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Abstract
The objective of this review paper, is the presentation of the basic features of the well known class
of elliptic filters. Even though this is not a new subject, the theory of the elliptic filters found in most
books is restricted only to a few resulting equations, due to the great complexity associated with
the Jacobian elliptic functions. The aspects of the elliptic filters described in this paper include the
detailed estimation of the minimum filter order, the construction of the filter transfer function via the
identification of its poles and zeros in the complex plane, as well as the application of the resulting
design procedure for the construction of an elliptic filter that meets prescribed specifications.
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1 Introduction to the Theory of Filters
Analog and digital filters are one of the most important paradigms of continuous and discrete time
systems with great theoretical and practical value. At it is well known from the fundamental system
theory [1][2], their time behavior is described by the impulse response h(t) namely the system
response to the delta (or Dirac) function δ(t), while in the domain of the complex frequency, this
behavior is described by the Laplace transform of their impulse response

H(s) = L{h(t)} =

∫ +∞

−∞
h(t)e−stdt

where s = σ + jω is the complex frequency. The function H(s) is known as transfer function. If the
region of convergence of the Laplace transform includes the imaginary axis, the frequency response
of the filter is defined as

H(jω) =

∫ +∞

−∞
h(t)e−jωtdt
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and therefore, it is the continuous time Fourier transform of the impulse response h(t). The frequency
response of a filter can be expressed in polar form as H(jω) = |H(jω)|ej]H(jω) where the function
|H(jω)| is known as amplitude response and the function ]H(jω) is known as phase response.

The heart of the filter design theory is the convolution theorem, according to which the convolution
operation in the time domain corresponds to a multiplication in the frequency domain. It is well known
that the input x(t), the output y(t) and the impulse response h(t) of each continuous time system,
are related via a convolution in the form y(t) = h(t) ∗ x(t). If the Fourier transforms of these signals
are Y(jω), H(jω) and X (jω) respectively, the convolution theorem says that

Y(jω) = H(jω)X (jω) = |H(jω)||X (jω)|ej[]H(jω)+]X (jω)]

Therefore, if we want to eliminate the frequency component ω0 of the input signal (according to Fourier
analysis each signal is the superposition of an infinite number of frequency components whose
frequencies are integral multiples of its fundamental frequency) we just have to set |H(jω0)| = 0.
If we want to perform this elimination for an entire frequency region we just have to design the filter
accordingly. According to the position of the frequency region to be eliminated in the frequency
spectrum, a filter can be characterizes as low pass, high pass, band pass and band stop filter. In the
case of the discrete time domain, the situation is exactly the same but there are two differences: (a)
the Z transform is used instead of the Laplace transform with the corresponding discrete time Fourier
transform to be defined if the region of convergence of the Z transform contains the unit circle in
the complex plane and (b) the amplitude and phase response of the filter are defined up to an upper
frequency of ωmax = π, since this is the maximum frequency associated with a discrete signal x[n]
[3][4][5].

The amplitude response of an ideal filter is characterized by an absolutely constant amplitude
response with a value of unity in the passband, as well as a discontinuity (namely, a step-like
behavior) in the cut-off frequencies (a single frequency for low pass and high pass filters and a
pair of frequencies for band pass and band stop filters). However, these filters are not causal and
therefore, not realizable. Instead, in real applications a lot of different ideal filter approximations are
used, that are characterized by ripples in the passband and/or in stopband as well as a transition
band whose width is inverse proportional to the filter order. This order is defined as the degree of
the polynomial D(s) in the denominator of the rational filter transfer function whose general form is
H(s) = N(s)/D(s) (in the circuit level, the filter order is defined as the number of the energy storage
elements contained in the filter circuit). The roots of the polynomials N(s) and D(s) are known
as the zeros and the poles of the filter transfer function and their identification allows the complete
description of the filter’s behavior. There are four fundamental analog filter prototypes, the Butterworth
approximation characterized by the absence of ripples in the passband as well in the stopband, the
Chebyshev I filter approximation whose magnitude response is characterized by ripples only in the
stopband, the Chebyshev II approximation whose magnitude response is characterized by ripples
only in the passband and the elliptic (or Cauer) approximation that leads to ripple behavior in the
passband as well in the stopband [6].

To describe the specification of a low pass or a high pass filter design, there are four different
parameters that have to be defined, namely the maximum passband loss Ap, the minimum stopband
loss As, the passband edge ωp and the stopband edge ωs. On the other hand, the specifications for
a band pass or a band stop filter need more parameters, even though they can be implemented via a
serial combination of a low pass and a high pass filter. The parameters Ap and As expressed in dB
units (decibels), are related to the ripple amplitudes δs and δp in the passband and the stopband via
the equations [7]

Ap = −20 log
1− δp
1 + δp

and As = −20 log
δs

1 + δp

The ratio k = ωp/ωs is known as selectivity factor, while, two additional parameters that are used
frequently in the filter design are defined as ε =

√
10Ap/10 − 1 and A = 10As/20.
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The above filter characteristics are also valid for the digital filters that can be either FIR (finite
impulse response) or IIR (infinite impulse response). In the fist case the filters are mainly designed
via the application of an appropriate window function [8] and the frequency sampling method [3],
while for the IIR case the filter can be derived by their analog prototypes using the techniques of the
impulse invariance and the bilinear transformation [3]. In most cases the filter is designed to work as
a low pass filter and if we need another filter type (such as a high pass, a band pass or a band stop
filter), it can be derived by the analog low pass prototype via selected frequency transformations (see
for example [9] for the case of digital filters). The topics covered in this paper are restricted only to
the design of analog lowpass elliptic filters.

2 Elliptic Filters
Elliptic filters (also known as Cauer filters) are special types of analog and digital filters characterized
by passband ripples of equal amplitude, as Chebyshev I filters as well as stopband ripples of equal
amplitude as Chebyshev II filters, while, at the same time offer a very narrow transition band; however,
their passband is associated with a maximal nonlinearity, regarding their phase response. The
passband as well as the stopband ripple amplitude can be adjusted independently and the filter
reduces to Chebyshev I or Chebyshev II filter if one of them tends to zero (note that if both amplitudes
reach a zero value, the elliptic filter reduces to a Butterworth filter). Elliptic filters give the smallest
filter order with respect to the other filter types for the same values of the filter design parameters.
The ripples of the amplitude response of the elliptic filters in the passband and the stopband for even
and odd filter order are shown in Figure 1 while the equation describing this response has the form

|H(jω)| =
1√

1 + ε2pJ 2
N (ω, ωs, ωp, εs, εp)

where JN (ω, ωs, ωp, εs, εp) is the Jacobian elliptic function of order N defined as [7]

JN (ω, ωs, ωp, εs, εp) = sn
[
κsn−1

(
ω

ωp
,
ωp

ωs

)
+ qK1, εpεs

]
In the above equation, the function sn(x, k) is the Jacobian elliptic sine function with elliptic modulus
k, the symbols ωp and ωs describe the passband and the stopband edge frequencies, while the
parameter κ depends on the filter order N and the values of the elliptic integrals associated with the
filter design. Regarding the filter order N , it depends in turn on the parameters ω’s and ε’s and its
estimation is discussed in Section 2.1. On the other hand, the parameters εp and εs are the passband
and the stopband rippple amplitudes, q is an auxiliary constant allowing the unified description of the
odd (q = 0) and even (q = 1) order filters, while K1 is the complete elliptic integral of first kind of the
elliptic module εpεs. It is convenient to define the elliptic modules k1 = εpεs and k2 = ωp/ωs as well
as the parameters ξ = κsn−1(ω/ωp, ωp/ωs) and ζ = ω/ωp, since, in this way, we can express the
Jacobian elliptic function in the simpler form

RN (ω, ωs, ωp, εs, εp) = sn[κsn−1(ζ, k2) + qK1, k1] = sn(ξ + qK1, k1)

As with the other filter types, the elliptic filters can be built using passive as well active circuit elements.
An example circuit of each one of these approaches, is shown in Figure 2.

By adopting the usual convention and applying the basic filter theory, the parameter Ap is defined
as Ap = 10 log(1 + ε2p) (dB) and therefore we have εp =

√
10Ap/10 − 1. On the other hand, the

stopband is characterized by equiripples of amplitude ε2, with the minimun amplitude to be expressed
as 1/(εpεs) = 1/k1. Therefore, in complete accordance with the Chebyshev II filters, we can write
the equation

1

As
=

εs√
1 + ε2s

=
1√

1 + (1/ε2s)
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Figure 1: The passband and stopband ripples in the amplitude response of the prototype
lowpass elliptic filter for parameter values Ap = 1 dB and As = 30 dB and for filter orders
N = 1− 10.

or, in dB units,

As = 10 log

(
1 +

1

ε2s

)
which in turn, gives εs =

1√
10As/10 − 1

Therefore, for specific values of the Ap and As parameters we can use the above relations to estimate
the values of εs and εp associated with the amplitude response of the elliptic filter. The graphical
interpretation of these two parameters for the case of elliptic filters, is shown in Figure 6 [see also the
subsection 2.5 for a description of the loss characteristic associated with these parameters].

