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Abstract
In this paper, our main purpose is studying the nonexistence of radial positive solutions for the
boundary-value problem: {

−4p u = λf(u(x)), x ∈ Ω;
u(x) = 0, x ∈ ∂Ω.

where p > 1,λ > 0, Ω is an annulus in RN (N > 2) i.e. Ω={x ∈ RN |R < |x| < R̂}(0 < R < R̂), f
is a continuous nonlinear function and satisfies f(0) < 0 (the nonpositone case), f also has more
than one zero.
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1 Introduction
We consider the nonexistence of radial positive solutions of the problem{

−4p u = λf(u(x)), x ∈ Ω;
u(x) = 0, x ∈ ∂Ω. (1.1)

where p > 1, λ > 0, Ω ⊂ RN (N > 2) is an annulus i.e. Ω={x ∈ RN |R < |x| < R̂}(0 < R < R̂); f
has more than one zero and f(0) < 0 (the nonpositone case); 4pu = div(|∇u|p−2∇u)(p > 1).

In recent years, the existence, non-existence, asymptotic behavior and uniqueness of the positive
solutions for the quasilinear eigenvalue problems (1.1) have been studied by many authors. See, for
example [5-8, 11, 13, 15-19, 21-23, 27-33]. Chhetri and Girg [5] proved nonexistence results for (1.1)
when Ω is a unit ball in RN and f has only one zero. Rudd [6], nonexistence and existence results are
proved when Ω is a connected and bounded subset of RN . Hai and Shivaji [7] studied elliptic systems
related to (1.1) and proved the existence of positive solutions to (1.1) in some sublinear cases. The
result of nontrivial solutions for p-Laplacian systems be proved by Hai and Wang [8]. When f is strictly
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increasing on R+, f(0) = 0, lim
s→0+

f(s)/sp−1 = 0 and f(s) ≤ α1 + α2s
µ, 0 < µ < p − 1, α1, α2 > 0,

it was shown in Z.M. Guo [29] that there exist at least two positive solutions for Eqs (1.1) when λ is
sufficiently large. If lim

s→0+
inf f(s)/sp−1 > 0, f(0) = 0 and the monotonicity hypothesis (f(s)/sp−1)′ <

0 holds for all s > 0, it was proved by Guo and Webb [28] that the problem (1.1) has a unique positive
solution when λ is sufficiently large. Moreover, it was also shown by Guo [30] that problem (1.1)
has a unique positive large solution and at least one positive small solution when λ is large if f is

nondecreasing; there exist α1, α2 > 0 such that f(s) ≤ α1 + α2s
β , 0 < β < p − 1; lim

s→0+

f(s)

sp−1
= 0,

and there exist T, Y > 0 with Y ≥ T such that

(f(s)/sp−1)′ > 0 for s ∈ (0, T )

and
(f(s)/sp−1)′ < 0 for s > Y.

Recently, Hai [32] considered the case when Ω is an annular domains, and obtained the existence of
positive large solutions for the problem (1.1) when λ sufficiently small. Xuan and Chen [33] proved the
singular problem (1.1) has a unique positive radial solution if f is a continuous function and positive on
Ω = BR (here BR is a ball). The existence of entire solutions for (1.1) with singular and non-singular
has been considered by Yang [26].

When p = 2, f(0) < 0, Ω is an annulus or a ball and f has more than one zero, the related
results have been obtained by Hakimi and Zertiti [1] and Said and Zertiti [2]. When p = 2, f(0) < 0,
f is a monotone nondecreasing nonlinearity and has only one zero, this problem has been studied
by Castro and Shivaji [11] in the ball, and by Arcoya and Zertiti [4] in the annulus. The asymptotic
behavior of positive solution have been obtained by Iaia [24-25]. In this paper, we further study this
problem for Ω being an annulus and f has more than one zero. This extends and complements
previous results in the literature of Hakimi and Zertiti [1]; Arcoya and Zertiti [4].

The paper is organized as follows. In section 2, we recall some lemmas that will be needed in
the paper. In section 3, we give the main results and the proof of the main results in this paper.

