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Abstract

In this paper, we introduce a new approach for the Appell polynomials via the sequential
representation of the delta operator. Moreover, a theorem which gives the necessary condition
for Appell polynomials is proposed. The main objective of this paper is to investigate
the characterization of the delta operator for the Bernoulli, the Hermite and the Genocchi
polynomials. From our investigation, we are able to prove many interesting propositions for the
above mentioned.
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1 Introduction

The use of Special Polynomials in Mathematics is very impressive: they are important
in combinatorics, number theory, numerical analysis, operator theory, stochastic processes etc.
In particular, some properties of Sheffer polynomials namely Bernoulli, Genocchi and Euler are
discussed in [1].

Octavian Agratini [2] derived an identity involving the delta operator and basic polynomial sequence.
G.C.Rota [3] contains a detailed study of delta operator, basic polynomial sequence, Sheffer
polynomials and Appel polynomials. In [4], The delta operator is uniquely fixed by a sequence of
real numbers. A theorem from G.C.Rota which gives the necessary and sufficient conditions for the
basic polynomials related to some delta operator is reconstructed in terms of three new identities in
[5]. A new definition of the inverse operator of any operator which applies a space of differentiable
functions onto itself is proposed in [6].

The aim of the present paper is to propose some results tied to the Appell polynomials corresponding
to the delta operator. The rest of the paper is organized in three sections. The second section
summarizes some known definitions and theorems from G.C.Rota [3]. In this third section, we
obtain two theorems. The first theorem deals with the delta operator when Q is a constant multiple
of the usual derivative D. The second theorem discuss about the sequential representation of the
delta operator. In the fourth section, we proposed a theorem which gives the necessary condition
for Appell polynomials and this theorem is verified by some popular Appell polynomials.

2 Preliminaries

Operational Calculus is a technique used to reduce the differential problems into algebracic problems.
This technique is fully utilized by Oliver Heaviside in 1893. A different approach to Operational
Calculus was developed in 1930 by Jan Mikusinski and a rebirth is given in 1970’s by G.C.Rota. In
this section, we recall terminology, notation, some basic definitions and results of the finite operator
calculus, as it has been introduced by G.C. Rota. The proofs of several results are skipped. But
they are easily read from the reference G.C.Rota [3].

Let F be a Field of characteristic zero, preferably the real number field. Let p(x) be a polynomial
in one variable defined over F . A sequence of polynomials is {pn(x)/n ∈ Z+ ∪ {0}}, where pn(x) is
exactly of degree n.

Definition 1.

(a). An operator Ea is said to be a shift operator if Eap(x) = p(x+ a), for all polynomials p(x)
in one variable defined over the field F and a ∈ F .

(b). A linear operator T which commutes with all shift operators is called a shift invariant.
In symbols, TEa = EaT, ∀a ∈ F .

(c). A delta operator usually denoted by the letter Q, is a shift-invariant operator for which Qx
is a non zero constant.

Thus every delta operator Q is shift invariant. But a shift invariant operator need not be a delta
operator.

Theorem 1.

(a). If Q is a delta operator, then Qa = 0 for every constant ′a′.

(b). If p(x) is a polynomial of degree n, then Qp(x) is a polynomial of degree n− 1.
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The delta operators possesses many of the properties of the usual derivative D. The above theorems
(a) and (b) in Theorem (1) are good examples.

Definition 2.
Let Q be a delta operator, A polynomial sequence pn(x) is called the sequence of basic polynomials
for Q if :
i). p0(x) = 1 ii). pn(0) = 0, whenever n > 0 iii). Qpn(x) = npn−1(x)

The basic polynomials are a large class of polynomial sequences that include the Monomials {xn;n =
0, 1, 2, · · · }, the sequences of Lower factorials [x]n, Upper factorials [x]n, the Abel polynomials and
many others.

Theorem 2.
Every delta operator has a unique sequence of basic polynomials.

Definition 3.
A polynomial sequence sn(x) is called a Sheffer set or a set of Sheffer polynomials for the delta
operator Q if

1. s0(x) = c ̸= 0,

2. Qsn(x) = nsn−1(x)

Sheffer polynomials are a set of polynomial sequences that include Abel polynomials, Laguerre
polynomials, Meixner polynomials, Poisson-Charlier polynomials, Bell polynomials and many others.

Definition 4.
A sequence of polynomials pn(x), n = 0, 1, 2, · · · of exact degree n is called an Appell sequence
with respect to the derivative D if

1. p0(x) = c ̸= 0,

2. d
dx

pn(x) = npn−1

The generating function of the Appell polynomials of the form

p(t) ext =
∞∑

n=0

pn(x)
tn

n!