The last comment in this introductory section is associated with the filter transfer function. At is
well known from the literature, there are two main categories of ideal filter approximations, namely
the polynomial and the rational approximations. In both cases, the filter gain for a filter approximation
of order N has the form

G(ω) = |H(jω)| = H0√
1 + γ2P 2

N (ω)

where γ is the filter design parameter. Regarding the function PN (ω), it is a polynomial for polynomial
approximations (for example, the polynomial PN (ω) = ωN for the Butterworth approximation and
the Chebyshev polynomials for the Chebyshev approximations), and a rational function for rational
approximations, in the form

P (ω) =
N(ω)

D(ω)
=

αNωN + αN−1ω
N−1 + αN−2ω

N−2 + · · ·+ α2ω2 + α1ω + α0

βMωM + βM−1ωM−1 + βM−2ωM−2 + · · ·+ β2ω2 + β1ω + β0
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Figure 2: A typical passive and active third order elliptic analog filter.

leading to the gain function

G(ω) =
H0√

1 + γ2
N2(ω)

D2(ω)

=
H0D(ω)√

D2(ω) + γ2N2(ω)

It should be noted that the polynomial D(ω) must be an even function of frequency, since, otherwise
the well known property D(0) = 0 of the odd functions, would result to the vanishing of the gain
function for ω = 0, an unacceptable property for low pass filters. The rational approximations
are characterized by the presence of zeros in the gain function, a fact that it is compatible with
the fundamental theorem of Paley and Wiener. It can be proven that these zeros have the form
zm = ±jωm with each pair to contribute to the numerator of the rational transfer function, the term
(s− zm)(s− z∗m) = (s+ jωm)(s− jωm) = s2 + ω2

m.
Elliptic filters are rational filter approximations and therefore they are characterized by the whole

set of the above properties. The detailed construction of their rational transfer function, as well as the
analytic form of this function for the case of the odd and even filter orders, are presented in Section
2.4. Since the filter order N affects the number of poles and zeros, namely the number of terms
appearing in the numerator and the denominator of the transfer function, it is clear that this function
is strongly depended of the filter order N , a fact that also holds for all the filters approximations.

2.1 Estimating the minimum filter order
To identify the minimum filter order that meets the prescribed specifications, we start from the squared
amplitude filter response at the frequency ω = ωp

|H(jωp)|2 =
1

1 + ε2pJ 2
N (ωp, ωs, ωp, εs, εp)

=
1

1 + ε2p
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that allows the description of the Jacobian elliptic function as

J 2
N (ωp, ωs, ωp, εs, εp) = sn2(ξω=ωp + qK1, k1) = 1

or equivalently, as

sn(ξω=ωp + qK1, k1) = ±1

If we take into account the well known property sn[(2m+ 1)K, k] = ±1 we can write that

ξω=ωp + qK1 = (2m+ 1)K1 κsn−1

(
ωp

ωp
,
ωp

ωs

)
= (2m+ 1− q)K1

or equivalently

κ =
2m+ 1− q

sn−1[1, (ωp/ωs)]
K1 =

2m+ 1− q

sn−1(1, k2)
K1 = (2m+ 1− q)

K1

K2

since, from the defining equation of the Jacobian inverse elliptic function

sn−1(sinφ, k) =

∫ φ

0

dϑ√
1− k2 sin2 ϑ

we get

sn−1(1, k2) = sn−1

[
sin

(
π

2

)
, k2

]
=

∫ π/2

0

dϑ√
1− k2

2 sin
2 ϑ

= K(k2) = K2

On the other hand, at the frequency ω = ωs, the amplitude response function is written as

|H(jωs)| =
1√

1 + ε2psn2

[
κsn−1

(
ωs

ωp
,
ωp

ωs

)
+ qK1, εpεs

] =
1

As
=

1√
1 +

1

ε2s

and if we compare the radicand in the second and the forth expressions, we easily see that

ε2psn2

[
κsn−1

(
ωs

ωp
,
ωp

ωs

)
+ qK1, εpεs

]
=

1

ε2s

or equivalently

sn
[
κsn−1

(
ωs

ωp
,
ωp

ωs

)
+ qK1, εpεs

]
=

1

εsεp
=

1

k1

Performing a comparison between the last equation and the expression

sn[(2m+ 1)K1 + jK′
1, k1] =

1

k1

we have

κsn−1

(
ωs

ωp
,
ωp

ωs

)
+ qK1 = κsn−1

(
1

k2
, k2

)
+ qK1 = (2m+ 1)K1 + jK′

1

and therefore

sn−1

(
1

k2
, k2

)
=

2m+ 1− q

κ
K1 + j

K′
1

κ
= K2 + j

K′
1

κ
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Finally, using the equation

sn−1

(
1

k
, k

)
= K + jK′ to get K2 + jK′

2 = K2 + j
K′

1

κ

the resulting expression is

κ = (2m+ 1− q)
K1

K2
=

K′
1

K′
2

The last equation is an important one in the elliptic filter design, since it provides a relationship
between the parameters ωp, ωs, εp and εs, as a consequence of the fact that the elliptic integrals K1

and K′
1 depend on the ripple amplitudes εp and εs, while the elliptic integrals K2 and K′

2 depend on
the frequencies ωp and ωs. Note the appearance of the term 2m + 1 − q in the last expression: its
value is an even number if q = 1 and an odd number if q = 0, and in fact, it describes the filter order
N . Therefore, we can set N = 2m+ 1− q to get

κ = N
K1

K2
=

K′
1

K′
2

an expression, that allows as to express the minimum filter order associated with the values of the
four filter design parameters as

N =
K2

K1

K′
1

K′
2

In most cases, the value estimated by this equation is a decimal number that has to be rounded to
the next greater integer.

Even though the above relation allows the estimation of the minimum order of an elliptic filter,
it is not commonly used since it involves the estimation of elliptic integrals which is not a trivial task
(note, however that there is an efficient way of estimating these integrals based on the arithmetic -
geometric mean) [10]. In practical applications, the value of this parameter is estimated by a more
simple expression that will be constructed later in this section. The practical importance of the above
relation is that it defines a restriction regarding the design specifications, in the form

f1(N,ωp/ωs) = f2(Ap, As)

that has to be satisfied by the four design filter parameters. Therefore, if we know the values of those
parameters, the filter order that ensures the validity of the above relation is estimated as follows:

Starting from the expression that relates the Jacobian elliptic sine function with ϑ(u, q),

sn[u, k] =
1√
k

ϑ1

[
u

2K
, q(k)

]
ϑ4

[
u

2K
, q(k)

] =
2 4
√

q(k)√
k



∞∑
n=0

(−1)nqn(n+1)(k) sin

[
(2n+ 1)

πu

2K

]
1 + 2

∞∑
n=0

(−1)nqn
2

(k) cos

(
2m

πu

2K

]


and since (1) for u = K1 this function is equal to sn(K1, k1) = 1 and (2) it holds that

sin

[
(2n+ 1)

πu

2K1

]
u=K1

= sin

[
(2n+ 1)

π

2

]
= cos

(
2n

πu

2K1

)
u=K1

= cos (nπ) = (−1)n

we can write the expression

2 4
√

q(k1)√
k1

{
∞∑

n=0

q
n(n+1)
1 (k1)

}/{
1 + 2

∞∑
n=1

qn
2

1 (k1)

}
= 1
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or equivalently

k1 = 4
√

q (k1)×

[{
∞∑

n=0

qn(n+1)(k1)

}/{
1 + 2

∞∑
n=1

qn
2

(k2)

}]2

= 4
√

q (k1)×
[

1+q2(k1)+q6(k1)+q12(k1)+· · ·
1+2q(k1)+2q4(k1)+2q9(k1)+· · ·

]2

where q(k1) = exp(−πK′
1/K1). Using the simplifications k1 ≈ 0 k′

1 ≈ 1 (that generally hold), we
have K′

1/K1 ≫ 1 and q(k1) ≪ 1 and therefore the enclosed in square brackets and raised to the
second power quantity, can be approximated by unity. Therefore we can set k2

1 ≈ 4
√

q(k1) and get
the expression

k2
1 ≈ 16q(k1) = 16 exp(−πK′

1/K1) = 16 exp(−πNK′
2/K2) = 16 [exp(−πK′

2/K2)]
N = 16qN (k2)

where we used the fact that N = K2K
′
1/K1K

′
2. Substituting this expression in the equation

k1 = εpεs =

√
10Ap/10 − 1

10As/10 − 1
=

1√
D

we get

κ2
1 =

10Ap/10 − 1

10As/10 − 1
=

1

D
= 16qN (k2)