2 Preliminaries
We consider radial solution to the quasilinear elliptic equation:{

−div(|∇u(x)|p−2∇u(x)) = λf(u(x)), x∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(2.1)

where p > 1, Ω is an annulus in RN i.e. Ω={x ∈ RN |R < |x| < R̂}(0 < R < R̂), λ > 0. While the
function f(u):[0,+∞)→ R satisfies the following assumptions:

(F1) f ∈ C1([0,+∞), R), f has more than one zero and is not increasing entirely on [0,+∞);
(F2) f(0) < 0;
(F3) limu→+∞

f(u)

up−1 = +∞.

Remark 1. If f satisfies (F1), in this paper we assume, without loss of generality, that f has
three zeros β1 < β2 < β3 and f

′
(βi) 6= 0(i ∈ {1, 2, 3}). Then f

′
≥ 0 on [β3,+∞).

Then we state some preliminaries and three lemmas that will be needed later.
We observe that the nonexistence of radial positive solutions of (1.1) is equivalent to the nonexistence

of positive solutions of the ordinary differential equation{
−(|u

′
|p−2u

′
)
′
− N−1

r
|u
′
|p−2u

′
= λf(u(r)), r ∈ (R, R̂),

u(R) = u(R̂) = 0.
(2.2)
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Or equivalently {
−(rN−1|u

′
|p−2u

′
)
′

= λrN−1f(u(r)), r ∈ (R, R̂),

u(R) = u(R̂) = 0.
(2.2∗)

Define F (x) =
∫ x

0
f(t)dt, from Remark 1, we know that f has three zeros, the number of

zeros of F depends on f , then F has at most three zeros, denote by θi the zero of F , and let
θ = min{β2,minθi}.

By a modification of the method given in Hakimi and Zertiti [1]; Arcoya and Zertiti [4], we obtain
the following lemmas.

Lemma 2.1. Assume (F3) hold, if uλ is a positive solution of (2.1), then for ∀λ > 2, there exists
a positive number M = M(r) (independent of λ) such that

uλ ≤M, r ∈ (R0, R̂],

where R0 = (R+ R̂)�2

Proof. If uλ is a positive solution of (2.1), then

−(rN−1|u
′
λ|p−2u

′
λ)
′

= λrN−1f(uλ).

Multiplying the equation by uλ, and integrating from R to R̂, we obtain

−
∫ R̂

R

(rN−1|u
′
λ|p−2u

′
λ)
′
uλdr =

∫ R̂

R

λrN−1f(uλ)uλdr.

Hence ∫ R̂

R

rN−1|u
′
λ|pdr =

∫ R̂

R

λrN−1f(uλ)uλdr. (2.3)

Let µ1 is the first eigenvalue of the eigenvalue problem

−(rN−1|v
′
|p−2v

′
)
′

= µrN−1|v|p−2v,R < r < R̂

v(R) = 0 = v(R̂).

From (F3) limu→+∞
f(u)

up−1 = +∞, there exists µ > µ1
2
, c > 0 such that

f(u) ≥ µup−1 + c. (2.4)

From (2.3) and (2.4), we obtain∫ R̂

R

rN−1|u
′
λ|pdr =

∫ R̂

R

λrN−1f(uλ)uλdr ≥ λµ
∫ R̂

R

rN−1upλdr + cλ

∫ R̂

R

rN−1uλdr

cλ

∫ R̂

R

rN−1uλdr ≤
∫ R̂

R

rN−1(|u
′
λ|p − λµupλ)dr.

