φ1(θn) = φ1(τk) and (2.3) we obtain c1(a, θn)c2(a, θn) = 0 and assertion 1 of Lemma 2.2 follows. If
we assume c2(a, λ) = 0 or c2(a, λ) = 0, then the proof is analogous.

If τk = θn for some k and n, then by assertion 1 at least two of the functions c1(a, λ), c2(a, λ) and
s3(a, λ) have (simple)zeros at λ = θn. Let c1(a, θn) = c2(a, θn) = 0. Now let dφ1(λ)

dλ

∣∣∣
λ=θn

= 0; then

from (2.4) for j = 1 we get

dφ1(λ)

dλ

∣∣∣∣
λ=θn

= s3(a, θn)
dψ11(λ)

dλ

∣∣∣∣
λ=θn

= 0. (2.12)
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By Lemma 2.1, dψ11(λ)
dλ

∣∣∣
λ=θn

̸= 0 and hence (2.12) implies that s3(a, θn) = 0. If we assume that

c1(a, θn) = s3(a, θn) = 0 or c2(a, θn) = s3(a, θn) = 0 then the proof of first part of assertion 2 is
analogous. Differentiating (2.4) twice for j = 1 we calculate

d2φ1(λ)

dλ2

∣∣∣∣
λ=θn

= 2
dψ11(λ)

dλ

∣∣∣∣
λ=θn

ds3(a, λ)

dλ

∣∣∣∣
λ=θn

.

Since the zeros of ψ11(λ) and s3(a, λ) are simple, then dψ11(λ)
dλ

∣∣∣
λ=θn

̸= 0 and ds3(a,λ)
dλ

∣∣∣
λ=θn

̸= 0.

Consequently, d2φ1(λ)

dλ2

∣∣∣
λ=θn

̸= 0.

Let us denote by Ld, d > 0 the class(introduced in (15, p. 149)) of entire functions of exponential
type ≤ d whose restrictions on the real line belong to L2(−∞,∞).

Let us introduce the function

Ξ(λ) = φ1(λ) + iαλφ2(λ), (2.13)

where α ∈ (3,∞) is an arbitrary constant.

Lemma 2.3. The function Ξ(λ) can be represented as follows:

Ξ(λ) = 3 cos3 λa− 2 cosλa+ (2B1 + 2B2 + 3B3)
cos2 λa sinλa

λ
− (B1 +B2)

sin3 λa

λ

+iα

(
cos2 λa sinλa+ (B1 +B2)

sin2 λa cosλa

λ
−B3

cos3 λa

λ

)
+
ω(λ)

λ
,

(2.14)

where ω(λ) ∈ L3a.

Proof. Using the formulas of (18, p. 9) and taking into account that
∫ a
0
f(t) cosλtdt ∈ La,

∫ a
0
f(t) sinλtdt ∈

La whenever f ∈ L2(0, a) by the Paley-Wiener theorem (3, p. 103), we obtain

cj(a, λ) = cosλa+Bj
sinλa

λ
+
υj(λ)

λ,
j = 1, 2, (2.15)

c′j(a, λ) = −λ sinλa+Bj cosλa+ ϱj(λ), j = 1, 2, (2.16)

s3(a, λ) =
sinλa

λ
−B3

cosλa

λ2
+
υ3(λ)

λ2
, (2.17)

s′3(a, λ) = cosλa+B3
sinλa

λ
+
ϱ3(λ)

λ
, (2.18)

where υj(λ), ϱj(λ), j = 1, 2, 3, are entire functions of class La. Substituting (2.15)-(2.18) into (2.3)
and (2.9), we get

φ1(λ) = 3 cos3 λa− 2 cosλa+ (2B1 + 2B2 + 3B3)
cos2 λa sinλa

λ

−(B1 +B2)
sin3 λa

λ
+
ω1(λ)

λ
, (2.19)

φ2(λ) =
cos2 λa sinλa

λ
+ (B1 +B2)

sin2 λa cosλa

λ2
−B3

cos3 λa

λ2
+
ω2(λ)

λ2
, (2.20)

where ω1(λ), ω2(λ) ∈ L3a. If we substitute (2.19) and (2.20) into (2.13), then the representation (2.14)
follows.
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We set
Ξ0(λ) := 3 cos3 λa− 2 cosλa+ iα cos2 λa sinλa. (2.21)

Denote by {λk}∞−∞ the set of zeros of Ξ(λ) and by {λ(0)
k }∞−∞ that of Ξ0(λ). Under proper enumeration,

it is possible to arrange the zeros {λ(0)
k }∞−∞ into two subsequences:

λ
(0)
2k =

πk

a
− i

a
log

(−1)k +
√
α2 − 8

α+ 3
, k ∈ N ∪ {0}, (2.22)

λ
(0)
2k−1 =

π
(
k − 1

2

)
a

, k ∈ N, (2.23)

λ
(0)
−k = −λ(0)

k , k ∈ N.

Lemma 2.4. The zeros of Ξ(λ) can be enumerated in such a way that:

λk = λ
(0)
k + o(1). (2.24)

Proof. The main term of the asymptotic form of Ξ(λ) is determined by the term (2.21). Therefore, we
consider λk ’s as perturbations of λ(0)

k ’s. We show that the sequence {Imλk}∞−∞ is bounded. Suppose
that there exists a subsequence {λmk}

∞
k=−∞ of the sequence {λk}∞−∞ such that Imλmk → ∞, as

k → ∞. Then (2.14) implies

Ξ(λmk)− e−3iλmk
a

(
3 + α

8

)
= o

(
e3|Imλmk |a

)
.