For given values of the design parameters εs, εs, Ap and As, the minimum filter order can be
estimated by solving the above equation with respect to N . In this case, we can easily verify that

N =
log(16D)

log[1/q(k2)]
where D =

10As/10 − 1

10Ap/10 − 1

It is interesting to note, that if we know the filter order N as well as the values of the Ap and k
parameters, the value of the As that ensures that the constraints of the design are satisfied, can be
estimated from the above equation as

As = 10 log

(
10Ap/10 − 1

16qN (k2)
+ 1

)

2.2 Poles, zeros and min-max frequencies of the Jacobian
elliptic function

By studying the form of the power response function |H(jω)|2 it can be easily noted that it gets
its maximum value for frequencies such that JN (ω, ωs, ωp, εs, εp) = 0 and its minimum value for
frequencies such that J 2

N (ω, ωs, ωp, εs, εp) = 1 (JN assumes values in [−1, 1]). To identify the
frequency values that maximize the function |H(jω)|2 the roots of the equation

sn
[
κsn−1

(
ω

ωp
,
ωp

ωs

)
+ qK1, εpεs

]
= 0

have to be estimated, a task, that can be easily performed since the function sn(u, k) is zeroed in the
values u = 2mK. Therefore, we have

κsn−1

(
ω

ωp
,
ωp

ωs

)
+ qK1 = 2mK1

3288



British Journal of Applied Science & Technology 4(23), 3281-3314, 2014

or equivalently

sn−1

(
ω

ωp
,
ωp

ωs

)
=

(2m− q)K1

κ
=

(2m− q)K2

N

since κ = NK1/K2. The solution of the above equation with respect to the frequency ω is based on
the equivalence sn−1(x, κ) = α ⇔ x = sn(α, κ) and leads to the result

ωmax
m = ωp sn

[
(2m− q)K2

N
,
ωp

ωs

]
for values m = 0, 1, 2, . . . , (N − 1)/2 for odd order N and m = 0, 1, 2, . . . , N/2 for even order N .
This equation allows the identification of frequencies that maximize the squared magnitude of the
frequency response function in the passband.

On the other hand, the frequencies that minimize the above function, are estimated as the roots
of the equation

sn2

[
κsn−1

(
ω

ωp
,
ωp

ωs

)
+ qK1, εpεs

]
= 1

or equivalently

sn
[
κsn−1

(
ω

ωp
,
ωp

ωs

)
+ qK1, εpεs

]
= ±1

To proceed, we use the property sn(u, k) = ±1 where u = (2m+ 1)K, and working in the same way
we get

ωmin
m = ωp sn

[
(2m+ 1− q)K2

N
,
ωp

ωs

]
where m = 0, 1, 2, . . . , (N − 3)/2 for odd filter orders N and m = 0, 1, 2, . . . , (N − 1)/2 for even filter
orders N . This expression allows the estimation of frequencies that minimize the squared magnitude
of the frequency response function in the passband.

Let us proceed now to the estimation of the cutoff frequency ωc in terms of the values of the
parameters ωp, ωs, εp and εs. As it is well known, the cutoff frequency ω = ωc corresponds to an
attenuation equal to Ap = 3 dB. Therefore, we have

|H(jωc)| =
1√
2
|H(jωc)|max =

1√
2

or equivalently

|H(jωc)|2 =
1

1 + ε2psn2

[
κsn−1

(
ωc

ωp
,
ωp

ωs

)
+ qK1, εpεs

] =
1

2

A direct comparison allows us to write that

εpsn
[
κsn−1

(
ωc

ωp
,
ωp

ωs

)
+ qK1, εpεs

]
= 1

leading to the result

sn−1

(
ωc

ωp
,
ωp

ωs

)
=

[
sn−1(1/εp, εpεs)− qK1

NK1

]
K2
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Figure 3: Variation of the real and the imaginary part of the complex function sn−1(z, k2)
for elliptic module values k2 = 0.2, 0.3, 0.5, 0.7.

where we used again the fact that k = NK1/K2. The function sn−1(z, k2) (k2 = ωp/ωs) is a complex
one, for z = ωc/ωp > 1, with its imaginary part

ℑ
{

sn−1

(
ωc

ωp
,
ωp

ωs

)}
= ℑ

{[
sn−1(1/εp, εpεs)

NK1

]
K2

}
to vanish for ωc = ωp, or equivalently for z = 1 (this is not true for z < 1, or equivalently for ωc < ωp as
it can be seed from Figure 3 that shows the variation of the real and the imaginary part of the function
sn−1(z, k2) for values k2 = 0.2, 0.3, 0.5, 0.7). Noting that the real part of this function is equal to K2,
we can write our initial function in the form

sn−1

(
ωc

ωp
,
ωp

ωs

)
= K2 + jℑ

{[
sn−1(1/εp, εpεs)− qK1

NK1

]
K2

}
In this case, the solution with respect the frequency ωc will give the desired cutoff frequency as

ωc = ωp sn
{
K2 + jℑ

[
sn−1(1/εp, εpεs)− qK1

NK1

]}
Finally, let us estimate the pole frequencies of the Jacobian function JN (ω, ωs, ωp, εs, εp) that

send it to infinity. Using the fact that the elliptic sine function vanishes every 2K, or mathematically,
sn(2mK + jK′, k) = ±∞, we can write that

κsn−1

(
ω

ωp
,
ωp

ωs

)
+ qK1 = 2mK1 + jK′

1

Considering the expression

sn−1

(
1

k2
, k2

)
= K2 + jK′

2
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where k2 = ωp/ωs, this equality is satisfied by the frequency ω0 = ωs/ωp. On the other hand, for
frequencies ω > ω0 this function gets a value of x+jK′

2 where x < K2 and therefore, for frequencies
ω > ω0 we have k(x+jK′

2)+qK1 = 2mK1+jK′
1. Using the k value as it is expressed by its defining

equation and solving with respect to the x parameter, it is found that

x =
(2m− q)K2

N
and therefore sn−1

(
ω

ωp
,
ωp

ωs

)
=

(2m− q)K2

N
+ jK′

2

The poles of the Jacobian function ω are therefore given by the expression

ω∞
m = ωpsn

[
(2m− q)K2

N
+ jK′

2,
ωp

ωs

]
=

ωs

sn[(2m− q)K2/N, ωp/ωs]
=

ωpωs

ωmax
m

that is derived using the property sn[u + jK′, k] = 1/[ksn(u, k)]. In the above expressions, the m
parameter gets the values m = 1, 2, . . . , (N − 1)/2 for odd filter orders and m = 1, 2, . . . , N/2 for
even filter orders. Note, that the Jacobian function associated with the odd order elliptic filters has an
extra pole in the infinity.

The defining equations of the poles and zeros of the Jacobian elliptic function, reveal an inverse
proportionality relation between them. An important consequence of this property, is that the existence
of equiripples in the passband, imposes the existence of equiripples in the stopband, too.

2.3 Rationality of the Jacobian elliptic function
After the identification of the poles ωm

p = ω∞
m and the zeros ωm

z = ωmax
m of the elliptic function JN (this

function in the literature is known as the Chebyshev rational function), it can be expressed as [10]

JN = Dω1−q ×

L∏
m=1

[ω2 − (ωm
z )2]

L∏
m=1

[ω2 − (ωm
p )2]

= Dω1−q ×

L∏
m=1

[ω2 − (ωm
z )2]

L∏
m=1

[
ω2 −

ω2
pω

2
s

(ωm
z )2

]
where the value of L is equal to N/2 for even orders and equal to (N − 1)/2 for odd orders, while the
scaling factor D, has the form

D =



N/2∏
m=1

(
ωm
p

ωm
z

)2

=

N/2∏
m=1

[
ω2
pω

2
s

(ωm
z )4

]
(N−1)/2∏

m=1

[(ωm
p )2 − ω2

p]

ωp

(N−1)/2∏
m=1

[ω2
p − (ωm

z )2]

= ωp ×

(N−1)/2∏
m=1

[ω2
s − (ωm

z )2]

(N−1)/2∏
m=1

(ωm
z )2[ω2

p − (ωm
z )2]

for even and odd filter orders respectively. This values ensure that in the passband edge ω = ωp as
well as at the frequency ω = 0 the magnitude of the function JN is equal to unity. It can be proven
that this function is charecterized by equirriples in the interval [−1,+1] as well as in the intervals
(−∞,−1] and [+1,+∞) and its plot for odd and even filter order is shown in Figure 4. The frequecy
ω in the expression of the JN for odd filter orders is due to the fact that the degree of the numerator
polynomial for odd filter orders is equal to N − 1 and therefore a first degree polynomial term has to
be added to get a polynomial of a degree of N .
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Figure 4: The Chebyshev rational function for odd and even orders.