Because λ > 2, µ > µ1
2

, then

cλ

∫ R̂

R

rN−1uλdr ≤
∫ R̂

R

rN−1(|u
′
λ|p − λµupλ)dr <

∫ R̂

R

rN−1(|u
′
λ|p − µ1u

p
λ)dr. (2.5)

On the other hand, let r̄n = max{r ∈ (R, R̂) : u
′
λ(r) = 0}, we remark that r̄n ≤ R0, which was

shown in A. Castro and R. Shivaji [11].
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Since uλ is non-increasing in (R0, R̂), then let r ∈ (R0, R̂), choosing δ > 0 such that R0 < r− δ,
we obtain

uλ(r)

∫ r

r−δ
tN−1dt ≤

∫ r

r−δ
tN−1uλ(t)dt

uλ(r) ≤
∫ r
r−δ t

N−1uλ(t)dt∫ r
r−δ t

N−1dt
=

∫ r
r−δ t

N−1uλ(t)dt
1
N

(rN − (r − δ)N )
≤

∫ R̂
R
tN−1uλ(t)dt

1
N

(rN − (r − δ)N )
(2.6)

Let
∫ R̂
R
rN−1(|u

′
λ|p − µ1u

p
λ)dr = k. From (2.5), we have∫ R̂

R

rN−1uλ(r)dr ≤ k

cλ
<

k

2c
.

This together with (2.6) imply

uλ(r) ≤
∫ R̂
R
tN−1uλ(t)dt

1
N

(rN − (r − δ)N )
≤ Nk

2c(rN − (r − δ)N )
= M. (2.7)

The lemma is proved.

Lemma 2.2. Assume (F1)-(F3) and let R1 ∈ (R0, R̂), c ∈ (β1, θ), then there exists λ1 > 0 and
r1 = r1(λ) ∈ (R0, R1), such that when λ > λ1 all positive solution uλ of (2.2) satisfying uλ(r1) < c.

Proof. By contradiction, suppose that there exists a sequence {λn} ⊂ (0,+∞) and limn→∞ λn =
+∞ such that

uλn(r) ≥ c, (2.8)

for ∀r ∈ (R0, R1], ∀n ∈ N .
Let r̄n = max{r ∈ (R, R̂) : u

′
λn(r) = 0}, then u

′
λn(r) < 0, uλn(r) ≤ uλn(r̄n), for ∀r ∈ (r̄n, R̂).

Also, we remark that r̄n ≤ R0, was shown in A. Castro and R. Shivaji [11].
It follows that u

′
λn(r̄n) = 0 and u

′′
λn(r̄n) ≤ 0, then from (2.2)

−(|u
′
λn(r̄n)|p−2u

′
λn(r̄n))

′
− N − 1

r
|u
′
λn(r̄n)|p−2u

′
λn(r̄n) = λnf(uλn(r̄n)),

which implies f(uλn(r̄n)) = 0, hence uλn(r̄n) = β1, β2 or β3.
Case 1. uλn(r̄n) = β1. From c ∈ (β1, θ), we know that uλn = β1 < c, which contradicts with the

assuming (2.8) that uλn(r) ≥ c.
Case 2. uλn(r̄n) = β2. Consider the following two sets:

Φn = {r ∈ [R1, R̂] : β1 ≤ uλn(r) ≤ 3β1 + c

4
},

Ψn = {r ∈ [R1, R̂] :
2(β1 + c)

4
≤ uλn(r) ≤ β1 + 3c

4
}.

Since (β1,
3β1+c

4
), ( 2(β1+c)

4
, β1+3c

4
) ⊂ uλn((R1, R̂)), by the intermediate value theorem, Φn and Ψn

are not empty. Then let

a(n) = inf
r

Ψn, a(n) = sup
r

Ψn; b(n) = inf
r

Φn, b(n) = sup
r

Φn.

It follows that a(n) ≤ a(n) ≤ b(n) ≤ b(n). Take r0 ∈ [a(n), b(n)] and taking into account that

−(rN−1|u
′
λn |

p−2u
′
λn)
′

= λnr
N−1f(uλn)

4
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integrating on [r̄n, r0], we have

−
∫ r0

r̄n

(sN−1|u
′
λn |

p−2u
′
λn)
′
ds = λn

∫ r0

r̄n

sN−1f(uλn(s))ds

because u
′
λn(r̄n) = 0 , we deduce

−rN−1
0 |u

′
λn(r0)|p−2u

′
λn(r0) = λn

∫ r0

r̄n

sN−1f(uλn(s))ds

≥ λnR
N−1

∫ r0

R0

f(uλn(s))ds

≥ λnR
N−1

∫ uλn (r0)

uλn (R0)

f(t)

u
′
λn

(u−1
λn

(t))
dt

= λnR
N−1

∫ uλn (R0)

uλn (r0)

f(t)

−u′λn(u−1
λn

(t))
dt

for t = uλn(s), ds = dt

u
′
λn

(u−1
λn

(t))
.