Where p(t) has expansion

p(t) =
∞∑

n=0

pn
tn

n!
(p0 ̸= 0)

Some known Appell polynomials are the Bernoulli polynomials, the Hermite polynomials, the
Genocchi polynomials, Gold-Hopper polynomials and many others.

For some sequence {cn}, n = 0, 1, 2, · · · , of scalars with c0 ̸= 0,

pn(x) = (
¯

∞∑
k=0

ck
k!

Dk)
¯
xn, where D =

d

dx

Also, for n = 0, 1, 2, · · · ,

pn(x+ y) =

n∑
k=0

(
n

k

)
pk(x) pn−k(y)

The second condition in Definition (3) is the essential one for analysing the delta operator for
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Sheffer set. If Q is replaced by the usual derivative D, then it becomes an Appell polynomials. The
fourth section is a detailed study of the sequences of Appell polynomials and their characterization
of delta operators. Now we attempt to formulate this delta operator Q in terms of a sequence of
real numbers in the next section.

3 Sequential Representation of Delta Operator Q

According to G.C.Rota[3], Delta operator Q possesses many of the properties of usual derivative
operator D. Generally usual derivative D is a delta operator. But the converse is not true.

Suppose if we define the delta operator by Q(xn) = xn−1, n ∈ Z+∪{0}, then EaQ(xn) ̸= QEa(xn).
It means that Q is not shift invariant. Hence we conclude that Q(xn) = xn−1, n ∈ Z+ ∪ {0} will
not be a delta operator.

By Theorem 1(b), if we Take Q(xn) = An xn−1 where An is a real constant , then it leads to
the following theorem

Theorem 3.
If Q is a delta operator and Q(xn) = An xn−1 , where An is a real constant , n ∈ Z+ , then
Q = kD where k is a real constant and D is the usual derivative.

Proof :
Since Q is Shift invariant we have

EaQ(xn) = QEa(xn) (3.1)

Putting Q(xn) = An xn−1 in left hand side

Ea Q(xn) = Ea (An xn−1) = An Ea xn−1 = An (x+ a)n−1

= An [xn−1 +

(
n− 1

1

)
xn−2a+

(
n− 1

2

)
xn−3a2 + · · ·+ an−1]

Therefore,

Ea Q(xn) = An xn−1 +An

(
n− 1

1

)
xn−2a+An

(
n− 1

2

)
xn−3a2 + · · ·+Ana

n−1 (3.2)

and also,

QEa(xn) = Q(x+ a)n

= Q[(xn +

(
n

1

)
xn−1a+

(
n

2

)
xn−2a2 + · · ·+ an]

= Q(xn) + a

(
n

1

)
Q(xn−1) + a2

(
n

2

)
Q(xn−2) + · · ·+ an−1Q(x) +Q(an)

Since Q(xn) = An xn−1 and Q(an) = 0, the right hand side of Equation (3.1) becomes

QEa(xn) = An xn−1 + a

(
n

1

)
An−1 xn−2 + a2

(
n

2

)
An−2 xn−3 + · · ·+ an−1A1 (3.3)

Equating the corresponding terms from equations (3.2) and (3.3), we get

An

(
n− 1

r

)
=

(
n

r

)
An−r, r = 1, 2, 3, · · ·n
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and hence An = nA1.

Therefore,
Q(xn) = nA1 xn−1

By taking A1 = k , a real constant , we get

Q(xn) = k n xn−1

That is,
Q = kD �

From the above Theorem (3), we observe that the delta operator reduces to a constant multiple of
usual derivative D. Now we attempt to formulate Q(xn) in terms of a sequence of real numbers.
By Theorem (1), we obtain the following Theorem.

Theorem 4.
For the monomials {xn : n ∈ Z+ ∪ {0}}, and αr an arbitary real numbers,

Q(xn) =

n∑
r=1

(
n

r

)
αr xn−r. (3.4)

Proof .
Taking Q(x) = α1 ̸= 0 and construct Q(x2) = c0 x + c1. Since Q is shift invariant, we have
EaQ(x2) = QEa(x2). Solving we get c0 = 2α1 and c1 is a new independent constant which may be
taken as α2. Hence Q(x2) = 2α1x+ α2. Thus the theorem is true for n = 1 and 2.

Let us assume that the result is true for n = k.

Therefore ,

Q(xk) =

k∑
r=1

(
k

r

)
αr xk−r =

(
k

1

)
α1 xk−1 +

(
k

2

)
α2 xk−2 + · · ·+

(
k

r

)
αr xk−r + · · ·+αk (3.5)

Since {xn} is a basic polynomial sequence, it satisfies Qpn(x) = npn−1(x) and hence we have,

Q(xk) = k xk−1 (3.6)

From Equation (3.6), we see that the delta operator Q is a usual derivative D.