It is interesting to note, that in practical problems the poles and zeros of the elliptic functions are
not estimated from the above relations but via the next expressions, where the elliptic sinus function
is expressed in terms of the functions ϑ1(u, q), ϑ4(u, q) and q(k) [11]

ωm
z =

ωp√
k

ϑ1

(
2m− q

2N
, q(k)

)
ϑ4

(
2m− q

2N
, q(k)

) =
ωp√
k

ϑ1

[
2m− q

2N
, exp

(
− π

M(1,
√
1− k2)

M(1, k)

)]
ϑ4

[
2m− q

2N
, exp

(
− π

M(1,
√
1− k2)

M(1, k)

)]

= α(k)×

∞∑
n=0

{
(−1)n

[
exp

(
− π

M(1,
√
1− k2)

M(1, k)

)]n(n+1)

sin

[
(2n+ 1)π

2m− q

2N

]}

1 + 2
∞∑

n=1

{
(−1)n

[
exp

(
− π

M(1,
√
1− k2)

M(1, k)

)]n2

cos

[
2nπ

2m− q

2N

]}

ωm
p =

ωp√
k

ϑ1

(
2m− q

2N
+j

K′
2

2K2
, q(k)

)
ϑ4

(
2m− q

2N
+j

K′
2

2K2
, q(k)

)=
ωp√
k

ϑ1

[
2m−q

2N
+j

K′
2

2K2
, exp

(
− π

M(1,
√
1−k2)

M(1, k)

)]
ϑ4

[
2m−q

2N
+j

K′
2

2K2
, exp

(
− π

M(1,
√
1−k2)

M(1, k)

)]

= α(k)×

∞∑
n=0

{
(−1)n

[
exp

(
− π

M(1,
√
1−k2)

M(1, k)

)]n(n+1)

sin

[
(2n+1)π

(
2m−q

2N
+j

K′
2

2K2

)]}

1+2
∞∑

n=1

{
(−1)n

[
exp

(
− π

M(1,
√
1−k2)

M(1, k)

)]n2

cos

[
2nπ

(
2m−q

2N
+j

K′
2

2K2

)]}
In the above equations, the auxiliary function α(k) is defined as

α(k) =

2ωp
4

√
exp

(
− π

M(1,
√
1− k2)

M(1, k)

)
√
k
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These relations do not include elliptic functions and allow the easy calculation of the poles
and zeros of the elliptic function JN , since the arithmetic - geometric mean of two numbers
M(x, y) can be estimated quickly and easily, and furthermore, the functions ϑ1(u, q), ϑ4(u, q)
and q(k) are estimated via their defining equations with the accurate estimation of their
value to require the calculation of a few terms only.

2.4 Poles and zeros of the transfer function

To identify the poles and zeros of the transfer function let us start by the function [10]

H(s)H(−s) = |H(jω)|2ω=s/j =
1

1 + ε2pR
2
N (s/j, ωs, ωp, εs, εp)

=
1

1 + ε2pD
2(−1)q+1s2(1−q)

{ L∏
m=1

s2 + (ωm
z )2

s2 + (ωm
p )2

}

=

L∏
m=1

[s2 + (ωm
p )2]2

L∏
m=1

[s2 + (ωm
p )2]2 + ε2pD

2(−1)q+1s2(1−q)
L∏

m=1

[s2 + (ωz
p)

2]2

whose zeros, being the roots of the algebraic equation s2 + (ωm
p )2 = 0, are estimated as

zm = ±jωm
p jωpsn

[
(2m− q)K2

N
+ jK ′

2,
ωp

ωs

]
= ±jωp

ωs

ωpsn
[
(2m− q)K2

N
,
ωp

ωs

] = ±j
ωsωp

ωm
z

= ±jωp

Ωm

where

Ωm =
1

ωs
sn
[
(2m− q)K2

N
,
ωp

ωs

]
The above equation is valid for odd as well as even filter orders, namely for values q = 1
and q = 0 respectively.

On the other hand, the poles of the transfer function are the roots of the equation
1 + ε2pR

2
N (s/j, ωs, ωp, εs, εp) = 0 or equivalently

sn
[
κsn−1

(
s

jωp
,
ωp

ωs

)
+ qK1, εpεs

]
=

j

εp

Since the Jacobian elliptic sine function is doubly periodic with a real period of 4mK1,
we have

sn
[
κsn−1

(
s

jωp
,
ωp

ωs

)
+ (q + 4m)K1, εpεs

]
=

j

εp

3293



British Journal of Applied Science & Technology 4(23), 3281-3314, 2014

pole

zero

x

x

x

x

Figure 5: Pole-zero plot for the fourth order lowpass elliptic filter.

and therefore, the poles of the filter transfer function can be estimated as

pm = jωpsn
[

sn(j/εp, εpεs)− (q + 4m)K1

k
,
ωp

ωs

]
for values m = 1, 2, . . . , N . The pole zero plot for the fourth order lowpass elliptic filter is
shown in Figure 5.

2.4.1 Pole and zeros approximations

The pole defining equation can be simplified and expressed in terms of trigonometric and
hyperbolic functions that are much simpler; to do this, the simplification k1 = εpεs ≈ 0
can be applied, that generally holds in practice. Using the results sn(u, 0) = sinu and
K1(0) = π/2 we have

κ (k1 = 0) =
N

K2
K1(0) =

πN

2K2

and the pole defining equation gets the form

sn
[
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)
+ q

π

2
, 0

]
= sin

[
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)
+ q

π

2

]
=

j

εp

At this point we distinguish between two cases:
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N is odd In this case we have q = 0 and the last equation gets the form

sin

[
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)]
=

j

εp

or equivalently

−j sin

[
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)]
=

1

εp

From the mathematical analysis we know that j sinu = sinh(ju) and therefore we have

− sinh

[
j
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)]
=

1

εp

or

j
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)
= sinh−1

(
− 1

εp

)
= − sinh−1

(
1

εp

)

Using the identity sinh−1 x = ln(x+
√
x2 + 1), the right part of the equation is expressed as

sinh−1

(
1

εp

)
= ln

(
1

εp
+

√
1

ε2p
+ 1

)
= ln

(
1

εp
+

√
1 + ε2p
ε2p

)
= ln

1 +
√

1 + ε2p

εp

and since εp =
√
10Ap/10 − 1 we get the expression

sinh−1

(
1

εp

)
= ln

1 +
√
1 + 10Ap/10 − 1√
10Ap/10 − 1

= ln
1 + 10Ap/20√

10Ap/20 + 1
√

10Ap/20 − 1

= ln

√
10Ap/20 + 1

10Ap/20 − 1
=

1

2
ln

10Ap/20 + 1

10Ap/20 − 1

Therefore we have

j
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)
= −1

2
ln

10Ap/20 + 1

10Ap/20 − 1

or equivalently,

sn−1

(
s

jωp
,
ωp

ωs

)
= j

K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
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and solving with respect to s,

s = jωpsn
[
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

]

= jωp

√
ωs

ωp

2 4
√
q(k2)

∞∑
n=0

(−1)nqn(n+1)(k2) sin

[
j(2n+1)

K2

Nπ
π ln

10Ap/20 + 1

10Ap/20 − 1

]
1 + 2

∞∑
n=1

(−1)nqn
2

(k2) cos

[
2πnj

K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1

] =

= −√
ωsωp

2 4
√

q(k2)
∞∑

n=0

(−1)nqn(n+1)(k2) sinh

[
(2n+ 1)

K2

N
ln

10Ap/20 + 1

10Ap/20 − 1

]
1 + 2

∞∑
n=1

(−1)nqn
2

(k2) cosh

[
2n

K2

N
ln

10Ap/20 + 1

10Ap/20 − 1

] = p0

where we used the identities sin(ju) = j sinhu and cos(ju) = coshu. It is clear that the
s ≡ p0 value derived above, is not a complex but a real number. Therefore, the odd order
elliptic low pass filters have a real pole s = p0 that does not appear to the even order filters,
even though this pole appears in the pole equations of the last filter type.

On the other hand, to identify the remaining poles of the transfer function, the periodicity
of the Jacobian elliptic sine has to be used; this property is described as

sn(u+ 4K, k) = sn(u, k)

and results to a fundamental period of sn(αu, k) equal to T = 4K/α. In this case, the
multiplicative coefficient of u = sn−1(s/jωp, ωp/ωs) is α = NK1/K2 = Nπ/2K2, a fact that
can be easily verified noting that K1(0) = π/2. Therefore, the period of the elliptic function
that appears in the pole defining equation is T = 4K1/α = 2π/(Nπ/2K2) = 4K2/N ,
allowing us to say that if the expression

z0 = j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1

is a solution of this equation, then the same is true for the quantities

zm = z0 +
4mK2

N
, where z ≡ sn−1

(
s

jωp
,
ωp

ωs

)
In other words, we can write that

sn−1

(
s

jωp
,
ωp

ωs

)
= j

K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
+ 4

K2

N
m

and therefore, the poles of the filter transfer function can be estimated as

pm = σm + jωm = jωpsn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
+ 4

K2

N
m,

ωp

ωs

)
for the values m = 0, 1, 2, . . . , N−1 as it can easily be verified by solving the above equation
with respect to s. The value m = 0 is associated with the real pole p0, while the other values
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of m are used to estimate the remaining N−1 poles. Noting that sn(u+2K, k) = −sn(u, k)
and sn(u+ 4K, k) = sn(u, k), we have

pm = σm + jωm = jωp(−1)msn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
± 2

K2

N
m,

ωp

ωs

)
for the values m = 0, 1, 2 . . . , (N − 1)/2.

