

SCIENCEDOMAIN international www.sciencedomain.org

Banach Space X-Valued Bilateral Sequence Space

 $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$

Riti Agrawal^{*1} and J. K. Srivastava²

¹ M. M. M. Engineering College Gorakhpur, (U.P.) India, 273010
² D. D. U. Gorakhpur University Gorakhpur, (U.P.) India, 273009

Research Paper

Received: 23 August 2012 Accepted: 27 November 2013 Published: 09 March 2013

Abstract

Aims/ objectives:

In this paper we introduce and study vector–valued bilateral sequence space $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$. We investigate the conditions connected with the comparison of the classes in terms of $\overline{\lambda}$ and \overline{p} so that a class is contained in or equal to another class of same kind. We also study topological linear structure of this space when this space is topolized by a suitable paranorm.

Keywords: Bilateral Sequence, Sequence Space and Paranormed space 2010 Mathematics Subject Classification: Primary- 46A45, Secondary- 46B45

1 Introduction

So far, a good number of research works have been done on bilateral sequence spaces for instance, see [2], [7], [3], [12] and [13]. Leon and Montes, in [9] has worked on the complex bilateral sequence space $\ell^2(\mathbb{Z})$ to obtain various results on hypercyclic bilateral weighted shift. In [8], Menet generalized this result to the complex bilateral sequence spaces $\ell^p(\mathbb{Z})$ with $1 \leq p < \infty$ and $c_o(\mathbb{Z})$ and afterwards, to the complex weighted spaces $\ell^p(v, \mathbb{Z})$ and $c_o(v, \mathbb{Z})$. Shkarin, in [11] and [10] used the bilateral sequence spaces $\ell_\infty(\mathbb{Z})$, $\ell_p(\mathbb{Z})$ with $1 \leq p < \infty$ and $c_o(\mathbb{Z})$ to obtain various results associated with weighted bilateral shift on these spaces and also used $\{f_j\}_{j\in\mathbb{Z}}$, a sequence of elements of \mathcal{B} where \mathcal{B} is a Banach space. We have introduced and studied the Banach space X-valued bilateral sequence spaces $c_o(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$, $c(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ in [15] involving bilateral sequence $\overline{p} = (p_k)_{-\infty}^{\infty}$ and the multiplier $\overline{\lambda} = (\lambda_k)_{-\infty}^{\infty}$.

By a bilateral sequence we mean a function whose domain is the set \mathbb{Z} of all integers with natural ordering. We will denote a bilateral sequence by the symbol $(a_k)_{-\infty}^{\infty}$ or $\bar{a} = (a_k)_{-\infty}^{\infty}$. As usual by the convergence of the bilateral series $\sum_{-\infty}^{\infty} a_k$ to *s* written as $\sum_{-\infty}^{\infty} a_k = s$ we shall mean the convergence

^{*}Corresponding author: E-mail: riti.ganesh@yahoo.com

of the sequence $(s_n)_{n=1}^{\infty}$ to s. Let $\bar{p} = (p_k)_{-\infty}^{\infty}$ and $\bar{q} = (q_k)_{-\infty}^{\infty}$ be bilateral sequences of strictly positive real numbers and $\bar{\lambda} = (\lambda_k)_{-\infty}^{\infty}$ and $\bar{\mu} = (\mu_k)_{-\infty}^{\infty}$ be bilateral sequences of non-zero complex numbers. Our aim in this paper is to investigate the results concerning the class $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ defined below as a generalization of the sequence space $\ell(X, \bar{\lambda}, \bar{p})$ (studied by Srivastava and Srivastava [16]) which is itself generalization of well known complex sequence space $\ell(\bar{p}), \bar{p} = (p_k)_1^{\infty}$ studied by Maddox [6] and many others, for instance, see [13], [?], [?] and [1]. We define

$$\ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p}) = \left\{ \bar{x} = (x_k)_{-\infty}^{\infty} : x_k \in X, \ k \in \mathbb{Z}, \ \left(\sum_{-\infty}^{\infty} ||\lambda_k x_k||^{p_k} \right) < \infty \right\}.$$

If $p_k = 1$ for all $k \in \mathbb{Z}$ in $\bar{p} = (p_k)_{-\infty}^{\infty}$, we shall denote $\ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ by $\ell(\mathbb{Z}, X, \bar{\lambda})$ and if $\lambda_k = 1$ for all $k \in \mathbb{Z}$ in $\overline{\lambda} = (\lambda_k)_{-\infty}^{\infty}$ then we shall denote $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ by $\ell(\mathbb{Z}, X, \overline{p})$.