Since Ξ(λmk) = 0, this is a contradiction. Hence {Imλk}∞−∞ is bounded above. In the same way,
one can show that {Imλk}∞−∞ is bounded below. Consequently, there exists a constant M > 0 such
that |Imλk| < M .
Denote Π = {λ : |Imλ| < M + ϵ}, where ϵ is an arbitrary positive number. It follows from (2.14) and
(2.21) that there exists a constant C > 0 such that

|Ξ(λ)− Ξ0(λ)| <
C

|λ| , λ ∈ Π.

Since the function Ξ0(λ) is periodic, by a method similar to that in (7, p. 6), for every r ∈ (0, ϵ), we
can find d > 0 such that

|Ξ0(λ)| > d

for all λ ∈ Π \
∪
k C

(0)
k , where C

(0)
k = {λ : |λ − λ

(0)
k | ≤ r}. Taking r sufficiently small we obtain

C
(0)
k

∩
C

(0)

k′ = ∅, k ̸= k′. Consequently, for all λ ∈ {λ : λ ∈ Π \
∪
k C

(0)
k , |λ| > C

d
}, the following

inequalities are valid:

|Ξ0(λ)| > d >
C

|λ| > |Ξ(λ)− Ξ0(λ)|.

Since r > 0 can be chosen arbitrary small, we apply Rouché’s theorem and obtain the assertion of
Lemma 2.4.

The set {λk}∞−∞ coincides with the spectrum of the boundary-value problem generated by equations (1.1)
for j = 1, 2, 3 and the boundary conditions (1.3) and the following condition at x = a:

yj(a) = yj′(a) for j, j′ = 1, 2, 3,
3∑
j=1

y′j(a) + iαλy1(a) = 0.

 (2.25)

This problem has the following physical sense: It describes small transverse vibrations of a three-star
graph of three inhomogeneous smooth strings damped at the interior vertex(see (30)). This problem
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also has the following operator interpretation. Denote by A1 the operator acting in the Hilbert space
H1 = L2(0, a)⊕L2(0, a)⊕L2(0, a)⊕C with standard inner product (., .)H1 according to the formulas

A1


y1(x)
y2(x)
y3(x)
y1(a)

 =


−y′′1 (x) + q1(x)y1(x)
−y′′2 (x) + q2(x)y2(x)
−y′′3 (x) + q3(x)y3(x)∑3

j=1 y
′
j(a)

 , (2.26)

D(A1) =




y1(x)
y2(x)
y3(x)
y1(a)


∣∣∣∣∣∣
yj(x) ∈W 2

2 (0, a) for j = 1, 2, 3,
yj(a) = yj′(a) for j, j′ = 1, 2, 3,
y′1(0) = y′2(0) = y3(0) = 0

 . (2.27)

Let K and P denote the projectors:

K =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 αI

 , P =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

 .

Clearly K ≥ 0 and P ≥ 0. We consider the nonmonic quadratic operator pencil of the form

L(λ) = λ2P − iλK −A1

with the domain D(L(λ)) = D(A1) independent of λ and dense in H1.

Definition 2.2. ((19, Sec.11)) Let L(λ) be an operator pencil defined on a complex Hilbert space H.
The set of values λ ∈ C such that L(λ)−1 exists as a closed bounded linear operator on H is called
the resolvent set ρ(L) of the operator pencil L(λ). We denote by σ(L) the spectrum of L(λ), i.e.,
the set σ(L) = C \ ρ(L). The number λ0 ∈ C is said to be an eigenvalue of L(λ) if there exists a
nonzero vector y0 (called an eigenvector) such that L(λ)y0 = 0. The vectors y1, y2, . . . , yr−1 are
called corresponding associated vectors if

n∑
s=0

1

s!

ds

dλs
L(λ)

∣∣∣∣
λ=λ0

yr−s, n = 1, . . . , r − 1.

The number r is called the length of the chain composed of the eigenvector and its associated vectors.
The algebraic multiplicity of an eigenvalue is defined as the maximal value of the sum of the lengths
of chains corresponding to linearly independent eigenvectors. An eigenvalue is said to be isolated if
it has a punctured neighborhood contained in the resolvent set. An isolated eigenvalue λ0 of finite
algebraic multiplicity is said to be normal if the image Im L(λ0) is closed.

It is clear that the set of eigenvalues of the operator pencil L(λ) coincides with the spectrum of
the boundary-value problem (1.1), (1.3), (2.25).

Theorem 2.5.
1. The spectrum of L(λ) consists of normal eigenvalues.
Imλk ≥ 0 for all k ∈ Z
3. The eigenvalues of the operator pencil L(λ) are nonzero.
4. The spectrum of the boundary-value problem (1.1), (1.3), (2.25) is symmetric with respect to the
imaginary axis and symmetrically located eigenvalues possess the same multiplicities.