To identify the elliptic function in the above equation, we can use the sum property of
the Jacobian elliptic sinus

sn(u+ υ, k) =
sn(u, k)cn(υ, k)dn(υ, k)± sn(υ, k)cn(u, k)dn(u, k)

1− k2sn2(u, k)sn2(υ, k)

for parameter values

u = j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
, υ =

2K2

N
m, k = k2 =

ωp

ωs

Starting from the estimation of the denominator which is much more simpler and using the
equation

p0 = jωpsn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
we get

1− k2sn2(u, k)sn2(υ, k) = 1− k2sn2

(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
sn2

(
2K2

N
m,

ωp

ωs

)
=

1 +
ω2
p

ω2
s

p20
ω2
p

sn2

(
2K2

N
m,

ωp

ωs

)
= 1 + p20

[
1

ωs
sn
(
2K2

N
m,

ωp

ωs

)]
= 1 + p20Ω

2
m

where

Ωm=
1

ωs
sn
[
2K2

N
m,

ωp

ωs

]
=

1
√
ωsωp

2 4
√
q(k2)

∞∑
n=0

(−1)nqn(n+1)(k2) sin

[
(2n+ 1)

πm

N

]
1 + 2

∞∑
n=1

(−1)nqn
2

(k2) cos

(
2nπm

N

)

for the values m = 1, 2, . . . , (N − 1)/2.
To estimate the expressions in the numerator we combine the properties

sn2(u, k) + cn2(u, k) = 1 and k2sn2(u, k) + dn2(u, k) = 1

to construct the auxiliary function

cn(u, k)dn(u, k) =
√

[1− sn2(u, k)][1− k2sn2(u, k)]
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Therefore we have

sn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
cn
(
2K2

N
m,

ωp

ωs

)
dn
(
2K2

N
m,

ωp

ωs

)
=

sn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
×

×

√[
1− sn2

(
2K2

N
m,

ωp

ωs

)][
1− k2sn2

(
2K2

N
m,

ωp

ωs

)]
and using the defining equation of the parameters p0 and Ωm we get

sn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
cn
(
2K2

N
m,

ωp

ωs

)
dn
(
2K2

N
m,

ωp

ωs

)
=

p0
jωp

√
(1− ω2

pΩ
2
m)(1− ω2

sΩ
2
m) =

p0
jωp

Vm

where

Vm =
√
(1− ω2

pΩ
2
m)(1− ω2

sΩ
2
m), m = 1, 2, . . . ,

N − 1

2

For the second expression in the numerator we have

sn
(
2K2

N
m,

ωp

ωs

)
cn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
dn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)

= sn
(
2K2

N
m,

ωp

ωs

)√
1− sn2

(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
√

1− k2sn2

(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
Using the expressions of p0 and Ωm we get

sn
(
2K2

N
m,

ωp

ωs

)
cn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
dn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

)
= ωsΩm

√(
1 +

p20
ω2
p

)(
1 +

p20
ω2
s

)
= ωsΩmW

where

W =

√(
1 +

p20
ω2
p

)(
1 +

p20
ω2
s

)
Substituting the above expressions in the defining equation of the poles pm, it gets the form

pm = σm + jωm = jωp(−1)m
(p0/jωp)Vm ± ωsΩmV

1 + p20Ω
2
m

=

=
(−1)mp0Vm ± jωpωs(−1)mΩmW

1 + p20Ω
2
m

=
(−1)mp0Vm ± jωpωsΩmW

1 + p20Ω
2
m
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for the values m = 1, 2, . . . , N/2. This is the final result. Therefore, the transfer function has
a negative real pole p0 contributing the term s + p0, as well as (N − 1)/2 pairs of complex
conjugate poles σm ± jωm each one of them contributes the term

1

(s− pm)(s− p∗m)
=

1

s2 − (pm + p∗m)s+ pmp∗m
=

1

s2 − 2σms+ σ2
m + ω2

m

=
1

s2+
2p0Vm

1+p20Ω
2
m

s+
(p0Vm)2+(ωpωsΩmW )2

(1+p20Ω
2
m)2

The transfer function is also characterized by complex conjugate pairs of zeros in the
locations zm = ±jωp/Ωm (m = 1, 2, . . . , (N − 1)/2) with each pair to contribute the term

(s− zm)(s− z∗m) =

(
1− jωp

ωm

)(
1 +

jωp

ωm

)
= s2 +

ω2
p

Ω2
m

Based on the above results, the transfer function of the low pass elliptic filter of odd order
is expressed as

H(s)=
H0

s+ p0

(N−1)/2∏
m=1

{[
s2+

ω2
p

Ω2
m

]/[
s2+

2p0Vm

1+p20Ω
2
m

s+
(p0Vm)2+(ωpωsΩmW )2

(1+p20Ω
2
m)2

]}

The constant H0 can be estimated from the normalization requirement

RN (ω, ωp, ωs, εp, εs) = 1

for odd filter order N , leading to the value H(0) = 1. Therefore,

H(0) =
H0

p0

(N−1)/2∏
m=1


ω2
p

Ω2
m

(p0Vm)2 + (ωpωsΩmW )2

(1 + p20Ω
2
m)2

 = 1

and the constant H0 is defined as

H0 = p0

(N−1)/2∏
m=1


(p0Vm)2 + (ωpωsΩmW )2

(1 + p20Ω
2
m)2

ω2
p

Ω2
m


N even In this case we have q = 1, and therefore,

sin

[
πN

2K2
sn−1

(
s

jωp
,
ωp

ωs

)
+

π

2

]
=

j

εp

Working in the same way we get the expression

sn−1

(
s

jωp
,
ωp

ωs

)
= j

K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
− K2

N

3299



British Journal of Applied Science & Technology 4(23), 3281-3314, 2014

Since the elliptic function involved in the pole equation has a fundamental period of 4K2/N
we have

zm = z0 ±
2m− 1

N
K2

and therefore, the pole equation of the filter transfer function is

pm = σm + jωm = jωp(−1)msn
(
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
± 2m− 1

N
K2,

ωp

ωs

)
In this case, we have m = 1, 2, . . . , N/2 and the filter function does not have a single real
pole but only a number of pairs of complex conjugate poles.

The subsequent analysis is the same as previously and the final result is

pm = ±(σm + jωm)

where

σm + jωm =
±[p0Vm + jωpωs(−1)mΩmW ]

1 + p20Ω
2
m

The parameters Vm and W have already been defined, while Ωm is defined as

Ωm =
1

ωs
sn
[
2m− 1

N
K2,

ωp

ωs

]
Therefore, the transfer function for even order elliptic filters has the form

H(s) = H0

N/2∏
m=1

{[
s2 +

ω2
p

Ω2
m

]/[
s2 +

2p0Vm

1 + p20Ω
2
m

s+
(p0Vm)2 + (ωpωsΩmW )2

(1 + p20Ω
2
m)2

]}

with the estimation of the H0 constant to rely on the requirement G(0) = 10−Ap/20, as in
the case of the Chebyshev I filters. Therefore we have

H(0) = H0

(N−1)/2∏
m=1


ω2
p

Ω2
m

(p0Vm)2 + (ωpωsΩmW )2

(1 + p20Ω
2
m)2

 = 10−0.05Ap

and the value of H0 is estimated as

H0 = 10−0.05Ap

(N−1)/2∏
m=1


(p0Vm)2 + (ωpωsΩmW )2

(1 + p20Ω
2
m)2

ω2
p

Ω2
m


Having identified the transfer function for odd as well as even order elliptic filters, we can
easily identify the central frequency ωc ≡ ω0 and the quality factor Q as

ωm
c =

√
(p0Vm)2 + (ωpωsΩmW )2

1 + p20Ω
2
m

and Qm =
1

2

√
1 +

(
ωpωsΩmW

p0Vm

)2
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Figure 6: Loss characteristics for fifth order lowpass filter.

2.5 The loss characteristics

The loss characteristics of the low pass elliptic filter has the form

A(ω) = 10 log

[
1 + ε2pR

2
N (s/j, ωs, ωp, εs, εp)

]
= 10 log

{
1 + ε2psn2

[
κsn−1

(
ω

ωp
,
ωp

ωs

)
+ qK1, εpεs

]}
A curve for this function and for a 5th order lowpass filter is shown in Figure 6.