Hence we obtain

−rN−1
0 |u

′
λn(r0)|p−2u

′
λn(r0) ≥ λnRN−1

∫ uλn (R0)

uλn (r0)

f(t)

−u′λn(u−1
λn

(t))
dt (2.9)

Let u
′
λn(s0) = inf [R0,r0] u

′
λn(s), we have

−rN−1
0 |u

′
λn(r0)|p−2u

′
λn(r0)(−u

′
λn(s0)) ≥ λnR

N−1

∫ uλn (R0)

uλn (r0)

f(t)dt

≥ λnR
N−1

∫ c

β1+3c
4

f(t)dt (2.10)

On the other hand, for all r ∈ (a(n), b(n)), uλn(r) ∈ (β1,
β1+3c

4
) ⊂ (β1, β2), which implies

−(rN−1|u
′
λn(r)|p−2u

′
λn(r))

′
= λnr

N−1f(uλn(r)) > 0, r ∈ (a(n), b(n))

so, r 7→ −rN−1|u
′
λn(r)|p−2u

′
λn(r) is increasing on (a(n), b(n)), then for all s0 ∈ [R0, r0], we have

−sN−1
0 |u

′
λn(s0)|p−2u

′
λn(s0) ≤ −rN−1

0 |u
′
λn(r0)|p−2u

′
λn(r0)

−u
′
λn(s0) ≤

−rN−1
0 |u

′
λn(r0)|p−2u

′
λn(r0)

sN−1
0 |u′λn(s0)|p−2

That is

−rN−1
0 |u

′
λn(r0)|p−2u

′
λn(r0)(−u

′
λn(s0)) ≤

(−rN−1
0 |u

′
λn(r0)|p−2u

′
λn(r0))2

sN−1
0 |u′λn(s0)|p−2

. (2.11)

Using (2.10)(2.11), we get

λnR
N−1

∫ c

β1+3c
4

f(t)dt ≤
(−rN−1

0 |u
′
λn(r0)|p−2u

′
λn(r0))2

sN−1
0 |u′λn(s0)|p−2

=
r

2(N−2)
0 |u

′
λn(r0)|2(p−2)+2

sN−1
0 |u′λn(s0)|p−2

.

5
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Therefore
lim

n→+∞
u
′
λn(r0) = −∞. (2.12)

Now, Let r1 ∈ [a(n), a(n)] and r2 ∈ [b(n), b(n)], by the mean value theorem, there exists r∗ ∈
(r1, r2) such that

uλn(r2) = uλn(r1) + u
′
λn(r∗)(r2 − r1)

≤ uλn(R1) + (b(n)− a(n))u
′
λn(r∗)

≤ uλn(R1) + inf
n

(b(n)− a(n))u
′
λn(r∗)

From Lemma 2.2, uλn(R1) ≤ M , for all n and some M = M(R1) > 0. Moreover, from (2.12),
limn→+∞ u

′
λn(r∗) = −∞ and infn(b(n)− a(n)) > 0, then we have

lim
n→+∞

u
′
λn(r2) = −∞

which contradicts with uλn(r) ≥ c, for all n ∈ N (by (2.8)).
Case 3. uλn(r̄n) = β3. Let rβ2 = max{rn ∈ (R, R̂] : uλn(rn) = β2}, take r0 ∈ [a(n), b(n)], for

−(rN−1|u
′
λn(r)|p−2u

′
λn(r))

′
= λnr

N−1f(uλn(r)).

integrate it from r̄n to r0, we get

−rN−1
0 |u

′
λn(r0)|p−2u

′
λn(r0) = λn

∫ r0

r̄n

sN−1f(uλn(s))ds

= λn[

∫ rβ2

r̄n

sN−1f(uλn(s))ds+

∫ r0

rβ2

sN−1f(uλn(s))ds]

≥ λn

∫ r0

rβ2

sN−1f(uλn(s))ds.