Proof. Similar to the operator A, one can show that A1 is self-adjoint in the Hilbert space H1. We
prove that it is strictly positive(A1 ≫ 0). Let Y1 ∈ D(A1) and Y ∈ D(A), then integration by parts
yields

(A1Y1, Y1)H1 = (AY, Y )H =

3∑
j=1

∫ a

0

(|y′j(x)|2 + qj(x)|yj(x)|2)dx.
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Therefore A1 is positive. But, if 0 were an eigenvalue of A1, it should be an eigenvalue of A also.
Thus, A1 is strictly positive. Now taking this together with K ≥ 0, P ≥ 0 into account, assertions
1 and 2 follows from (28). Assertion 3 follows from L0 = −A1. finally, Assertion 4 follows from the
identity Ξ(−λ) = Ξ(λ).

We enumerate the zeros of Ξ(λ) in the proper way such that (2.24) be valid: 1)λ−k = −λk
for all not pure imaginary λk, 2)Reλk+1 ≥ Reλk, 3) the multiplicities are taken into account, 4)
λk = λ

(0)
k + o(1). By Lemma 2.4 and assertion 2 of Theorem 2.5, this enumeration is possible. We

note that the number of pure imaginary zeros of Ξ(λ) is odd due to asymptotics of λk and hence this
enumeration include the index zero.

Let us recall some definitions from the theory of entire functions.

Definition 2.3. ((15; 17)) An entire function ω(λ) of exponential type σ > 0 is said to be a function of
sine-type if it satisfies the following conditions:

i. all the zeros of ω(λ) lie in a strip |Imλ| < h <∞;

ii. for some h1 and all λ ∈ {λ : Imλ = h1}, the following equalities hold:

0 < m ≤ |ω(λ)| ≤M <∞;

iii. the type of ω(λ) in the lower half-plane coincides with that in the upper half-plane.

Definition 2.4. ((14, p. 307)) An entire function ω(λ) is said to be of Hermite-Biehler(HB) class if it
has no zeros in the closed lower half-plane Imλ ≤ 0, and if∣∣∣∣ω(λ)ω(λ)

∣∣∣∣ < 1 for Imλ > 0.

Here and in the next definition ω(λ) denotes the entire function obtained from ω(λ) by replacing the
coefficients in its Taylor series by their complex-conjugates, i.e., ω(λ) = ω(λ).

Definition 2.5. ((14, p. 313)) An entire function ω(λ) that has no zeros in the open lower half-plane
Imλ < 0 and satisfies the condition ∣∣∣∣ω(λ)ω(λ)

∣∣∣∣ ≤ 1 for Imλ > 0

is said to be a function of generalized Hermite-Biehler(HB) class.

Lemma 2.6.
1. The function Ξ(λ) is of sine-type.
2. The following formula is valid:

Ξ(λ) = C

∞∏
−∞

(
1− λ

λk

)
, (2.28)

where C is a constant.

Proof. It follows from Lemma 2.4 and from (2.22), (2.23) that Ξ(λ) satisfies condition (i) of Definition 2.3.
From Lemma 2.3, we conclude that this function satisfies also condition (ii) of Definition 2.3. Using
(2.14), it is easy to check up that the types of Ξ(λ) in the lower and in the upper half-planes are equal
to 3a both. Assertion 1 of Lemma 2.6 is proved. Now since by Theorem 2.5 λk ̸= 0 for all k ∈ Z
assertion 2 follows (17).

Lemma 2.7. The function Ξ(λ) is of generalized Hermite-Biehler class.
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Proof. Let us rearrange the sequence {λk}∞−∞ into two subsequences {λmk}
n
k=−n and {λpk}

∞
k=−∞

(m−k = −mk and p−k = −pk and consequently, λm−k = −λmk and λp−k = −λpk ) such that
{λmk}

n
k=−n,k ̸=0

∪
{λpk}

∞
k=−∞ = {λk}∞−∞, n ≤ ∞, Imλmk = 0 for all k ∈ Z, −n ≤ k ≤ n and

Imλpk > 0 for all k ∈ Z. Now we can rewrite (2.28) as follows:

Ξ(λ) = CΞ̂(λ)Ξ̃(λ), (2.29)

where

Ξ̂(λ) =
n∏

k=−n

(
1− λ

λmk

)
, Ξ̃(λ) :=

∞∏
k=−∞

(
1− λ

λpk

)
. (2.30)

By virtue of (2.22)-(2.23), we have ∣∣∣∣Im 1

λ0
pk

∣∣∣∣ = O

(
1

p2k

)
.

From this and (2.24) it follows that ∣∣∣∣Im 1

λpk

∣∣∣∣ = O

(
1

p2k

)
.

consequently,
∞∑

k=−∞

∣∣∣∣Im 1

λpk

∣∣∣∣ <∞.

Now M. G. Krein’s theorem (14, Chap. 7.2, Theorem 6) implies that

Ξ̃(λ) ∈ HB. (2.31)

It is clear that ∣∣∣∣1− λ

λpk

∣∣∣∣ ≤ ∣∣∣∣1− λ

λpk

∣∣∣∣ , k ∈ Z, Imλ > 0.

Together with (2.31) this implies that∣∣∣∣Ξ(λ)Ξ(λ)

∣∣∣∣ = ∞∏
k=−∞

∣∣∣∣1− λ

λpk

∣∣∣∣ ∣∣∣∣1− λ

λpk

∣∣∣∣−1

≤ 1.

Thus, Ξ(λ) ∈ HB.