2.6 Phase characteristics and time response function

At it is well known from the literature, the response of an LTI system to the elementary
exponential signal x(t) = Aejω0t has the form

y(t) = Aejω0t
{
|H(jω0)|ej]H(jω0)

}
=
(
A|H(jω0)|

)
exp
{
j
(
ω0t+ ]H(jω)

)}
and therefore the filter increases the phase of the input signal by an amount of ]H(jω0),
namely, by the phase of the filter transfer function estimated for the input signal frequency
ω = ω0. In the ideal case, the phase response of the filter is equal to zero, and no phase
distortion is caused to the signal; however, these ideal filters are not realizable and in
the real applications they are approximated by the well known analog filter approximations
(Butterworth, Chebyshev I and II and elliptic or Cauer approximation). Another interesting
case, is associated with the linear phase filters whose phase response has the simple form
]H(jω) = −αω where α = d[]H(jω)]/dω is the constant group delay of those filters. It can
be easily proven, that in this case the input signal is subjected a constant time delay for all
frequencies, with no further distortion. In practice, the most efficient and commonly used
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filters of this type, are the Bessel - Thomson filters that are characterized by a maximally flat
group delay for the frequency ω = 0. The above described facts hold for a single frequency
ω = ω0, while, in the general case of an arbitrary input signal, they are applied to each one
of the single frequency components that form its spectrum.

The phase response of the prototype lowpass elliptic filter for cutoff frequency ωc = 1,
parameter values Ap = 1 dB, As = 30 dB and filter orders N = 1 to 10 is plotted in Figure 7.
The defining equation of this function can be derived from the general frequency response
equations for even and odd filter orders

]H(jω) =

N/2∑
k=1

]Hk(jω)=

N/2∑
k=1

{
tan−1

(
β1kω

β0k−β2kω2

)
− tan−1

(
α1kω

α0k−α2kω2

)}

]H(jω) = − tan−1

(
α1kω

α0k

)
+

(N−1)/2∑
k=1

{
tan−1

(
β1kω

β0k−β2kω2

)
−tan−1

(
α1kω

α0k−α2kω2

)}
for the parameters α0 = p0, α1 = 1, α2 = 0, β0 = 1, β1 = β2 = 0, α2k = β2k = 1, β1k = 0
and

β0k =
ω2
p

Ω2
k

, α0k =
(p0Vk)

2 + (ωpωsΩkW )2

(1 + p20Ω
2
k)

, α1k =
2p0Vk

1 + p20Ω
2
k

leading to the results

]H(jω) = −
N/2∑
k=1

2p0Vk(1 + p20Ω
2
k)ω

(p0Vk)2 + (ωpωsΩkW )2 − (1 + p20Ω
2
k)ω

2
(N even)

]H(jω) = − tan−1

(
ω

p0

)
−
(N−1)/2∑

k=1

2p0Vk(1 + p20Ω
2
k)ω

(p0Vk)2 + (ωpωsΩkW )2 − (1 + p20Ω
2
k)ω

2
(N odd)

The set of parameters αi and βi appearing in the defining equations, are the coefficients
of the polynomials of the denominator and the numerator respectively of the rational filter
transfer fraction

H(s) =
β0 + β1s+ β2s

2 + · · ·+ βMsM

α0 + α1s+ α2s2 + · · ·+ αNsN

The differentiation of the above equations with respect to ω allows us to derive the group
delay as the negative slope of the phase response. For the case of the elliptic filters this
delay for even and odd filter orders is expressed as

τ(ω) =

N/2∑
k=1

{
2p0Vk

1 + p20Ω
2
k

[
(p0Vk)

2 + (ωpωsΩkW )2

(1 + p20Ω
2
k)

2
+ ω2

]}
{[

(p0Vk)
2 + (ωpωsΩkW )2

(1 + p20Ω
2
k)

2
− ω2

]2} (N even)

τ(ω) =

(N−1)/2∑
k=1

{
2p0Vk

1 + p20Ω
2
k

[
(p0Vk)

2 + (ωpωsΩkW )2

(1 + p20Ω
2
k)

2
+ ω2

]}
{[

(p0Vk)
2 + (ωpωsΩkW )2

(1 + p20Ω
2
k)

2
− ω2

]2}
+ p0

p2
0+ω2

(N odd)
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Figure 7: The phase response of the prototype lowpass elliptic filter for cutoff frequency
ωc = 1, parameter values Ap = 1 dB, As = 30 dB and filter orders N = 1− 10.

The impulse and the step response of typical examples of elliptic filters are ploted in Figure
8 and their equations have the well known exponential form characterizes the other ideal
filter approximations.

3 The Design Procedure of Elliptic Filters

After the analytical description of the fundamental properties of the elliptic filters, let us
now summarize the filter design procedure for the low pass prototype elliptic filter. This
procedure is composed of the following steps:

1. The filter design parameters are identified, namely, the maximum passband loss Ap,
the minimum stopband loss As, the passband edge ωp and the stopband edge ωs.

2. The elliptic modulus

k1 = εpεs =

√
10Ap/10 − 1

10As/10 − 1
=

1√
D

where D =
10As/10 − 1

10Ap/10 − 1

is estimated as well as the modulus k2 = ωp/ωs that gives the value of the filter
selectivity.

3. The parameter values k′1 =
√
1− k21 and k′2 =

√
1− k22 as well as the elliptic integrals

K1, K ′
1, K2 and K ′

2 are estimated using the arithmetic - geometric mean.

4. The minimum filter order is estimated as

N =
log(16D)

log(1/q(k2))
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Figure 8: The impulse response and the step response of the prototype elliptic filter for
cutoff frequency ωc = 1, parameter values Ap = 1 dB, As = 30 dB and filter orders N =
1− 10.

or alternatively by the relation

N =
K ′

1

K1

K2

K ′
2

and rounded to the next integer number.

5. The parameters

p0 = −√
ωsωp

2 4
√

q(k2)
∞∑

n=0

(−1)nqn(n+1)(k2) sinh

[
(2n+ 1)

K2

N
ln

10Ap/20 + 1

10Ap/20 − 1

]
1 + 2

∞∑
n=1

(−1)nqn
2

(k2) cosh

[
2n

K2

N
ln

10Ap/20 + 1

10Ap/20 − 1

]

W =

√(
1 +

p20
ω2
p

)(
1 +

p20
ω2
s

)
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and

Ωm =
1

√
ωsωp

2 4
√
q(k2)

∞∑
n=0

(−1)nqn(n+1)(k2) sin

[
(2n+ 1)

πµ

N

]
1 + 2

∞∑
n=1

(−1)nqn
2

(k2) cos

(
2nπµ

N

)
are estimated for the values

µ =

{
m N odd
m− (1/2) N even

where

m =

{
1, 2, . . . , (N − 1)/2 N odd
1, 2, . . . , (N/2) N even

leading to the estimation of the parameters

Vm =
√
(1− ω2

pΩ
2
m)(1− ω2

sΩ
2
m)

αm =
ω2
p

Ω2
m

βm =
2σ0Vm

1 + σ2
0Ω

2
m

γm =
(p0Vm)2 + (ΩmW )2

(1 + p20Ω
2
m)2

6. In the last step, the filter transfer function is estimated as

H(s) =
H0

D(s)

L∏
m=1

s2 + αm

s2 + βms+ γm

where

L =

{
(N − 1)/2 N odd

N/2 N even

D(s) =

{
s+ p0 N odd
1 N even

and

H0 =


p0

L∏
m=1

γm
αm

N odd

10−Ap/20

L∏
m=1

γm
αm

N even

and the amplitude and phase response are derived and plotted.

The application of the above procedure for the design of a filter with prescribed specifications
is shown in the next example.
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3.1 A low pass elliptic filter design example

To illustrate the above described elliptic filter design procedure, let us design an elliptic filter
with selectivity k2 = ωp/ωs = 0.95 and attenuation levels Ap = 0.3 dB and As = 60 dB.

