

British Journal of Medicine & Medical Research 10(1): 1-7, 2015, Article no.BJMMR.13344 ISSN: 2231-0614

SCIENCEDOMAIN international www.sciencedomain.org

Effectiveness of Lumbar Puncture in the Diagnosis of Central Nervous System Infection for the Elderly Patients Presenting with Acute Confusional State

Adil Adnan Al-Naemee^{1*} and Akram Al-Mahdawi¹

¹AI-Fallujah Teaching Hospital, Al-Anbar Governorate, Iraq.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMMR/2015/13344 <u>Editor(s):</u> (1) Vijay K. Sharma, Division of Neurology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore. <u>Reviewers:</u> (1) Anonymous, University of Missouri-Kansas City, USA. (2) Anonymous, Iran. (3) Anonymous, Israel. (4) Saleh Mohamed, Critical Care Department, Arras General Hospital, Arras, France. (5) Rakesh Garg, All India Institute of Medical Sciences, New Delhi, India. Complete Peer review History: <u>http://sciencedomain.org/review-history/10365</u>

Short Research Article

Received 13th August 2014 Accepted 20th June 2015 Published 2nd August 2015

ABSTRACT

Objective: To evaluate the effectiveness of lumbar puncture (LP) as a diagnostic procedure for central nervous system infection in cases of acute confusional states in elderly patients.

Patients and Methods: This is an observational prospective study as a short research article that enrolled 50 elderly patients with acute confusional state to assess lumbar puncture results as a diagnostic procedure for central nervous system infections in Al-Fallujah Teaching Hospital in Al-Anbar, Iraq, between January 2011 and January 2013. All of the patients have been subjected to lumbar puncture (LP), as well as laboratory investigations.

Results: This study reveals slight female predominance (54%) in cases of acute confusional state. The mean age was 68 years. Acute confusional state in 92% of our cases was due to systemic disease, and central nervous system infection (meningitis and encephalitis) represented only 8% of cases. Most LPs were negative (normal). Fifty per cent of CNS infections were in pre-LP cases presenting systemic diseases. Central nervous system infections were mostly bacterial meningitis. **Conclusions:** This study reveals that positive LP results were low in elderly patients presenting

*Corresponding author: Email: ahmednas2005@yahoo.com, adeladnany@gmail.com;

with acute confusional state. This gives an idea about the LP effectiveness that should be suspected. Since the causes of such presentation are life threatening diseases, so LP remain the best useful procedure in spite of its low positive results.

Keywords: Lumbar puncture; acute confusional state; geriatric; delirium.

ABBREVIATIONS

LP: lumbar puncture; CNS: central nervous system; ACS: acute confusional state; TB: tuberculosis.

1. INTRODUCTION

ACS in the elderly is a diagnostic dilemma that physicians and neurologists in emergency units face daily. One of the most challenging questions is whether to proceed with LP. Yet there are many difficulties for LP indication in elderly patients. While ACS occurs in 33% to 41% of elderly patients [1], the overall incidence of meningitis is about 2 to 10 cases per 100,000 people per year [2]. Approximately 20% of the cases were projected to involve individuals >60 vears [3]. However, in the sense of atypical presentation of CNS infection in the elderly, and because of its high mortality rate, meningitis should effectively be excluded. Some authors believe that older people more often present with the triad of fever, neck stiffness, and altered mental status than younger adults [4], while others believe in the triad of fever, nuchal rigidity, and altered mental status, though this triad is only seen in 40% of elderly patients with meningitis [5]. The geriatric patient may also have false-positive findings of meningitis. Signs and symptoms of meningeal irritation, such as nuchal rigidity or a positive Kernig's sign or Brudzinski's sign, may be found in healthy elderly people.