Corollary 2.8. The sequences {τk}∞−∞,k ̸=0 and {θk}∞−∞,k ̸=0

∪
{0} interlace in the following usual

sense:
· · · ≤ θ−2 ≤ τ−2 ≤ θ−1 ≤ τ−1 ≤ 0 ≤ τ1 ≤ θ1 ≤ τ2 ≤ θ2 ≤ · · · . (2.32)

Proof. This corollary follows from (14, Chap. 7.2, Theorem 3′) applied to (2.13).

Theorem 2.9. The sequences {τk}∞−∞,k ̸=0 and {θk}∞−∞(we set θ0 = 0) interlace in the following
sense:
1. θ0 < τ1 < θ1.
2. For each simple τk(k > 1), either

θk−1 < τk < θk

or
τk−1 < θk−1 = τk = θk < τk+1.

3. For each double τk = τk+1(k > 1)

τk−1 < θk−1 = τk = θk = τk+1 = θk+1 < τk+2.

4. The multiplicity of each τk is ≤ 2.
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Proof. By virtue of (2.13), (2.29), (2.30) and the identity Ξ(−λ) = Ξ(λ) , the entire function Ξ̃(λ) can
be represented as follows:

Ξ̃(λ) = P (λ) + iλQ(λ),

where

P (λ) =
φ1(λ)

Ξ̂(λ)
=

Ξ̃(λ) + Ξ̃(−λ)
2

, Q(λ) =
φ2(λ)

Ξ̂(λ)
=

Ξ̃(λ)− Ξ̃(−λ)
2iλ

.

Since Ξ̃(λ) ∈ HB, by N. Meiman’s theorem (14, Chap. 7.2, Theorem 3) the zeros {τmk}
∞
k=−∞,k ̸=0 of

P (λ) and the zeros {0}
∪
{θpk}

∞
k=−∞,pk ̸=0 of λQ(λ) (m−k = −mk and p−k = −pk ) interlace in the

following strict sense:

· · · < θp−2 < τm−2 < θp−1 < τm−1 < 0 < τm1 < θp1 < τm2 < θp2 < · · · . (2.33)

Now the assertions of Theorem 2.9 easily follow from (2.33), Lemma 2.2 and Corollary 2.8.

General results on interlacing of the eigenvalues in the case of a star graph with arbitrary number
of edges can be found in (29).

Theorem 2.10. The set {τk}∞−∞,k ̸=0 of zeros of φ1(λ) can be represented as the union of three
subsequences

∪3
j=1{τ

(j)
k }∞−∞,k ̸=0 which being enumerated in the following way: τ (1)−k = −τ (1)k , τ (2)−k =

−τ (3)k and τ (j)k ≤ τ
(j)
k+1 for j = 1, 2, 3, behave asymptotically as follows:

τ
(1)
k =

π
(
k − 1

2

)
a

+
B1 +B2

2π
(
k − 1

2

) +
β
(1)
k

k
, (2.34)

τ
(j)
k =

kπ + (−1)j sin−1
√

1
3

a
+
B1 +B2 + 2B3

4kπ
+
β
(j)
k

k
, j = 2, 3, (2.35)

where {β(j)
k }∞−∞,k ̸=0 ∈ l2 for j = 1, 2, 3.

Proof. In the same way as Lemma 2.4, we can show that the set of zeros {τk}∞−∞,k ̸=0 can be
arranged into three subsequences {τ (1)k }∞−∞,k ̸=0, {τ (2)k }∞−∞,k ̸=0 and {τ (3)k }∞−∞,k ̸=0 enumerated in
the following way: τ

(1)
−k = −τ (1)k , τ (2)−k = −τ (3)k and τ

(j)
k ≤ τ

(j)
k+1 for j = 1, 2, 3 and such that

{τk}∞−∞,k ̸=0 =
∪3
j=1{τ

(j)
k }∞−∞,k ̸=0, and

τ
(1)
k =

π
(
k − 1

2

)
a

+ ε
(1)
k , (2.36)

τ
(j)
k =

kπ + (−1)j sin−1
√

1
3

a
+ ε

(j)
k , j = 2, 3, (2.37)

where ε(j)k = o(1) for j = 1, 2, 3. It is not difficult to see that

ε
(j)
k = O

(
1

k

)
, j = 1, 2, 3. (2.38)

In fact, we can calculate limk→∞ kε
(j)
k a. Substituting (2.36) into φ1(τ

(1)
k ) = 0, then from (2.19) and

using Paley-Wiener theorem, we have

φ1(τ
(1)
k ) = (−1)k

(
3 sin3 ε

(1)
k a− 2 sin ε

(1)
k a

)
−(−1)ka(2B1 + 2B2 + 3B3)

sin2 ε
(1)
k a cos ε

(1)
k a

π
(
k − 1

2

)
+(−1)ka(B1 +B2)

cos3 ε
(1)
k a

π
(
k − 1

2

) +O

(
1

k

)
= 0.
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Since limk→∞ cos ε
(1)
k a = 1, we get sin ε(1)k a = O

(
1
k

)
. Thus, ε(1)k = O

(
1
k

)
. Similarly, we can show

that ε(j)k = O
(
1
k

)
for j = 2, 3. Substituting (2.36) into the equation φ1(τ

(1)
k ) = 0 where φ1(λ) is

given by (2.19), by expanding the left-hand side of resulting equation in power series and taking into
account (2.38) and {ω1(τ

(1)
k )}∞−∞,k ̸=0 ∈ l2(see (18, Lemma 1.4.3)), we obtain

2ε
(1)
k a− a(B1 +B2)

π
(
k − 1

2

) +
κk
k

= 0,

where {κk}∞−∞,k ̸=0 ∈ l2. Solving this equation we get (2.34). In the same way, we get (2.35).