We shall also need

$$\ell_{\infty}(\mathbb{Z},\mathbb{R}) = \{\bar{a} = (a_k)_{-\infty}^{\infty} : a_k \in \mathbb{R}, \ k \in \mathbb{Z}, \ \sup_k |a_k| < \infty\}$$

Throughout the paper, for each $k \in \mathbb{Z}$, we shall denote $t_k = \left| \frac{\lambda_k}{\mu_k} \right|^{p_k}$ and $M = \max(1, \sup_k p_k)$ and shall denote by $\mathbb{Z}(m, n)$ the open integer interval defined as

$$z(m,n) = \begin{cases} m+1, m+2, \dots, n-2, n-1, & m+1 \le n-1 \\ \phi, & \text{otherwise} \end{cases}$$

Also we shall denote complement of $\mathbb{Z}(m, n)$ by $\mathbb{Z} \setminus \mathbb{Z}(m, n)$.

Definition 1.1. Let X be a linear space. A mapping $g: X \to \mathbb{R}$ is called a paranorm if it satisfies following conditions :

(i) $g(\theta) = 0$ (ii) g(x) = g(-x)(iii) $g(x+y) \leq g(x) + g(y)$ (iv) if (α_n) is a sequence of scalars with $\alpha_n \to \alpha$ and (x_n) is a sequence in X with $g(x_n - x) \to 0$ then $g(\alpha_n x_n - \alpha x) \rightarrow 0$ (continuity of scalar multiplication).

The paranorm is called total if (v) g(x) = 0 implies x = 0, see [17].

2 Containment

In this section conditions for containment relations of $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ in terms of \overline{p} and $\overline{\lambda}$ are investigated.

Lemma 2.1. $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}) \subset \ell(\mathbb{Z}, X, \overline{\mu}, \overline{p})$ if and only if

$$\lim_{k \to -\infty} \inf t_k > 0 \text{ and } \lim_{k \to \infty} \inf t_k > 0$$

Proof. Suppose $\lim_{k \to -\infty} \inf t_k > 0$ and $\lim_{k \to \infty} \inf t_k > 0$ and $\bar{x} = (x_k)_{-\infty}^{\infty} \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$. Then there exists m > 0 such that $m|\mu_k|^{p_k} < |\lambda_k|^{p_k}$, for all sufficiently large values of |k|. Thus $m||\mu_k x_k||^{p_k} < |\lambda_k|^{p_k}$. $||\lambda_k x_k||^{p_k}$, for all sufficiently large values of |k|. Now we easily get that $\bar{x} \in \ell(\mathbb{Z}, X, \bar{\mu}, \bar{p})$. Hence $\ell(\mathbb{Z}, X, \lambda, \bar{p}) \subset \ell(\mathbb{Z}, X, \bar{\mu}, \bar{p}).$

Conversely suppose that $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}) \subset \ell(\mathbb{Z}, X, \overline{\mu}, \overline{p})$ but $\lim_{k \to -\infty} \inf t_k = 0$ and/or $\lim_{k \to \infty} \inf t_k = 0$. Let us take the case when only $\lim_{k \to \infty} \inf t_k = 0$. Now we can find a sequence of integers (k(n)) such that $1 \leq k(n) < k(n+1), n \geq 1$ for which $n|\lambda_{k(n)}|^{p_{k(n)}} < |\mu_{k(n)}|^{p_{k(n)}}$. We now see that $\overline{x} = (x_k)_{-\infty}^{\infty}$ defined by