We start with the identification of the minimum filter order via the equation

N = log(16D)/ log[1/q(k2)]

The value of the D parameter is estimated as

D =
10As/10− 1

10Ap/10 − 1
=

1060/10 − 1

100.3/10 − 1
=

999999

0.071519
= 13982284.427914

On the other hand, to estimate the function q(k2) = q(0.95) we can apply two alternative
techniques, and since this review is actually a tutorial on elliptic filters, let us present both of
them. The first technique uses the defining equation of this function, namely the equation
q(k2) = exp(−πK ′

2/K2). To estimate the elliptic integrals we can use the arithmetic
geometric mean, a computationally simple and very efficient method that provides the
results

K2 = K(k2) = K(0.95) = 2.590011

and

K ′
2 = K(k′2) = K(

√
1− k22) = K(0.312249) = 1.611337

Therefore,

q(k2) = q(0.95) = exp

(
− π

K ′
2

K2

)
= exp

(
− 3.14159× 1.611337

2.590011

)
= exp(−1.954493) = 0.141636

The second method is the prior estimation of the auxiliary parameter

q0 =
1

2

(
1−

√
k′2

1 +
√

k′2

)
=

1

2

(
1−

√
0.312249

1 +
√
0.312249

)
=

1

2

(
0.441207

1.558972

)
= 0.141522

and then the computation of the required value via the approximation

q(k2)=q(0.95)=q0+2q50+15q90=0.141522+2(0.141522)5+15(0.141522)9=0.141636

Even though both methods reach the same result, the second one is clearly more preferable,
since it does not use elliptic integrals. Therefore, the minimal filter order is equal to

N =
log(16D)

log[1/q(k2)]
=

log(16× 13982284.427914)

log(1/0.141636)
=

8.349698

0.848826
= 9.836756

and since this value is a decimal number (as happens in almost cases) it has to be rounded
to the next available integer leading thus to the value N = 10.

Since the prescribed specifications do not include the frequencies ωp and ωs but only
the selectivity factor k2 = 0.95, we can set ωp =

√
k2 =

√
0.95 = 0.974679 and furthermore
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ωs = 1/
√
k2 = 1/

√
0.95 = 1.025978 to construct a normalized filter with a cutoff frequency

ωc =
√
ωpωs = 1 (this is a commonly used approach). Therefore,

j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
= j

2.590011

10× 3.14159
ln

100.3/20 + 1

100.3/20 − 1
= 0.334365j

and the parameter p0 is estimated as

p0 = jωpsn
[
j
K2

Nπ
ln

10Ap/20 + 1

10Ap/20 − 1
,
ωp

ωs

]
= j 0.974679 sn(j 0.334625, 0.75)

At this point we have to estimate the Jacobian elliptic sinus function, and this is not a trivial
procedure. One way to do it, is to develop a user defined software function to compute
this value from its series expansion in terms of the θ function. However, since this is not a
crucial task in this presentation, we simply use the [SN,CN,DN]=ellipj(u,k) MATLAB function
[12][13] that gets as inputs the parameters u and k and returns the values of the elliptic
functions sn, cn and du. The problem is that this MATLAB routine has been designed to
work with real arguments, but in this situation we want to estimate the elliptic sinus of an
imaginary quantity. To overcome this limitation we can use the identity

sn(ju,m) = jsc(u,m1) = j
sn(u,m1)

cn(u,m1)

where u = 0.334625, m = k22 = (0.95)2 = 0.9025 and

m1 = (k′2)
2 = 1− k22 = 1−m1 = 1− 0.9025 = 0.0975

Therefore we have sn(0.334625, 0.0975) = 0.327852 and cn(0.334625, 0.0975) = 0.944728,
reaching the result

sn(j 0.334625, 0.0975) = j
0.327852

0.944728
= j 0.347033

which in turn gives

p0 = jωp(j 0.347033) = j (0.974679)(j 0.347033) = −0.338245

In the final step we use this p0 value to estimate the W parameter as

W =

√(
1+

p20
ω2
p

)(
1+

p20
ω2
s

)
=

√(
1+

(−0.338245)2

(0.974679)2

)(
1+

(−0.338245)2

(1.025978)2

)
=1.114634

At this stage of the design procedure, we have in our disposal all of the required information
for the estimation of the filter transfer function and lets start with the identification of its zero
values. The Ωm parameters are estimated as

Ωm=
1

ωs
sn
[
2m−1

N
K2,

ωp

ωs

]
= 0.974679sn[0.259001(2m− 1), 0.75], m=1, 2, 3, 4, 5

Using the ellipj MATLAB function we get

Ω1 = 0.247614, Ω2 = 0.648846, Ω3 = 0.868917, Ω4 = 0.959913, Ω5 = 0.970943

and therefore, the zeros of the transfer function are the following:
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z1,2 = ± j

Ω1
= ± j

0.247614
= ±4.038539j z3,4 = ± j

Ω2
= ± j

0.648846
= ±1.545961j

z5,6 = ± j

Ω3
= ± j

0.868917
= ±1.150857j z7,8 = ± j

Ω4
= ± j

0.959913
= ±1.041760j

z9,10 ±
j

Ω5
= ± j

0.970943
= ±1.029926j

On the other hand, to identify the poles of the transfer function, we need the values

Vm =
√

(1− ω2
pΩ

2
m)(1− ω2

sΩ
2
m)

(for m = 1, 2, 3, 4, 5) that are estimated as

V1 = 0.938601, V2 = 0.578042, V3 = 0.240895, V4 = 0.061221, V5 = 0.028267

leading, in turn, to the results

p1,2 = −0.315265± 0.275998j

p3,4 = −0.186534± 0.689991j

p5,6 = −0.075002± 0.891514j

p7,8 = −0.018732± 0.967913j

p9,10 = −0.008630± 0.976882j

The normalization constant H0 can be identified from its defining equation for even filter
order and it is found equal to H0 = 0.001197.

To construct the filter transfer function we have to build the contribution of each pole
and each zero and the results are the following:

• Zeros z1,2 contribute to the numerator the term s2 + 16.309797

• Zeros z3,4 contribute to the numerator the term s2 + 2.389995

• Zeros z5,6 contribute to the numerator the term s2 + 1.324471

• Zeros z7,8 contribute to the numerator the term s2 + 1.085263

• Zeros z9,10 contribute to the numerator the term s2 + 1.060747

• Poles p1,2 contribute to the denominator the term s2 + 0.630539s+ 0.175566

• Poles p3,4 contribute to the denominator the term s2 + 0.373068s+ 0.510881

• Poles p5,6 contribute to the denominator the term s2 + 0.150004s+ 0.800422

• Poles p7,8 contribute to the denominator the term s2 + 0.037464s+ 0.937205

• Poles p9,10 contribute to the denominator the term s2 + 0.017260s+ 0.954372

After the identification of all those terms, we can construct the polynomial of the numerator
by multiplying the first five terms associated with the five zeros, while, the denominator
polynomial can be constructed in a similar way by multiplying the five terms associated
with the five poles. The degree of both polynomials is equal to N = 10. The numerator
polynomial contains only even powers of s, while the denominator polynomial contains all
the powers of s between 0 and 10. To complete the design, the numerator polynomial must
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Figure 9: The amplitude and the phase response of the designed example filter.

be multiplied by the normalization constant H0. The final result expressed with an accuracy
of three decimal digits has the form

H(s)=
0.001197(s10+22.170s8+1.078s6+2.144s4+1.841s2+59.433)

s10+1.20s9+3.82s8+3.66s7+5.45s6+4.01s5+3.50s4+1.85s3+0.94s2+0.29s+0.064

The amplitude and phase response of this filter are plotted in Figure 9. However, it is clear
that these results are only approximative, since we used the approximated expressions. If
we construct the same filter using the appropriate MATLAB functions the results are

z1,2 = ±4.076817j p1,2 = −0.327805± 0.285514j

z3,4 = ±1.583155j p3,4 = −0.195119± 0.705739j

z5,6 = ±1.195265j p5,6 = −0.085341± 0.902603j

z7,8 = ±1.084517j p7,8 = −0.031622± 0.977975j

z9,10 = ±1.051635j p9,10 = −0.007805± 1.002470j

and H0 = 9.9999 × 10−4, and as it can be easily seen, our solution is associated with a
good precision. In practice and in real applications, the elliptic filters are designed using
specialized software packages due to the complications associated with their mathematical
foundations.

4 Conclusions

The objective of this review paper was the detailed and rigorous mathematical presentation
of the main aspects, properties and features of the low pass analog elliptic filter approximation.
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These features include the minimum filter order that meets the prescribed specifications,
the poles and zeros of the Chebyshev rational function, the filter transfer function, the
amplitude and the phase response, the group delay, as well as the impulse and step
responses. An appendix describing the main features and properties of the elliptic and
theta functions is also included for the sake of completeness.
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Appendix - Elliptic Integrals and Related Functions

Since the elliptic functions and the related stuff are not very common and they are
rarely used in practice, this appendix introduces the interested reader to the most important
aspects and properties of them.

1. Elliptic Integrals

Elliptic integrals were introduced by Wallis and Newton and they were used in a systematic way
by Legendre for the study of classical mechanical problems such as the single pendulum. They are
considered as generalizations of the inverse trigonometric functions, and they are defined as

f(x) =

∫
α(x) + β(x)

γ(x) + δ(x)ζ(x)

In the above equation, the right-hand functions are polynomial of x, with the highest power in ζ(x) to
have a value of 3 or 4. These functions depend on two variables, one of them is associated with the
upper limit of integration. There are three kinds of elliptic integrals, namely, first, second, and third
kind, each one of them is characterized as complete or incomplete.