General results on interlacing of the eigenvalues in the case of a star graph with arbitrary number
of edges can be found in (29) To compare necessary conditions on a sequence to be the spectrum
of the boundary-value problem L0 with the sufficient condition which will be obtained in Section 3, we
need more refined asymptotics.

Theorem 2.11. Let qj(x) ∈W 1
2 (0, a). Then the subsequences of Theorem 2.10 behave asymptotically

as follows:

τ
(1)
k =

π
(
k − 1

2

)
a

+
B1 +B2

2π
(
k − 1

2

) +
β
(1)
k

k2
, (2.39)

τ
(j)
k =

kπ + (−1)j sin−1
√

1
3

a
+
B1 +B2 + 2B3

4kπ
+
β
(j)
k

k2
, j = 2, 3, (2.40)

where {β(j)
k }∞−∞,k ̸=0 ∈ l2 for j = 1, 2, 3.

Proof. If qj(x) ∈W 1
2 (0, a), twice integrating by parts the formulas of (18, p. 9), we obtain

cj(a, λ) = cosλa+Bj
sinλa

λ
+Dj

cosλa

λ2
+
υj(λ)

λ2
, j = 1, 2, (2.41)

c′j(a, λ) = −λ sinλa+Bj cosλa+D′
j
sinλa

λ
+
ϱj(λ)

λ
, j = 1, 2, (2.42)

s3(a, λ) =
sinλa

λ
−B3

cosλa

λ2
+ E

sinλ

λ3
+
υ3(λ)

λ3
, (2.43)

s′3(a, λ) = cosλa+B3
sinλa

λ
+ E′ cosλa

λ2
+
ϱ3(λ)

λ2
, (2.44)

where Dj , D′
j , j = 1, 2, E and E′ are constants and υj(λ), ϱj(λ), j = 1, 2, 3 are entire functions of

class La. Substituting (2.41)-(2.44) into (2.3) we obtain

φ1(λ) = 3 cos3 λa− 2 cosλa+ (2B1 + 2B2 + 3B3)
cos2 λa sinλa

λ

−(B1 +B2)
sin3 λa

λ
+ F1

cos3 λa

λ2
+ F2

sin2 λa cosλa

λ2
+
ω3(λ)

λ2
,

(2.45)

where F1, F2 are constants and ω3(λ) ∈ L3a. Substituting (2.34) into the equation φ1(τ
(1)
k ) = 0 where

φ1(λ) is given by (2.45) and by expanding the left-hand side of resulting equation in power series, we
get (2.39). Analogously, we obtain (2.40). Theorem 2.11 is proved.

Remark 2.1. Under the conditions of Theorem 2.11, the spectra {ν(j)k }∞−∞,k ̸=0 of the boundary-value
problems Lj for j = 1, 2, 3 behave asymptotically as follows(see (18, p. 75)):

ν
(j)
k =

π
(
k − 1

2

)
a

+
Bj

π
(
k − 1

2

) +
δ
(j)
k

k2
, j = 1, 2, (2.46)

ν
(3)
k =

πk

a
+
B3

πk
+
δ
(3)
k

k2
, (2.47)
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where {δ(j)k }∞−∞,k ̸=0 ∈ l2 for j = 1, 2, 3.

3 Inverse problem

In the present section, we study the problem of reconstruction of the potential q(x) = [qj(x)]j=1,2,3

from the given spectral characteristics. Let us denote by Q the set of functions q(x) = [qj(x)]j=1,2,3

which satisfy the following conditions:

i. qj(x), j = 1, 2, 3 are real-valued functions from L2(0, a);

ii. the operator A constructed via (1.6), (1.7) is strictly positive.

Theorem 3.1. Let the following conditions be valid :
1. Three sequences {ν(j)k }∞−∞,k ̸=0, j = 1, 2, 3 of real numbers are such that

i. ν(j)−k = −ν(j)k , ν(j)k < ν
(j)
k+1, ν(j)k ̸= 0 for all k ∈ Z \ {0} and j = 1, 2, 3;

ii. {ν(j)k }∞−∞k ̸=0

∩
{ν(j

′)
k }∞−∞k ̸=0 = ∅ for j ̸= j′, j, j′ = 1, 2, 3;

iii.