$$x_k = \begin{cases} \lambda_{k(n)}^{-1} n^{-2/p_{k(n)}} z, & \text{if } k = k(n), n \ge 1 \text{ and} \\ \theta, & \text{otherwise} \end{cases}$$

where $z\in X,$ and ||z||=1, is in $\ell(\mathbb{Z},X,\bar{\lambda},\bar{p})$ but not in $\ell(\mathbb{Z},X,\bar{\mu},\bar{p})$ as

$$\begin{split} &\sum_{k=-\infty} ||\lambda_k x_k||^{p_k} < \infty \text{ and} \\ &\sum_{k=-\infty}^{\infty} ||\mu_k x_k||^{p_k} = \sum_{n=1}^{\infty} \left|\frac{\mu_{k(n)}}{\lambda_{k(n)}}\right|^{p_{k(n)}} \cdot \frac{1}{n^2} > \sum_{n=1}^{\infty} \frac{1}{n^2} \cdot n = \infty, \end{split}$$

a contradiction to our assumption.

Similar proof can be given for the other cases. This completes the proof.

Lemma 2.2. $\ell(\mathbb{Z}, X, \bar{\mu}, \bar{p}) \subset \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ if and only if

$$\lim_{k \to -\infty} \sup t_k < \infty \text{ and } \lim_{k \to \infty} \sup t_k < \infty$$

Proof. Sufficiency of the condition can easily be proved on the lines of above Lemma 2.1. For the necessity let us suppose that $\ell(\mathbb{Z}, X, \bar{\mu}, \bar{p}) \subset \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ but $\lim_{k \to -\infty} \sup t_k = \infty$ and/or $\lim_{k \to \infty} \sup t_k = \infty$. We take the case when only $\lim_{k \to \infty} \sup t_k = \infty$. Then there exits a sequence of integers (k(n)) such that, $1 \le k(n) < k(n+1)$, $n \ge 1$ for which

$$|\lambda_{k(n)}|^{p_{k(n)}} > n |\mu_{k(n)}|^{p_{k(n)}}.$$

Let $z \in X$ with ||z|| = 1 and consider the sequence $\bar{x} = (x_k)_{-\infty}^{\infty}$ defined in the proof of Lemma 2.1. We easily see that $\bar{x} = (x_k)_{-\infty}^{\infty}$ is in $\ell(\mathbb{Z}, X, \bar{\mu}, \bar{p})$ but $\bar{x} \notin \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ as

$$\sum_{k=-\infty}^{\infty} ||\lambda_k x_k||^{p_k} = \sum_{n=1}^{\infty} \left| \frac{\lambda_{k(n)}}{\mu_{k(n)}} \right|^{p_{k(n)}} \cdot \frac{1}{n^2} > \sum_{n=1}^{\infty} \frac{1}{n^2} \cdot n = \infty,$$

a contradiction to our assumption that $\ell(\mathbb{Z}, X, \bar{\mu}, \bar{p}) \subset \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$. This completes the proof.

When Lemmas 2.1 and 2.2 are combined, we get:

Theorem 2.3. $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}) = \ell(\mathbb{Z}, X, \overline{\mu}, \overline{p})$ if and only if $0 < \lim_{k \to -\infty} \inf t_k < \lim_{k \to -\infty} \sup t_k < \infty$ and $0 < \lim_{k \to \infty} \inf t_k < \lim_{k \to \infty} \sup t_k < \infty$. Corollary 2.4. (i) $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}) \subset \ell(\mathbb{Z}, X, \overline{p})$ if and only if $\lim_{k \to -\infty} \inf |\lambda_k|^{p_k} > 0 \text{ and } \lim_{k \to \infty} \inf |\lambda_k|^{p_k} > 0.$ (ii) $\ell(\mathbb{Z}, X, \overline{p}) \subset \ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ if and only if $\lim_{k \to -\infty} \sup |\lambda_k|^{p_k} < \infty \text{ and } \lim_{k \to \infty} \sup |\lambda_k|^{p_k} < \infty.$ (iii) $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}) = \ell(\mathbb{Z}, X, \overline{p})$ if and only if $0 < \lim_{k \to -\infty} \inf |\lambda_k|^{p_k} < \lim_{k \to -\infty} \sup |\lambda_k|^{p_k} < \infty \text{ and } 0 < \lim_{k \to \infty} \inf |\lambda_k|^{p_k} < \lim_{k \to \infty} \sup |\lambda_k|^{p_k} < \infty.$

Proof. Proof easily follows from Lemma 2.1, Lemma 2.2 and Theorem 2.3.