Since for all s ∈ [r̄n, rβ2 ], uλn(s) ∈ [β2, β3], then f(uλn(s)) ≥ 0 (by (F1) and Remark 1)
Then as in the case 2, we obtain a contradiction with the positivity of uλn . Thus, combining case

1, 2 and 3, the lemma is proved.

Lemma 2.3. Assume (F2) is satisfied, let R2 ∈ (R0, R̂) and c̄ > 1, then there exists λ2 > 0 such
that for all λ ≥ λ2, every positive solution uλ satisfies β1

c̄
∈ uλ([R2, R̂]).

Proof. Define bλ = max{r ∈ (R, R̂) : uλ(r) = β1
c̄
}. Now, we will prove that limλ→+∞ bλ = R̂.

From (2.2∗), we have

−(rN−1|u
′
λ(r)|p−2u

′
λ(r))

′
= λrN−1f(uλ(r)),

integrate the equation from bλ to R̂∫ R̂

bλ

(rN−1|u
′
λ(r)|p−2u

′
λ(r))

′
dr =

∫ R̂

bλ

(−λrN−1f(uλ(r)))dr ≥
∫ R̂

bλ

λrN−1Kdr

(with the fact that uλ(r) < β1
c̄

for all r ∈ (bλ, R̂] and the definition of K = −max{f(s) : s ∈ [0, β1
c̄

]} >
0). Then

R̂N−1|u
′
λ(R̂)|p−2u

′
λ(R̂)− bN−1

λ |u
′
λ(bλ)|p−2u

′
λ(bλ) ≥ λ

N
K(R̂N − bNλ ) > 0. (2.13)

6
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On the other hand, multiplying equation (2.2∗) by rN−1|u
′
λ(r)|p−2u

′
λ(r) and integrating from bλ

to R̂, we have

−
∫ R̂

bλ

(rN−1|u
′
λ|p−2u

′
λ)
′
(rN−1|u

′
λ|p−2u

′
λ)dr = λ

∫ R̂

bλ

r2(N−1)f(uλ)|u
′
λ|p−2u

′
λdr

= λ

∫ R̂

bλ

r2(N−1)[F (uλ)]
′
|u
′
λ|p−2dr

(2.14)

Integrating twice by parts, we have

−
∫ R̂

bλ

(rN−1|u
′
λ|p−2u

′
λ)
′
(rN−1|u

′
λ|p−2u

′
λ)dr

= −
∫ R̂

bλ

(rN−1|u
′
λ|p−2u

′
λ)d(rN−1|u

′
λ|p−2u

′
λ) = −1

2
(rN−1|u

′
λ(r)|p−2u

′
λ(r))2|R̂bλ

= −1

2
{R̂2(N−1)|u

′
λ(R̂)|2(p−2)u

′
λ(R̂)2 − b2(N−1)

λ |u
′
λ(bλ)|2(p−2)u

′
λ(bλ)2}. (2.15)

On the other hand

λ

∫ R̂

bλ

r2(N−1)[F (uλ)]
′
|u
′
λ|p−2dr

= λR̂2(N−1)F (uλ(R̂))|u
′
λ(R̂)|p−2 − λb2(N−1)

λ F (uλ(bλ))|u
′
λ(bλ)|p−2 − λ

∫ R̂

bλ

F (uλ)d(r2(N−1)|u
′
λ|p−2)

= −λb2(N−1)
λ F (

β1

c̄
)|u
′
λ(bλ)|p−2 − λ

∫ R̂

bλ

F (uλ)d(r2(N−1)|u
′
λ|p−2) (2.16)

(because uλ(R̂) = 0,uλ(bλ) = β1
c̄

).
Since uλ(r) ∈ (0, β1

c̄
), for all r ∈ (bλ, R̂) and F is decreasing in (0, β1), by (2.14)-(2.16), we have