ν
(j)
k =

π
(
k − 1

2

)
a

+
Bj

π
(
k − 1

2

) +
δ
(j)
k

k2
, j = 1, 2, (3.1)

ν
(3)
k =

πk

a
+
B3

πk
+
δ
(3)
k

k2
, (3.2)

where Bj are real constants, Bj ̸= Bj′ for j ̸= j′ and {δ(j)k }∞−∞,k ̸=0 ∈ l2 for j = 1, 2, 3.
2. A sequence {τk}∞−∞,k ̸=0 of real numbers(τ−k = −τk, τk ≤ τk+1, τk ̸= 0 for all k ∈ Z \ {0}) can
be represented as the union of three subsequences {τk}∞−∞,k ̸=0 =

∪3
j=1{τ

(j)
k }∞−∞,k ̸=0 (τ (1)−k = −τ (1)k ,

τ
(2)
−k = −τ (3)k and τ (j)k ≤ τ

(j)
k+1 for j = 1, 2, 3) which behave asymptotically as follows:

τ
(1)
k =

π
(
k − 1

2

)
a

+
B1 +B2

2π
(
k − 1

2

) +
β
(1)
k

k2
, (3.3)

τ
(j)
k =

kπ + (−1)jξ

a
+
B0

kπ
+
β
(j)
k

k2
, j = 2, 3, (3.4)

where ξ = sin−1
√

1/3, B0 = (B1 +B2 + 2B3)/4 and {β(j)
k }∞−∞,k ̸=0 ∈ l2 for j = 1, 2, 3.

3. The sequences {τk}∞−∞,k ̸=0 and {θk}∞−∞ :=
∪3
j=1{ν

(j)
k }∞−∞,k ̸=0

∪
{0}(θ−k = −θk, θk < θk+1)

interlace in the following strict sense:

· · · < θ−2 < τ−2 < θ−1 < τ−1 < θ0 = 0 < τ1 < θ1 < τ2 < θ2 < · · · . (3.5)

Then there exists a unique function q(x) = [qj(x)]j=1,2,3 ∈ Q such that the sequence {τk}∞−∞,k ̸=0

coincides with the spectrum of the boundary-value problem L0 and the sequences {ν(j)k }∞−∞,k ̸=0

coincides with the spectra of the boundary-value problems Lj for j = 1, 2, 3, respectively.

Proof. Denote by

{ρ(0)k }∞−∞,k ̸=0 := {πk − ξ

a
}∞−∞,k ̸=0

∪
{πk + ξ

a
}∞−∞,k ̸=0,

{ρk}∞−∞,k ̸=0 := {τ (2)k }∞−∞,k ̸=0

∪
{τ (3)k }∞−∞,k ̸=0.
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It is possible to enumerate {ρ(0)k }∞−∞,k ̸=0 and {ρk}∞−∞,k ̸=0 in the proper way(ρ(0)−k = −ρ(0)k , ρ(0)k < ρ
(0)
k+1

and ρ−k = −ρk, ρk ≤ ρk+1). Let us construct the following entire functions:

cj(λ) =
∞∏
1

(
a2

π2(k − 1/2)2
(ν

(j)2
k − λ2)

)
, j = 1, 2, (3.6)

s3(λ) = a

∞∏
1

(
a2

π2k2
(ν

(3)2
k − λ2)

)
, (3.7)

ϕ1(λ) =
∞∏
1

(
a2

π2(k − 1/2)2
(τ

(1)2
k − λ2)

)
, (3.8)

ϕ2(λ) =

∞∏
1

(
1

ρ
(0)2
k

(ρ2k − λ2)

)
. (3.9)

Using Lemma 2.1 of (24), we obtain

s3(λ) =
sinλa

λ
−B3

cosλa

λ2
+D

sinλa

λ3
+
f(λ)

λ3
, (3.10)

where D is a constant and f(λ) ∈ La. In the same way as Lemma 2.1 of (24) we can prove that

cj(λ) = cosλa+Bj
sinλa

λ
+ E(j) cosλa

λ2
+
gj(λ)

λ2
, j = 1, 2, (3.11)

ϕ1(λ) = cosλa+

(
B1 +B2

2

)
sinλa

λ
+ F (1) cosλa

λ2
+
h1(λ)

λ2
, (3.12)

ϕ2(λ) = 3 cos2 λa− 2 + 3B0
sin 2λa

λ
+ F (2) 3 cos

2 λa− 2

λ2
+
h2(λ)

λ2
, (3.13)

where E(j), F (j), j = 1, 2 are constants and gj(λ) ∈ La for j = 1, 2, h1(λ) ∈ La and h2(λ) ∈ L2a.
Substituting (3.1) into (3.10)-(3.13), we obtain

c2(ν
(1)
k ) = (−1)k

(B1 −B2)a

π
(
k − 1

2

) +
ζ
(1)
k

k2
, (3.14)

s3(ν
(1)
k ) =

(−1)k+1

ν
(1)
k

(
1 +

ζ
(2)
k

k

)
, (3.15)

ϕ1(ν
(1)
k ) = (−1)k

(B1 −B2)a

2π
(
k − 1

2

) +
ζ
(3)
k

k2
, (3.16)

ϕ2(ν
(1)
k ) = −2 +

ζ
(4)
k

k
, (3.17)

where {ζ(j)k }∞−∞,k ̸=0 ∈ l2 for j = 1, 4.
Let us set

X
(1)
k :=

(
ϕ1(ν

(1)
k )ϕ2(ν

(1)
k )

c2(ν
(1)
k )s3(ν

(1)
k )

+ ν
(1)
k sin ν

(1)
k a−B1 cos ν

(1)
k a

)
. (3.18)