This false-positive finding is attributed to the presence of limited neck mobility and cervical spine disease. Thus, classic signs and symptoms of meningeal irritation are unreliable in the elderly and make the diagnosis of meningitis more difficult [2]. LP efficiency decreased dramatically according to patients' age [6]. LP is never mentioned as a primary investigation and was always left to the condition. While being the most valuable diagnostic tool for CNS infection, LP has a limited role in ACS due to its very low yield as some authors' believes [7].

Some have suggested that cerebrospinal fluid should be analysed only in atypical cases of stroke, or when pyrexia develops without an apparent source of infection in an elderly patient with stroke [8]. Others believe that it should be done for every patient with ACS [9], while yet others do not believe in doing LP unless for typical cases of meningitis [10]. The causes of ACS in the elderly are mainly due to systemic infection (34%), stroke (11%), and electrolyte disturbance (10%) [11]. CNS infection represents 1% to 5% of cases of ACS. These numbers give an idea of the difficult decision regarding LP.

2. PATIENTS AND METHODS

This is a prospective observational study as a short research article on 50 elderly patients. The patients were aged 60 to 85 years old. The mean age was 68, with a small female predominance. Patients present with ACS at time of hospital admission at Al-Fallujah hospital in Al-Anbar, Iraq, between January 2011 and January 2013. All patients were examined by a neurologist via LP. General medical and neurological examination was done for the patients. We applied the Confessional Assessment Method (CAM). It includes the following criteria:

- 1. Acute changes in mental state with fluctuating courses
- 2. Inattention
- 3. Disorganized thinking with respect to orientation, content of thinking, or illogical ideas
- Altered level of consciousness and psychomotor activity (alert or drowsy) Diagnosis involves 1+2+either 3 or 4.

The patients were fully assessed with clinical and laboratory investigations: blood count, ESR, glucose, urea, creatinine, electrolytes, liver function test, ECG, cardiac echo-study, X-ray, ultrasound, and neuroimaging (CT, MRI) according to the patient's condition.

LP results are considered abnormal when the CSF analysis shows leukocytes count > 5 cells per mm³, protein > 50 mg/dL, glucose < 60% of blood level, CSF pressure > 180 mm H_2O .

Cultures of CSF and polymerase chain reaction were done to prove the diagnosis of CNS infections.

Selection of the sample included elderly patients that presented with ACS without clear causes and LP was done for them to diagnose or exclude CNS infection. We excluded; (1) cases of typical presentation of CNS infections in which patient presented with classical triad of fever, headache, and neck stiffness who have intact consciousness (not confused) and proved later by lumbar puncture to have CNS infection, and (2) cases of ACS with clear central nervous system diseases (like stroke or tumour) and patients with systemic diseases (like renal failure, liver failure) that explains their presentation with ACS.

3. RESULTS

The range for the age of the patients was between 60 and 85 years old. The mean age was 68 years old, with a little female predominance, as 54% of our patients were female.

Table 1 gives the distribution of patients by age and sex.

Regarding ACS as the presenting picture of our sample, the most common causes of ACS are systemic infection (50% of cases), electrolyte disturbance (20%), unknown causes (14%), CNS infection (8%), and other causes (8%), which involve drugs, heart failure, and liver disease. Regarding systemic infection, chest infections represent 20% of cases, as do UTIs. Regarding electrolyte disturbance, dehydration is the most common. CNS infections (meningitis and encephalitis) represent only 8% of cases of ACS in the elderly.

Table 2 gives the causes of ACS in elderly patients.

CNS infections (meningitis and encephalitis) were present in both cases of ACS with apparent disease at initial evaluation and in patients without apparent disease at initial evaluation.

Patients who presented with apparent disease at initial evaluation but their pictures were atypical for systemic disease i.e. the presence of neck stiffness, represents 40% of the sample (20 patients). It involves mostly patients with electrolytes disturbance (10 patients); systemic infection (8 patients) and 2 patients had heart and liver failure. Only two patients of this group had a CNS infection.