Lemma 2.5. If $p_k \leq q_k$ for all but finitely many $k \in \mathbb{Z}$ then

$$\ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p}) \subset \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{q})$$

Proof. Let $p_k \leq q_k$ for all but finitely many $k \in \mathbb{Z}$. If $\bar{x} = (x_k)_{-\infty}^{\infty} \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ then clearly $\bar{x} \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{q})$ because $||\lambda_k x_k|| \leq 1$ for all large values of |k| and so $||\lambda_k x_k||^{q_k} \leq ||\lambda_k x_k||^{p_k}$, for all large values of |k|. This completes the proof.

Theorem 2.6. If (i) $\lim_{k \to -\infty} \inf t_k > 0$ and $\lim_{k \to \infty} \inf t_k > 0$, and (ii) $p_k \leq q_k$, for all but finitely many $k \in \mathbb{Z}$, then

$$\ell(\mathbb{Z}, X, \lambda, \bar{p}) \subset \ell(\mathbb{Z}, X, \bar{\mu}, \bar{q})$$

Proof. Proof easily follows from Lemmas 2.1 and 2.5.

3 Paranormed Space Structure of $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$

As usual for the sequence spaces, here also the linear space structure of $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ over the field \mathbb{C} of complex numbers is concerned, vector operations will be taken co-ordinatewise i.e., $\overline{x} + \overline{y} = (x_k + y_k)_{-\infty}^{\infty}$ and $\alpha \overline{x} = (\alpha x_k)_{-\infty}^{\infty}$. Further we note that $\overline{p} = (p_k)_{-\infty}^{\infty} \in \ell_{\infty}(\mathbb{Z}, \mathbb{R})$ is a necessary and sufficient condition for the linearity of $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$. Therefore throughout the section we shall take $\overline{p} = (p_k)_{-\infty}^{\infty} \in \ell_{\infty}(\mathbb{Z}, \mathbb{R})$.

We define

(3.1)
$$Q_{\bar{\lambda},\bar{p}}(\bar{x}) = \left(\sum_{-\infty}^{\infty} ||\lambda_k x_k||^{p_k}\right)^{1/M}$$

for $\bar{x} \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ where $M = max(1, sup_k p_k)$.

recall the following definition (see [15]):

Definition 3.1. Let E(X) be the linear space of normed space X-valued bilateral sequences $\bar{x} = (x_k)_{-\infty}^{\infty}$ and $x \in X$. We define

(i) $\delta_n(x) = (\dots, \theta, x, \theta, \dots)$, where x is at nth place, $n \in \mathbb{Z}$.

(ii) E(X) equipped with the linear topology \mathcal{T} is said to be a GK-space if the map $P_n : E(X) \to X, P_n(\bar{x}) = x_n$, is continuous for each $n \in \mathbb{Z}$.

A GK-space is called

(iii) a GAD-space if $\Phi(X)$ is dense in E(X), where

 $\Phi(X) = \{ \bar{x} = (x_k)_{-\infty}^{\infty} : x_k \in X, k \in \mathbb{Z} \text{ and } x_k = \theta, \text{ for all but finitely many } k \},$

(iv) a GAK-space if for each $\bar{x} = (x_k)_{-\infty}^{\infty}$ in $E(X), s_n(\bar{x}) \to \bar{x}$ as $n \to \infty$ with respect to \mathcal{T} , where $s_n(\bar{x}) = (\dots, \theta, x_{-n}, \dots, x_{-1}, x_0, x_1, \dots, x_n, \theta, \dots)$,

(v) a GFK-space if $(E(X), \mathcal{T})$ is complete linear metric space,

(vi) a *GC*-space if $R_n: X \to E(X), R_n(x) = \delta_n(x)$ is continuous for each $n \in \mathbb{Z}$.