1

2
{b2(N−1)
λ |u

′
λ(bλ)|2(p−2)u

′
λ(bλ)2 − R̂2(N−1)|u

′
λ(R̂)|2(p−2)u

′
λ(R̂)2}

= −λb2(N−1)
λ F (

β1

c̄
)|u
′
λ(bλ)|p−2 − λ

∫ R̂

bλ

F (uλ)d(r2(N−1)|u
′
λ|p−2)

≤ −λb2(N−1)
λ F (

β1

c̄
)|u
′
λ(bλ)|p−2 − λF (

β1

c̄
)

∫ R̂

bλ

d(r2(N−1)|u
′
λ|p−2)

= −λb2(N−1)
λ F (

β1

c̄
)|u
′
λ(bλ)|p−2 − λF (

β1

c̄
){R̂2(N−1)|u

′
λ(R̂)|p−2 − b2(N−1)

λ |u
′
λ(bλ)|p−2}

= −λF (
β1

c̄
)R̂2(N−1)|u

′
λ(R̂)|p−2 (2.17)

Because A − B ≤
√
A2 −B2 for all A ≥ B ≥ 0, then, since u

′
λ(bλ) < 0 by definition of bλ and

u
′
(R̂) ≤ 0 by X. Garaizar [9], we define

A = −bN−1
λ u

′
(bλ) > 0, B = −R̂N−1

λ u
′
(R̂) > 0,

7
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by (2.13) it follows that A > B > 0, from (2.13) and (2.17) we deduce

λ

N
K(R̂N − bNλ ) ≤ −bN−1

λ |u
′
λ(bλ)|p−2u

′
λ(bλ)− (−R̂N−1|u

′
λ(R̂)|p−2u

′
λ(R̂))

≤
√
b
2(N−1)
λ |u′λ(bλ)|2(p−2)u

′
λ(bλ)2 − R̂2(N−1)|u′λ(R̂)|2(p−2)u

′
λ(R̂)2

≤
√
−2λF (

β1

c̄
)R̂2(N−1)|u′λ(R̂)|p−2

Then we have

R̂N − bNλ ≤

√
2NR̂N−1

√
|u′λ(R̂)|p−2

√
−F (β1

c
)

K
√
λ

hence the limit follows to be equal limλ→+∞ bλ = R̂, thus the Lemma is proved.

3 Main result

By a modification of the method given in (S. Hakimi and A. Zertiti [1]; D. Arcoya and A. Zertiti [4]), we
obtain the following results.

Theorem 3.1. Under the assuming (F1)− (F3), there exists a positive real number λ0 such that
if λ > λ0, problem (1.1) has no radial positive solution.

Proof. Let c ∈ (β1, θ),c̄ > 1 and R1, R2 ∈ (R0, R̂) such that R1 < R2. Consider λ1, λ2 given
respectively by Lemma 2.2 and Lemma 2.3, and choose λ∗ ≥ {λ1, λ2} such that

λ∗L+
(p− 1)up

p
< 0. (3.1)

where L = max{F (s) : β1
c̄
≤ s ≤ c}. Then problem (1.1) has no radial positive solution.

By contradiction, assume that there exists λ ≥ λ∗ such that problem (1.1) has at least one
positive solution uλ.

Because λ ≥ λ∗ ≥ λi(i = 1, 2), from Lemmas 2.2 and 2.3, we deduce there exist t1 ∈
(R0, R1], t2 ∈ [R2, R̂] satisfying uλ(t1) < c and uλ(t2) = β1

c̄

Then by the mean value theorem there exists t3 ∈ [t1, t2] such that

|u
′
λ(t3)| = |uλ(t2)− uλ(t1)|

t2 − t1
≤
|c+ β1

c̄
|

R2 −R1
= µ

Since uλ(t3) ∈ [β1
c̄
, c], it follows that F (uλ(t3)) ≤ L < 0. Thus consider the energy function