It is clear that X(1)
−k = X

(1)
k . Using (3.1), we obtain the asymptotic relation

ν
(1)
k sin ν

(1)
k a−B1 cos ν

(1)
k a = (−1)k+1ν

(1)
k

(
1 +

ηk
k

)
, (3.19)

where {ηk}∞−∞,k ̸=0 ∈ l2. Taking (3.14)-(3.17) and (3.19) into account, we conclude that {X(1)
k }∞−∞,k ̸=0 ∈

l2. On the other hand, since c1(λ) is a sine-type function, by virtue of assumption 1(ii), (3.1), (3.2)
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and (3.5), inf
k ̸=p

|ν(j)k − ν(j)p | > 0 for j = 1, 2, 3(and hence the zeros of λuj(λ), j = 1, 2 and u3(λ) are

simple), the Lagrange interpolation series

c1(λ)
∞∑
−∞
k ̸= 0

X
(1)
k

dc1(λ)
dλ

∣∣∣
λ=ν

(1)
k

(λ− ν
(1)
k )

(3.20)

constructed on the basis of the sequence {X(1)
k }∞−∞,k ̸=0 defines a function ε1(λ) ∈ La(see (16,

Theorem A)). Using this function, we define the even entire function

R1(λ) = −λ sinλa+B1 cosλa+ ε1(λ). (3.21)

It follows directly from (3.20) that ε1(ν
(1)
k ) = X

(1)
k and hence

R1(ν
(1)
k ) =

ϕ1(ν
(1)
k )ϕ2(ν

(1)
k )

c2(ν
(1)
k )s3(ν

(1)
k )

. (3.22)

Let us denote by {µ(1)
k }∞−∞,k ̸=0 the set of zeros of the function R1(λ). This set is symmetric with

respect to the real axis and to the imaginary axis. Hence, we number the zeros in the proper way:
µ−k = −µk, Reµk ≤ Reµk+1, k ∈ N and the multiplicity are taken into account(we shall prove that
all µ2

k are real and all µk are simple except for µ1, if µ1 = µ−1 = 0). It follows from (3.21) that

µ
(1)
k =

(k − 1)π

a
+
B1

kπ
+
γ
(1)
k

k
, (3.23)

where {γ(1)
k }∞−∞,k ̸=0 ∈ l2.

Lemma 3.2. The following inequalities are valid:

µ
(1)2
1 < ν

(1)2
1 < µ

(1)2
2 < ν

(1)2
2 < · · · . (3.24)

Proof. In the same way as proof of (25, Proposition 2.3), we can show that

(−1)k
ϕ1(ν

(1)
k )ϕ2(ν

(1)
k )

c2(ν
(1)
k )s3(ν

(1)
k )

> 0. (3.25)

Taking into account (3.22), we get
(−1)kR1(ν

(1)
k ) > 0. (3.26)

It follows from (3.26) that between consecutive ν(1)k ’s there is an odd number(with account of multiplicities)
of µ(1)

k ’s. Suppose that there are three or more of them between ν
(1)
k and ν

(1)
k+1. Then comparing

(3.23) with (3.1), we conclude that there are no µ(1)
p ’s between some ν(1)k′ and ν(1)k′+1 where k ̸= k′, a

contradiction. Thus, ν(1)21 < µ
(1)2
2 < ν

(1)2
2 < · · · . If R1(0) > 0, then 0 < µ

(1)
1 < ν

(1)
1 . IfR1(0) = 0, then

µ
(1)
1 = 0. If R1(0) < 0, then µ(1)

1 is a pure imaginary number and hence µ(1)2
1 < ν

(1)2
1 . Lemma 3.2 is

proved.

Now the two sequences {ν(1)k }∞−∞,k ̸=0 and {µ(1)
k }∞−∞,k ̸=0 satisfy(due to (3.1), (3.23) and Lemma 3.2)

the conditions of (7, Theorem 1.5.4). Thus, it is possible to construct(using the well-known procedure
(7, Section 1.5)) a unique real-valued function q1(x) ∈ L2(0, a) such that {ν(1)k }∞−∞,k ̸=0 and {µ(1)

k }∞−∞,k ̸=0

are the spectra of the boundary-value problems L1 and L′
1, respectively. In the same way we can

construct q2(x).
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Let us construct q3(x). We set

X
(3)
k := ν

(3)
k

(
ϕ1(ν

(3)
k )ϕ2(ν

(3)
k )

c1(ν
(3)
k )c2(ν

(3)
k )

− cos ν
(3)
k a−B3

sin ν
(3)
k a

ν
(3)
k

)
. (3.27)

Clearly X(3)
−k = −X(3)

k and in the same way as {X(1)
k }∞−∞,k ̸=0, we can show that {X(3)

k }∞−∞,k ̸=0 ∈ l2.
Note that the function λs3(λ) is a sine-type function and by virtue of assumption 1(ii), (3.1), (3.2) and
(3.5), inf

k ̸=p
|ν(j)k −ν(j)p | > 0 for j = 1, 2, 3(and hence the zeros of λuj(λ), j = 1, 2 and u3(λ) are simple),

and therefore, the Lagrange interpolation series

λs3(λ)

∞∑
−∞
k ̸= 0

X
(3)
k

ν
(3)
k

ds3(λ)
dλ

∣∣∣
λ=ν

(3)
k

(λ− ν
(3)
k )

(3.28)

constructed on the basis of the sequence {X(3)
k }∞−∞,k ̸=0 defines a function ε3(λ) ∈ La. Let us

introduce the even entire function

R3(λ) = cosλa+B3
sinλa

λ
+
ε3(λ)

λ
(3.29)

and denote its zeros by {µ(3)
k }∞−∞,k ̸=0. We enumerate this sequence in the proper way. Using (3.29),

we get

µ
(3)
k =

π
(
k − 1

2

)
a

+
B3

π
(
k − 1

2

) +
γ
(3)
k

k
. (3.30)

where {γ(3)
k }∞−∞,k ̸=0 ∈ l2.