Where GK- space, GAK- space, GFK- space and GC- space are generalized versions defined for vector valued bilateral sequences corresponding to K- space, AK- space, FK- space and C- space which are defined for scalar sequences (see Wilansky [17] and Kamthan and Gupta [?]).

Theorem 3.1. Let X be a normed space and consider $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ with $Q_{\overline{\lambda}, \overline{p}}$.

(i) $(\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}), Q_{\overline{\lambda}, \overline{p}})$ is a total paranormed GK-space,

(ii) $(\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}), Q_{\overline{\lambda}, \overline{p}})$ is a GAD-, GAK- and GC-space,

(iii) if X is separable then so is $(\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}), Q_{\overline{\lambda}, \overline{p}})$ and

(iv) if X is a Banach space then $(\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}), Q_{\overline{\lambda}, \overline{p}})$ is a GFK-space.

Proof. Throughout the theorem $Q_{\bar{\lambda},\bar{p}}$ will be denoted by Q(i) We prove here continuity of scalar multiplication only and other conditions for Q to be a total paranorm can be proved very easily. To prove the continuity of scalar multiplication, it is sufficient to show:

(a) $Q(\bar{x}^{(n)}) \to 0$ and $\alpha_n \to \alpha$ imply $Q(\alpha_n \bar{x}^{(n)}) \to 0$, and (b) $\alpha_n \to 0$ imply $Q(\alpha_n \bar{x}) \to 0$ for each $\bar{z} \in \mathbb{C}^{\ell/T} \times \bar{X}$

(b)
$$\alpha_n \to 0$$
 imply $Q(\alpha_n \bar{x}) \to 0$ for each $\bar{x} \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$
Let $Q(\bar{x}^{(n)}) = \left(\sum_{k=1}^{\infty} ||\lambda_k x_k^{(n)}||^{p_k}\right)^{1/M} \to 0$ and $\alpha_n \to \alpha$ as $n \to \infty$.

Further suppose that for some L > 0 $|\alpha_n| \le L$, for all $n \ge 1$.

Then
$$Q(\alpha_n \bar{x}^{(n)}) = \left(\sum_{-\infty}^{\infty} ||\lambda_k \alpha_n x_k^{(n)}||^{p_k}\right)^{T}$$
$$= \left(\sum_{-\infty}^{\infty} |\alpha_n|^{p_k} ||\lambda_k x_k^{(n)}||^{p_k}\right)^{1/M}$$
$$\leq \left(\sum_{-\infty}^{\infty} L^{p_k} ||\lambda_k x_k^{(n)}||^{p_k}\right)^{1/M}$$
$$= \sup(L^{p_k/M}) \left(\sum_{-\infty}^{\infty} ||\lambda_k x_k^{(n)}||^{p_k}\right)^{1/M}$$
$$\leq A(L)Q(\bar{x}^{(n)})$$

where A(L) = max(1, L). This implies that $Q(\alpha_n \bar{x}^{(n)}) \to 0$ as $n \to \infty$. This proves (a). Now let $\bar{x} \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ then for $\epsilon > 0$ there exists K such that

$$\sum_{k \in \mathbb{Z} \setminus \mathbb{Z}(-K,K)} ||\lambda_k x_k^{(n)}||^{p_k} < \left(\frac{\epsilon}{2}\right)^M.$$

Further if $\alpha_n \to 0$ we can find N such that for $n \ge N$ and $|\alpha_n| \le 1$

$$\sum_{k \in \mathbb{Z}(-K,K)} |\alpha_n|^{p_k} ||\lambda_k x_k||^{p_k} < \left(\frac{\epsilon}{2}\right)^M \text{ and } |\alpha_n| \le 1.$$

Thus, for all $n \ge N$ we get

$$Q(\alpha_n \bar{x}) \leq \left(\sum_{k \in \mathbb{Z}(-K,K)} ||\alpha_n \lambda_k x_k||^{p_k}\right)^{1/M} + \left(\sum_{k \in \mathbb{Z} \setminus \mathbb{Z}(-K,K)} ||\lambda_k x_k||^{p_k}\right)^{1/M}$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

and hence (b) follows.