E(r) = λF (uλ(r)) + p−1
p
|u
′
λ(r)|p, for all λ ≥ λ∗,

E(t3) = λF (uλ(t3)) +
p− 1

p
|u
′
λ(t3)|p ≤ λL+

p− 1

p
µp ≤ λ∗L+

p− 1

p
µp < 0 (3.2)

8
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On the other hand

E
′
(r) = λF

′
(uλ(r))u

′
λ(r) + (

p− 1

p
|u
′
λ(r)|p)

′

= λf(uλ(r))u
′
λ(r) + (p− 1)|u

′
λ(r)|p−2u

′
λ(r)u

′′
λ(r)

= −(|u
′
λ(r)|p−2u

′
λ(r))

′
u
′
λ(r)− N − 1

r
(|u
′
λ(r)|p) + (p− 1)|u

′
λ(r)|p−2u

′
λ(r)u

′′
λ(r)

= −(p− 1)|u
′
λ(r)|p−2u

′
λ(r)u

′′
λ(r)− N − 1

r
(|u
′
λ(r)|p) + (p− 1)|u

′
λ(r)|p−2u

′
λ(r)u

′′
λ(r)

= −N − 1

r
(|u
′
λ(r)|p) ≤ 0

So E(r) is a nonincreasing function,

E(t3) > E(R̂) = λF (uλ(R̂)) +
p− 1

p
|u
′
λ(R̂)|p =

p− 1

p
|u
′
λ(R̂)|p ≥ 0,

which contradicts (3.2). Hence the theorem is proved.

Acknowledgment

Project Supported by the National Natural Science Foundation of China(No.11171092); the Natural
Science Foundation of the Jiangsu Higher Education Institutions of China(No.08KJB110005)

Competing interests
The authors declare that they have no competing interests.

References
[1] Hakimi, S., Zertiti, A.(2011). Nonexistence of radial positive solutions for a nonpositone problem,
Eletronic Journal of Differential Equations, 26, 1-7.

[2] Said, H., Zertiti, A.(2009). Radial positive solutions for a nonpositone problem in a ball, Eletronic
Journal of Differential Equations, 44, 1-6.

[3] Gidas, B., Ni, W.M., Nirenberg, L.(1979). Symmetry and related properties via the maximum
principle, Comm. Math. Phys. 68, 209-243.

[4] Arcoya, D., Zertiti, A.(1994). Existence and non-existence of radially symmetric non-negative
solutions for a class of semi-positone problems in annulus, Rendiconti di Matematica, serie VII, Vol.14,
625-646.

[5] Chhetri, M., Girg, P.(2006). Nonexistence of nonnegative solutions for a class of (p-1)-superhomogeneous
semipositone problems, J. Math. Anal. Appl. 322, 957-963.

9



British Journal of Mathematics and Computer Science 3(1), 1-11, 2013

[6] Rudd, M.(2009). Existence and nonexistence results for quasilinear semipositone dirichlet problems,
Eletronic Journal of Differential Equations, 17, 207-212.

[7] Hai, D.D., Shivaji, R.(2004). An existence result on positive solutions for a class of p-Laplacian
systems, Nonlinear Anal. 56, 1007-1010.

[8] Hai, D.D., Wang H.Y.(2006). Nontrivial solutions for p-Laplacian systems, J. Math. Anal. Appl. 7,
1-9.

[9] Garaizar, X.(1987). Existence of positive radial solutions for semilinear elliptic equations in the
annulus, Vol.I.Elliotic Equations, Journal of Differential Equations, 70, 69-92.

[10] Hai, D.D., Shivaji, R.(2003). Existence and uniqueness for a class of quasilinear elliptic boundary
value problems, J.Differential Equations, 193, 500-510.

[11] Castro, A., Shivaji, R.(1989). Non-negative solutions for a class of radially symmetric nonpositone
problems, Proc. Amer. Math. Soc. 106, 735-740.

[12] Dancer, E.N., Shi, J.P.(2006). Uniqueness and nonexistence of positive solutions to semipositone
problems, Bull. London Math. Soc. 38, 1033-1044.