Those with ACS but without specific apparent diseases and atypical for CNS infections i.e. patient with fever or leukocytosis without neck stiffness, represent 60% of the sample. Only two patients of this group had a CNS infection Systemic infection represents the major part for this group, as it takes more time for diagnosis.

CNS infections (meningitis and encephalitis) were present in cases of ACS with fever and in cases of ACS without fever.

We had 35 patients (70% of our sample) who presented with ACS with fever; only two patients of them proved to have a CNS infection. The other 15 patients (30% of our sample) presented with ACS without fever; only two of them proved to have a CNS infection. This means that 50% of our patients with CNS infection had fever and the other 50% had CNS infection without fever Table 4.

CNS infections (meningitis and encephalitis) are mostly bacterial in the elderly, and both cases in our sample were due to *S. pneumonia*. We had one case of viral encephalitis and one case of TB meningitis. These results were proved by CSF culture and DNA testing with PCR, as with clinical responses to treatment Table 5.

4. DISCUSSION

The mean age was 68 years in this study and it was less than that of James George study, who point to being 81 years [12]. Half of our sample was between 60 and 69 years old, and the other older age group represented the smaller sample due to their decreasing number by death by aging. The difference in mean age between our sample and that of George was mostly due to hard living conditions in our country. While slight female predominance in our study (54%) is comparable to that of James George results who points to 78 men and 93 women in his study.

Most of the cases of ACS were systemic diseases, while 8% were due to CNS infection. In other studies, the percentages of CNS infection cases have some conflicting results. Majed [6] points to 11% cases of CNS infection among the total cases of ACS, while Warshaw [10] points to only around 1% CNS cases among the total cases of ACS concluding that LP is unnecessary in cases of ACS in elderly unless there are clear classical signs of CNS infection.

Age(years)	Male	Female	Total	Percentage
60–69	11	14	25	50
70–80	6	9	15	30
>80	6	4	10	20
Total	23	27	50	
Percentage	46	54	100	100

Table 1. Age and sex distribution of cases

Causes	Number of Patients Perce	
CNS infection	4	8 %
Systemic infection	25	50 %
Pneumonia	5	
UTI	5	
Typhoid fever	3	
Bedsore	3	
Gastroenteritis	2	
Septicemia	2	
Influenza	2	
Cellulites	2	
Brucellosis	1	
Electrolyte disturbance	10	20 %
Dehydration	7	
Hyopnatremia	2	
Hypocalcemia	1	
Other	4	8 %
Drug; anicholenergic	2	
Heart failure	1	
Liver failure	1	
Unknown causes	7	14 %
Total cases	50	100 %

Table 2. Causes of ACS in elderly patients

The presence of pre-LP systemic disease does not eliminate the need for LP

Table 3. Pre-LP presentation

Presentation	Percentage	Number of patients with positive LP for CNS infection
Patients with apparent systemic disease & with neck stiffness	40%	2
Those without apparent specific disease & no neck stiffness	60%	2

Table 4. CNS infection (meningitis and encephalitis) in patients with and without fever

Presentation of our patients related to fever	Percentage	Number of patients with positive LP for CNS infection
ACS with fever	30%	2
ACS without fever	70%	2

The most difficult cases come from the presence of neck flexion resistance. This is hardly evaluated in elderly especially in those with generalized spasticity. Most commonly this occurs in dehydrated patients and in those with previous history of multiple stroke or Parkinsonism or even merely cervical spondylosis. It is especially common among the older age group of our sample.