Lemma 3.3. The following inequalities are valid:

µ
(3)2
1 < ν

(3)2
1 < µ

(3)2
2 < ν

(3)2
2 < · · · . (3.31)

Proof. The proof of this Lemma is quite the same as that of Lemma 3.2.

It follows from (3.31) and the asymptotic relations (3.2) and (3.30) that the sequences {ν(3)k }∞−∞,k ̸=0

and {µ(3)
k }∞−∞,k ̸=0 satisfy the conditions of (18, Theorem 3.4.1). Thus, it is possible to construct(via

the well-known procedure (18, Section 3.4)) a unique real-valued function q3(x) ∈ L2(0, a) such
that {ν(3)k }∞−∞,k ̸=0 and {µ(3)

k }∞−∞,k ̸=0 are the spectra of the boundary-value problems L3 and L′
3,

respectively.
It is clear that the obtained q(x) = [qj(x)]j=1,2,3 generates the spectra of the boundary-value

problems Lj which coincide with {ν(j)k }∞−∞,k ̸=0 for j = 1, 2, 3, respectively and the functions c1(a, λ),
c2(a, λ) and s3(a, λ) which coincide with c1(λ), c2(λ) and s3(λ) defined by (3.6) for j = 1, 2 and (3.7).
The set of zeros of values of derivatives c′1(a, λ), c′2(a, λ) and s′3(a, λ) coincide with {µ(j)

k }∞−∞,k ̸=0 for
j = 1, 2, 3 and consequently, c′1(a, λ), c′2(a, λ) and s′3(a, λ) coincide with Rj(λ) for j = 1, 2, 3(R2(λ) is
defined analog to R1(λ)). Thus, the values of the function φ1(λ)(defined by (2.3)) at λ = ν

(j)
k coincide

with
ϕ1(ν

(j)
k )ϕ2(ν

(j)
k )

for all k ∈ Z\{0} and all j = 1, 2, 3, i.e., with the corresponding values of the function ϕ1(λ)ϕ2(λ). This
implies that the entire function ∆(λ) := φ1(λ)−ϕ1(λ)ϕ2(λ) of exponential type 3a can be represented
as follows:

∆(λ) = t(λ)c1(λ)c2(λ)s3(λ), (3.32)
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where t(λ) is an entire function. Using (2.20), (3.12) and (3.13) we have

∆(λ) = t(λ)

(
cos2 λa sinλa

λ
+ (B1 +B2)

sin2 λa cosλa

λ2
−B3

cos3 λa

λ2
+
ω1(λ)

λ2

)
, (3.33)

ϕ1(λ)ϕ2(λ) = 3 cos3 λa− 2 cosλa+ (2B1 + 2B2 + 3B3)
cos2 λa sinλa

λ

−(B1 +B2)
sin3 λa

λ
+ F ′

1
cos3 λa

λ2
+ F ′

2
sin2 λa cosλa

λ2
+
ω2(λ)

λ2
,

(3.34)

where F ′
1, F ′

2 are constants, and ω1(λ), ω2(λ) ∈ L3a. Comparing (2.45) with (3.33) and (3.34), we
obtain

t(λ)
(
λ cos2 λa sinλa+ (B1 +B2) sin

2 λa cosλa−B3 cos
3 λa+ ω1(λ)

)
= (F1 − F ′

1) cos
3 λa+ (F2 − F ′

2) sin
2 λa cosλa+ ω3(λ), (3.35)

where ω3(λ) ∈ L3a. Since the functions cos3 λa, sin2 λa cosλa, ω1(λ) and ω3(λ) are bounded on the
real axis, hence relation (3.35) implies that t(λ) ≡ 0 and φ1(λ) = ϕ1(λ)ϕ2(λ). Consequently, the
sequence {τk}∞−∞,k ̸=0 coincides with the spectrum of the boundary-value problem L0. The operator
A constructed by (1.6), (1.7) using the obtained q(x) = [qj(x)]j=1,2,3, is strictly positive, because it is
self-adjoint and its spectrum is positive. The uniqueness of the solution of the inverse problem follows
from the fact that formulas (3.22) and (3.28) establishes one-to-one correspondence between l2 and
La(see (16, Theorem A)). Theorem 3.1 is proved.

Remark 3.1. If condition 1(ii) of theorem 3.1 fails, i.e., the sets {ν(j)k }∞−∞,k ̸=0, j = 1, 2, 3 are not
pairwise disjoint(consequently, the condition 3 fails too), either the uniqueness or the existence result
of mentioned theorem can also fails, for the same reasons as in the case of three spectra(see (24;
10)). If the sequences {τk}∞−∞,k ̸=0 and {θk}∞−∞ :=

∪3
j=1{ν

(j)
k }∞−∞,k ̸=0

∪
{0} satisfy the statements

of Corollary 2.8 and of Theorem 2.9, then the solution of the inverse problem exists but is not unique.
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