[13] Rudd, M.(2009). Existence and nonexistence results for quasilinear semipositone Dirichlet
problems, Eletronic Journal of Differential Equations, 17, 207-212.

[14] Hakimi, S.(2011). Nonexistence of radial positive solutions for a nonpositone system in an
annulus, Eletronic Journal of Differential Equations, 152, 1-7.

[15] Chhetri, M., Shivaji, R.(2005). Existence of a positive solution for a P-Laplacian semipositone
problem, Boundary Value Problems, 3, 323-327.

[16] Yang, Z.D., Yang, H.S.(2003). Asymptotics for a quasilinear elliptic partial differential equation,
Archives of Inequalities and Applications, 1, 463-474.

[17] Yang, Z.D., Yang, H.S.(2001). A priori estimates for a quasilinear elliptic partial differential
equations non-positone problems, Nonlinear Anal. 43, 173-181.

[18] Yang, Z.D., Guo, Z.M.(1996). Existence of positive radial solutions for quasilinear singular
boundary value problems, Ann.of Diff.Eqs. 12, 243-251.

[19] Hai, D.D., Shivaji, R.(2003). Existence and uniqueness for a class of quasilinear elliptic boundary
value problems, Journal of Differential Equations, 193, 500-510.

[20] Yebari, N., Zertiti, A.(2006). Existence of non-negative solutions for nonlinear equations in the
semi-positone case, Nonlinear Anal. 14, 249-254.

[21] Yang, Z.D., Lu, Q.S.(2002). Asyptotics for quasilinear elliptic non-positone problems, Annales
Polonici Mathematici, 79, 85-95.

[22] Miao, Q., Yang, Z.D.(1973). The properties of solution for quasilinear elliptic equations, Complex
Variables and Elliptic Equations, 55, 1089-1097.

10



British Journal of Mathematics and Computer Science 3(1), 1-11, 2013

[23] Yang, Z.D.(2003). Existence of entire explosive positive radial solutions for a class of quasilinear
elliptic systems, J. Math. Anal. Appl. 288, 768-783.

[24] Iaia, J.A.(1995). A priori estimates for a semilinear elliptic P.D.E, Nonlinear Anal. 24(7), 1039-
1048.

[25] Iaia, J.A.(1995). A priori estimates and uniqueness of inflection points for positive solutions of
semipositone problems, Diff. Integral Eqns. 8(2), 393-403.

[26] Yang, Z.D.(2006). Existence of positive entire solutions for singular and non-singular quasi-linear
elliptic equation, J. Comput. Appl. Math. 197, 355-364.

[27] Guo, Z.M.(1992). Existence and quasilinear elliptic equations, Appl. Anal. 47(1), 173-190.

[28] Guo, Z.M., Webb, J.R.L.(1994). Uniqueness of positive solutions for quasilinear elliptic equations
when a parameter is large, Proc. Roy. Soc. Edinburgh, 124A, 189-198.

[29] Guo, Z.M.(1992). Some existence and multiplicity results for a class of quasilinear elliptic
eigenvalue problems, Nonlinear Anal. 18, 957-971.

[30] Guo, Z.M.(1996). On the number of positive solutions for quasilinear elliptic eigenvalue problems,
Nonlinear Anal. 27(2), 229-247.

[31] Guo, Z.M., Yang, Z.D.(1998). Some uniqueness results for a class of quasilinear elliptic eigenvalue
problems, Acta Mathematica Sinica (new series), 14(2), 245-260.

[32] Hai, D.D.(1998). Positive solutions of quasilinear boundary value problems, J. Math. Anal. Appl.
217, 672-686.

[33] Xuan, B.J., Chen, Z.C.(1999). Solvability of singular quasilinear elliptic equation, Chinese Ann of
Math. 20A(1), 117-128.
—————————————————————————————————————————————————
c©2013 Wang and Yang; This is an Open Access article distributed under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=204&id=6&aid=1059

11

http://creativecommons.org/licenses/by/3.0

	Introduction
	Preliminaries
	Main result