Causative organism	Number of patients	Percentage of positive LP	Diagnostic difficulty	
Bacterial <i>S. pneumoniae</i>	2	50%	One patient with initial chest infection Another patient with ACS without fever with normal initial routine	
Viral Herpes	1	25%	investigation Dehydrated patient with mild renal impairment after delayed presentation	
Tuberculosis	1	25%	ACS without fever with normal initial routine investigation	
Total positive LP cases	4	100%	×	

Table 5. Causes of CNS infection	(positive LP) in elderly	patients with ACS
----------------------------------	--------------	--------------	-------------------

In addition to the well-known causes of difficulty in diagnosis in the elderly, our sample included cases of delayed presentation to the hospital, as one of the important causes of vague presentation. Because patients stayed at home, especially in rural areas, waiting for spontaneous improvement, with poor oral intake and without intravenous fluid, and began to deteriorate with dehydration and disturbed consciousness before being brought to the hospital, where we received them with complicating presentations, such as disturbed consciousness, generalized spasticity, and fever. At this point, physicians and neurologists face the problem of waiting for general supportive measures or proceeding with immediate LP. This causes diagnostic difficulty and makes the decision difficult for both medical staff and patients' relatives, with respect to complications versus benefits.

The presence of an apparent disease did not eliminate the need for LP. In our sample, we diagnosed 50% of our CNS infection cases in patients who already presented with apparent specific diseases at initial evaluation. This is very risky result because it may mandate LP for every patient with ACS. This is comparable to of unknown causes, were referred to a central hospital.

Although our sample is not large, but it still can give an idea about the low positive results that the physicians should suspect when performing LP.

Since the causes of such presentation are life threatening diseases, so LP remain the best useful procedure in spite of its low positive D'Amore, who points to 46% of his cases of [13].

The presence of fever does not make a great different in the diagnosis of CNS infection, as appears in our study. This is comparable to Shah, who states that meningitis was present in both with or without fever [14]. He gave higher rates to those without fever, as he pointed out that meningitis occurred in 12%, compared to 7% in those with fever. CNS infection in the elderly is commonly caused by bacterial infection. This is comparable to Delerme [15], and this means that there is more mortality, so there is more urgency to do LP. This was differing from Majed [6] who points to (lymphocytic) meningitis (8.5%), while bacterial meningitis cases were only (2.4%).

Cases of ACS which remain of unknown aetiology represent 14% of the sample and this is comparable to Dheeraj Rai [16] who pointed that in 19.2% of patients (10 patients of 52 patients in his sample) could not find a precipitating cause. Among the cases of unknown causes, five patients (10% of our sample) improved with supportive measures during hospital admission. While the other two patients (4% of our sample)

results, and especially because the negative results is important in excluding serious diseases and this is significant as the positive results.

5. CONCLUSION

This study reveals that positive LP results were low. While some authors see that LP must be done for all patients so as to not miss even a single case, others see that it is unnecessary to subject all patients to LP just to detect a few cases, and argue that doctors should save LP for clear cases. In the absence of consistent results, the decision to perform LP looks more philosophical and subjective than being based on a solid clinical base. But since the causes of such presentation are life threatening diseases, so LP remain the best useful procedure in spite of its low positive results.

6. RECOMMENDATIONS

More studies with larger sample are needed to reach a solid base for LP indications in the elderly that make the selection of the patients more accurate to avoid unnecessary LP.

Geriatrics need attention and people need education about their elderly patients to ensure that elderly patients in need of medical attention are brought to the hospital as early as possible.

CONSENT

All authors declare that 'written informed consent was obtained from the patient (or other approved parties) for publication of this case report and accompanying images.

ETHICAL APPROVAL

All authors hereby declare that all experiments have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Constantine G. Lyketsos, MD, MHS. Diagnosis and management of delirium in the elderly. Case study and commentary: Series Editor: Bryan A. Liang, MD, PhD, JD. Hospital Physician.1999;37-58.
- Sharon E. Mace, MD, FACEP, FAAP. Acute bacterial meningitis. Emerg Med Clin N Am. 2008;38:281–317.
- 3. Chester Choi. Bacterial meningitis in aging adults. Departments of medicine, St. Mary Medical Center, Long Beach, and the UCLA School of Medicine, Los Angeles,

California. Oxford journal, Clin Infect Dis. 2001;33(8):1380-1385.