Further each $k \in \mathbb{Z}$, the continuity of $P_k : \ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p}) \to X$ where $P_k(\overline{x}) = x_k$ follows from $P_k(\overline{x}) = ||x_k|| \le |\lambda_k|^{-1} (Q(\overline{x}))^{M/p_k}$.

Thus $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ is a GK-space which proves (i).

(ii) Let $\bar{x} = (x_k) \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ and $\epsilon > 0$. Then there exists K such that

$$\left(\sum_{k\in\mathbb{Z}\setminus\mathbb{Z}(-K,K)}\left|\left|\lambda_{k}x_{k}\right|\right|^{p_{k}}\right)^{1/M}<\epsilon$$

We now easily see that

$$Q(\bar{x} - s_{K-1}(\bar{x})) = \left(\sum_{k \in \mathbb{Z} \setminus \mathbb{Z}(-K,K)} ||\lambda_k x_k||^{p_k}\right)^{1/M} < \epsilon.$$

This shows that $\Phi(X)$ is dense in $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ as well as $s_n(\overline{x}) \to \overline{x}$ as $n \to \infty$. Hence $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ is a GAD-space and also a GAK-space.

Now let $R_k : X \to \ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$, where $R_k(x) = \delta_k(x)$, $k \in \mathbb{Z}$. Clearly continuity of $R_k, k \in \mathbb{Z}$ follows from

$$Q(R_k(x)) = Q(\delta_k(x)) \le |\lambda_k|^{p_k/M} ||x||^{p_k/M}.$$
 Hence $\ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ is a GC -space.

(iii) If D is a countable dense subset of X then $\Phi(D)$ will be a countable dense subset of $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$. (iv) If X is a Banach space then we show that $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ is complete with respect to the metric induced by Q.

Let $(\bar{x}^{(n)})$ be a Cauchy sequence in $\ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$. Then for $\epsilon > 0$ there exists N such that

$$(3.2) \qquad \left(\sum_{-\infty}^{\infty} ||\lambda_k x_k^{(n)} - \lambda_k x_k^{(m)}||^{p_k}\right)^{1/M} < \epsilon, \quad \text{for all } n, m \ge N,$$

and so for each $k \in \mathbb{Z}$
 $||x_k^{(n)} - x_k^{(m)}|| < |\lambda_k|^{-1} \epsilon^{M/p_k} < |\lambda_k|^{-1} \epsilon, \quad \text{for all } n, m \ge N.$

This shows that for each $k \in \mathbb{Z}$, $(\bar{x_k}^{(n)})_{n=1}^{\infty}$ is a Cauchy sequence in X. Since X is complete therefore $x_k^n \to x_k \in X$ as $n \to \infty$. Let $\bar{x} = (x_k) \in X$. Since $(\bar{x}^{(n)})$ is a Cauchy sequence therefore it will be bounded with respect to Q. Suppose

$$Q(\bar{x}^{(n)}) = \left(\sum_{-\infty}^{\infty} ||\lambda_k x_k^n||^{p_k}\right)^{1/M} \le L,$$

for some L > 0 and each $n \ge 1$. Now for any $t \ge 1$, we have

$$\left(\sum_{-t}^{t} ||\lambda_k x_k^{(n)}||^{p_k}\right)^{1/M} \le \left(\sum_{-\infty}^{\infty} ||\lambda_k x_k^{(n)}||^{p_k}\right)^{1/M} \le L$$

and so taking $n \to \infty$ then $t \to \infty$ we get

$$\left(\sum_{\substack{-\infty\\-\infty}}^{\infty} ||\lambda_k x_k||^{p_k}\right)^{1/M} \le L.$$

This shows that $\bar{x} \in \ell(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$.