The incomplete integral of first kind is defined as

F (φ, k) =

∫ sinφ

0

dt√
(1− t2)(1− k2t2)

where 0 ≤ k2 ≤ 1 and 0 ≤ φ ≤ 1. The k parameter is known as elliptic module, and it can be defined
alternatively in terms of the parameter m = k2 or the angle α = sin−1 k. Performing the change of
variable t = sinϑ we have that dt = cosϑdϑ =

√
1− t2 dϑ and the integral gets the form

F (φ, k) =

∫ φ

0

dϑ√
1− k2 sin2 ϑ

where 0 ≤ φ ≤ π/2. Regarding the complete elliptic integral of first kind it is associated with the
upper integration limit value φ = π/2 and therefore we have

F (k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

=

∫ π/2

0

dϑ√
1− k2 sin2 ϑ

On the other hand, the incomplete and complete elliptic integral of second kind are

E(φ, k) =

∫ sinφ

0

√
1− k2t2√
1− t2dt

=

∫ φ

0

√
1− k2 sin2 ϑ

and

E(k) =

∫ 1

0

√
1− k2t2√
1− t2dt

=

∫ π/2

0

√
1− k2 sin2 ϑ

while, the corresponding expressions for the incomplete and complete elliptic integrals of third kind
have the form

Π(φ, η, k) =

∫ sinφ

0

dt

(1 + ηt2)
√

(1− t2)(1− k2t2)
=

∫ φ

0

dϑ

(1 + η sin2 ϑ)(1− k2 sin2 ϑ)

Π(η, k) =

∫ 1

0

dt

(1 + ηt2)
√

(1− t2)(1− k2t2)
=

∫ π/2

0

dϑ

(1 + η sin2 ϑ)(1− k2 sin2 ϑ)
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In the literature, the complete elliptic integrals of first and second kind are denoted as K and E,
respectively, and therefore we have,

F

(
φ =

π

2
, k

)
= F (sinφ = 1, k) = K(K) = K

E

(
φ =

π

2
, k

)
= E(sinφ = 1, k) = E(K) = E

Defining the parameter k′ =
√
1− k2 and performing the substitution υ = tanϑ we define the so-

called complementary form for these integrals

F

(
φ =

π

2
, k′

)
= F (sinφ = 1, k′) = K(K′) = K′

E

(
φ =

π

2
, k′

)
= E(sinφ = 1, k′) = E(K′) = E′

2. Elliptic Functions

The elliptic functions are closely related to the elliptic integrals and in fact they are associated
with the inversion of those integrals. In this appendix the focus is given to a specific class of elliptic
functions, namely the Jacobian elliptic functions, since they are used for the design of elliptic filters.
These functions are defined via the inversion of the incomplete elliptic integral of first kind. Expressing
this integral in the form

u = F (φ, k) =

∫ φ

0

dϑ√
1− k2 sin2 ϑ

the upper limit of integration is known as Jacobian amplitude and it is denoted as amp(u, k). Therefore,
we have φ(u, k) = F−1(u, k) = amp(u, k). Based on this fact, we can define the three most well
known elliptic functions as

sn(u, k) = sinφ(u, k) = sin[amp(u, k)]

cn(u, k) = cosφ(u, k) = cos[amp(u, k)]

dn(u, k) =
√

1− k2 sin2 φ(u, k) =
√

1− k2 sin2[amp(u, k)]

These functions are generalizations of the well known trigonometric and hyperbolic functions for the
parameter values k = 0 and k = 1, since, based on their defining equations we can easily see that
sn(u, 0) = sinu, cn(u, 0) = cosu, dn(u, 0) = 1, cd(u, 0) = cosu, and furthermore, sn(u, 1) = tanhu,
cn(u, 1) = sechu, dn(u, 1) = sechu, cd(u, 1) = 1. Furthermore, using the auxiliary parameter
k′ =

√
1− k2, it can be easily proven via their defining equations, that

sn2(u, k) + cn2(u, k) = 1, k2sn2(u, k) + dn2(u, k) = 1

dn2(u, k)− k2cn2(u, k) = k′2

k′2sn2(u, k) + cn2(u, k) = dn2(u, k)

sn2(u, k) =
1− cd2(u, k)

1− k2cd2(u, k)

The elliptic functions used in the design of the elliptic filters, are the even function sn(u, k) and the
odd function cd(u, k). These functions are related via the expressions

cd(u, k) = sn(u+K, k) = sn(K − u, k)
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and as it can be proven they also satisfy the relations

cd [u+ (2m− 1)K, k] = (−1)msn(u, k) (∀m ∈ N)

cd [u+ 2mK, k] = (−1)mcd(u, k) (∀m ∈ N)

cd [u+ jK′, k] = 1/[kcd(u, k)] (∀u ∈ N)

cd [ju, k] = 1/dn(u, k′) (∀u ∈ N)

The Jacobian elliptic function are periodic with respect to the real as well as to the imaginary
axis of the complex plane with period values for these two directions Tx = 4K and Ty = 2jK′,
respectively. More specifically, for the functions sn(u, k) and cn(u, k) and for each value of u we have

sn(u+ 4mK, k) = sn(u, k) and cn(u+ 2jmK′, k) = cn(u, k)

where m and integer. It is proven that these functions also define a conformal mapping from the u to
the ω plane, with the smallest area of the u plane that is mapped to the whole ω plane to define the
so-called fundamental area.

3. The Nome and ϑ Functions

The nome Jacobian function q as well as its complementary function qc are defined in terms of
the complete elliptic integrals K and K′ as

q = q(k) = exp

(
− π

K′

K

)
= exp

(
− π

K(
√
1− k2)

K(k)

)
qc = qc(k) = exp

(
− π

K

K′

)
= exp

(
− π

K(k)

K(
√
1− k2)

)
It can be easily proven that these two functions satisfy the equation ln(q)×ln(qc) = π2. The estimation
of the q(k) is based to the definition of the variable k = sinα as well as the auxiliary parameter

ε = ε(k) =
1

2

(
1−

√
cosα

1 +
√
cosα

)
=

1

2

(
1− 4

√
1− k2

1 + 4
√
1− k2

)
In this case it can be proven that the function q(k) can be expressed as a series in the form

q(k) = ε(k) + 2ε5(k) + 15ε9(k) + 150ε13(k) + 1707ε17(k)

This series is an excellent approximation of the function q(k) and it converges for the interval 0 ≤ α ≤
π/4 or 0 ≤ k ≤ 1/

√
2. On the other hand, the complementary function qc(k) can be approximated as

the value of the series

qc(k) = εc(k) + 2ε5c(k) + 15ε9c(k) + 150ε13c (k) + 1707cε
17(k)

that converges in the interval π/4 ≤ α ≤ π/2 or 1/
√
2 ≤ k ≤ 1 where

εc = εc(k) =
1

2

(
1−

√
sinα

1 +
√
sinα

)
=

1

2

(
1−

√
(k)

1 +
√
k

)
The nome Jacobian function allows the definition and estimation of the functions ϑi(u, q) (i = 1, 2, 3, 4)
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as

ϑ1(u, q) = 2 4
√
q

∞∑
n=0

(−1)nqn(n+1) sin[(2n+ 1)πu]

ϑ2(u, q) = 2 4
√
q

∞∑
n=0

qn(n+1) cos[(2n+ 1)πu]

ϑ3(u, q) = 1 + 2

∞∑
n=1

qn
2

cos(2nπu)

ϑ4(u, q) = 1 + 2

∞∑
n=1

(−1)nqn
2

cos(2nπu)

The ϑ functions are considered useful tools in the study and use of elliptic functions. It can be
proven that each ellpitic function can be expressed as the ratio of two ϑ functions. The mathematical
expressions that describe this type of relationships are based to the complete elliptic integral of first
kind, expressed as a function of the arithmetic - geometric mean M(x, y) which is defined as the
common limit of convergence of the sequences αn = (αn−1 + βn−1)/2 and βn =

√
αn−1βn−1 with

α0 = x and β0 = y. In this case it can be proven that the complete elliptic integral of first kind can be
estimated as

k(k) =

∫ π/2

0

dϑ√
1− k2 sin2 ϑ

=
π

2M(1,
√
1− k2)

=
π

M(1− k, 1 + k)

Based on this result, the Jacobian elliptic sinus function can be estimated as the ratio

sn(u, k) =
1√
k

ϑ1

[
u

2K(k)
, q(k)

]
ϑ4

[
u

2K(k)
, q(k)

] =
1√
k

ϑ1

[
u
M(1,

√
1− k2)

π
, exp

(
− π

M(1,
√
1− k2)

M(1, k)

)]
ϑ4

[
u
M(1,

√
1− k2)

π
, exp

(
− π

M(1,
√
1− k2)

M(1, k)

)]
Similar expressions can be constructed for the remaining Jacobian elliptic functions.
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