- Martijn Weisfelt, Diederik Van De Beek, Lodewijk Spanjaard, Johannes B. Reitsma, Jan De Gans. Community-acquired bacterial meningitis in older people. Article first published online: 8th Sep 2006. Journal of the American Geriatrics Society. 2006;54(10):1500–1507.
- 5. Debra Bynum, MD. Meningitis and encephalitis in the older patient. Division of geriatric medicine. University of North Carolina Chapel Hill; 2007.
- Lumbar punctures: Use and diagnostic efficiency in emergency medical departments. Bilal Majed 88. Int J Emerg Med. 2009;2(4):227–235. (Published online 2009 November 19) DOI:10.1007/s12245-009-0128-5. PMCID: PMC2840591.
- Juli A Moran, Michael I Dorevitch. Delirium in the Hospitalised Elderly. Australian Journal of Hospital Pharmacy; 2001.
- Chakravarty KK, Al-Hillawi AH, Scholes C, Durkin CJ. Are we missing atypical bacterial meningitis in the elderly? Department of Geriatric Medicine, Stoke Mandeville Hospital, Aylesbury, UK. Postgraduate Medical Journal (impact factor: 1.94).07/. 1990;66(776):493. (Source: PubMed).
- Lynn EJ, Gower DO, Medley O'Keefe Gatewood, MD, Christopher S. Kang, Emergency Department Management of Delirium in the Elderly. Disclosures. Western J Emerg Med. 2012;13(2):194-201.
- Warshaw G, Tanzer F. The effectiveness of lumbar puncture in the evaluation of delirium and fever in the hospitalized elderly. Source Department of Family Medicine, University of Cincinnati Ohio Medical Center. Arch Fam Med. 1993;2(3):293-7.
- James George, Sheena Bleasdale, Steven J. Singleton. Causes and prognosis of delirium in elderly patients admitted to a district general hospital. Department of Medicine for the Elderly, Cumberland Infirmary, Carlisle, CA2 7HY UK. Age and Ageing.1997;26:423-427.
- James George, Sheena Bleasdale, Steven J. Singleton. Causes and prognosis of delirium in elderly patients admitted to a district general hospital. Age and Ageing. Department of Medicine for the Elderly,

Cumberland Infirmary, Carlisle, CA2 7HY UK. Address correspondence to: J. George. 1997;26:423-427.

- 13. D'Amore J, M. Nelson. Assessing the diagnostic contribution of lumbar puncture in geriatric patients presenting with fever and altered mental status: Does source obviate lumbar puncture? 2004.
- 14. J. D'Amore, M. Nelson. North Shore University Hospital, Manhasset, NY. Annals of emergency medicine. 2004;44(4):S69. Utility of lumbar puncture in the afebrile vs. febrile elderly patient with altered mental status: a pilot study. Shah K, Richard K, Edlow JA. Source. Department of Emergency Medicine, St. Luke's-Roosevelt Hospital, New York, New

York 10025, USA. J Emerg Med. 2007;32(1):15-8.

- Delerme S, Castro S, Viallon A, Boutoille D, Bendahou M, Riou B, Ray P. Meningitis in elderly patients. Source: Departments of Emergency Medicine and Surgery, Centre Hospitalo-Universitaire Pitie-Salpetriere, Assistance-Publique Hopitaux de Paris, UPMC-Paris 6, Paris, France. Eur J Emerg Med. 2009;16(5):273-6.
- Dheeraj Rai, Ravindra Kumar Garg, Hardeep Singh Malhotra, Rajesh Verma, Amita Jain, Sarvada Chandra Tiwari, Maneesh Kumar Singh, Acute confusional state/delirium: An etiological and prognostic evaluation. Annals of Indian Academy of Neurology. 2014;17(1):30-34.

© 2015 Al-Naemee and Al-Mahdawi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/10365