Now it remains to show that $Q(\bar{x}^{(n)} - \bar{x}) \to 0$ as $n \to \infty$. By (3.2), for each fixed t we have

$$\sum_{-t}^{t} ||\lambda_k x_k^{(n)} - \lambda_k x_k^{(m)}||^{p_k} < \epsilon^M.$$

Thus if in this inequality we take $m \to \infty$ first and then $t \to \infty$ we easily get

$$\left(\sum_{-\infty}^{\infty} ||\lambda_k x_k^{(n)} - \lambda_k x_k||^{p_k}\right)^{1/M} \le \epsilon, \quad \text{for each } n \ge N$$

and so $Q(\bar{x}^{(n)} - \bar{x}) \to 0$ as $n \to \infty$ i.e., $\bar{x}^{(n)} \to \bar{x}$ with respect to Q.

This proves the completeness of $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$. Moreover $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ is a GFK-space because $\ell(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ is complete as well as a GK-space.

Competing interests

The authors declare that they have no competing interests.

References

- Berberian SK. Lectures in Functional Analysis and Operator Theory. Springer-Ver. New York/Berlin. 1974: p166.
- [2] Chen C. Supercyclic and Ces'aro Hypercyclic Weighted Translations on Groups. Taiwanese J. Math. 2012;16(5):18151827.
- [3] Donoho DL, Johnstone IM. Minimax Estimation via Wavelet Shrinkage. The Annals Stat. 1998:26(3):879921.
- [4] Kamthan PK, Gupta M. Sequence Spaces and Series. Marcel Dekker Inc, New York. 1981
- [5] Lascarides CG. A Study of Certain Sequence Spaces of Maddox and a Generalization of a Theorem of lyer. Pacific, J. Math. 1973;38(2):487500.
- [6] Maddox IJ. Infinite Matrices of Operators (Lecture Notes in Mathematics) 786. Springer-Ver. Berlin-Heidelberg/New York. 1980
- [7] Matsuzaki K. An Averaging Operator and Non-separability of Certain Banach Spaces of Holomorphic Automorphic Forms. RIMS Koky. Bess. 2010;17:6572.
- [8] Menet Q. Hypercyclic Subspaces and Weighted Shifts. Cornell Univ. Lib. arXiv,. 2012;1208.4963. [Preprint].
- [9] Saavedra FL, Rodriguez AM. Spectral Theory and Hypercyclic Subspaces. Trans. Amer. Math. Soc. 2000;353:247267.

- [10] Shkarin S. Non-sequential Weak Supercyclicity and Hypercyclicity. Cornell Univ. Lib. arXiv. 2012;1209.1462. [Preprint].
- [11] Shkarin S. A Weighted Bilateral Shift with Cyclic Square is Supercyclic. Cornell Univ. Lib. arXiv. 2012;1209.1458. [Preprint].
- [12] Sikk J. The rate spaces $m(\lambda)$, $c(\lambda)$, $c_0(\lambda)$ and $l^p(\lambda)$ of sequences. Acta et Comm. Univ. Tart. De Math. 1994;970:8796.
- [13] Simon NC, Marko LW. Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices. Mem. Amer. Math. Soc. 210.
- [14] Simons S. The Sequence Spaces $l(p_{\gamma})$ and $m(p_{\gamma})$ associated with Schauder Bases. Proc. London Math. Soc. 1965;15(3):422436.
- [15] Srivastava JK, Agrawal R. Banach Space X-Valued Bilateral Sequence Spaces $c_{\circ}(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$ and $c(\mathbb{Z}, X, \overline{\lambda}, \overline{p})$. Submitted for publication.
- [16] Srivastava JK, Srivastava BK. Generalized Sequence Spaces $c_{\circ}(X, \lambda, p)$. Indian J. Pure Appl. Math. 1996:27(1):7384.
- [17] Wilansky A. Modern Methods in Topological Vector Spaces. McGraw-Hill Inc. US. 1978.

©2013 Agrawal & Srivastava; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=204&id=6&aid=1062