From Equations (3.5) and (3.6) ,(
k

1

)
α1 xk−1 +

(
k

2

)
α2 xk−2 + · · ·+

(
k

r

)
αr xk−r + · · ·+ αk = k xk−1 (3.7)

By comparing the corresponding terms, we have α1 = 1 and αj = 0, j = 2, 3, · · · k

Therefore, the result is true for n = k means that

α1 = 1 and αj = 0 (j = 2, 3, · · · k) (3.8)

Now we have to show that this result is true for n = k + 1

Q(xk+1) = Q(xk x) = Q(xk) x+Q(x) xk = (k + 1) xk

Thus we have
Q(xk+1) = (k + 1) xk (3.9)
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On other hand, using the property that Qpn(x) = n pn−1(x) , we have

Q(xk+1) = (k + 1) pk(x) = (k + 1) xk (3.10)

From the Equations (3.9) and (3.10), we conclude that the result is true for all n = k + 1

Thus we proved the Theorem 4. �

Here, Q(xn) has n independent parameters, αi, (i = 1, 2, 3 . . . n). These parameters are unique.
Hence we conclude that any delta operator may be fixed uniquely by Equation (3.4). To study the
delta operator, we need analyse only this sequential representation in Equation (3.4).

Table 1. First few polynomials Q(xn), for each degree n

n Q(xn)

1 1α1

2 2 α1 x+ 1α2

3 3 α1 x2 + 3 α2 x+ 1α3

4 4 α1 x3 + 6 α2 x2 + 4 α3 x+ 1α4

5 5 α1 x4 + 10 α2 x3 + 10 α3 x2 + 5 α4 x+ 1α5

6 6 α1 x5 + 15 α2 x4 + 20 α3 x3 + 15 α4 x2 + 6 α5 x+ 1α6

7 7 α1 x6 + 21 α2 x5 + 35 α3 x4 + 35 α4 x3 + 21 α5 x2 + 7 α6 x5 + 1α7

Equation (3.4) in Theorem (4) is important in deriving many results for Sheffer as well as Appell
set. The characterization of the delta operator is uniquely determined by the values of α′

is (i =
1, 2, 3 · · ·n). In the next section, we study more about the delta operator in particular, the
characterization of a delta operator which corresponds to a given Appell polynomials.

4 Appell Polynomials and Their Delta Operators

A new definition of Appell polynomials in [7], the generating function for two variable general Appel
polynomials in [8] and the differential equations for Appel polynomials through the factorization
metnod in [9] are effective study of characterization of the Appel polynomials. Several class of Appel-
type polynomials which generalize the bernoulli and Euler are discussed in [10]. In this section, we
obtain a theorem connecting the sequence of Appell polynomials for some delta operator. From the
definitions (3) and (4), we see that an Appell sequence of polynomials is a Sheffer sequence for the
delta operatorD. Moreover, Every Appell sequence is a Sheffer sequence, but most Sheffer sequences
are not Appell sequences. According to Rota [3], Appell polynomials are Sheffer polynomials relative
to D.

Given a set of polynomials pn(x), with p0(x) is a non zero constant, under what conditions are
they Appell polynomials ? A simple answer is given by

Theorem 5
If pn(x) is an Appell sequence for some delta operator Q, then the characterization of delta operator
being : α1 = 1 and αr = 0 for all r ≥ 2.

Proof:
Let pn(x) be a sequence of Appell polynomials.
By the sequential representation of delta operator Q in Equation (3.4), we see that

Q(xn) =

n∑
r=1

(
n

r

)
αr xn−r.
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The above equation can be written as

Q(xn) =

n∑
r=1

1

r!
αr Dr xn.

That is ,

Q ≡
n∑

r=1

1

r!
αr Dr. (4.1)

For simplicity, we write pn instead of pn(x) and p
(r)
n instead of Drpn(x)

Q(pn) =

n∑
r=1

1

r!
αr p(r)n . (4.2)

Since pn(x) is an Appell sequence, we have

Qpn = Dpn = npn−1 (4.3)

Hence from the equations (4.2) and (4.3),

n∑
r=1

1

r!
αr p(r)n = npn−1

That is,

1

1!
α1 D(pn) +

1

2!
α2 D2(pn) +

1

3!
α3 D3(pn) + · · ·+ 1

n!
αn Dn(pn) = npn−1

By equation (4.3),

α1 npn−1 +
1

2!
α2 D2(pn) +

1

3!
α3 D3(pn) + · · ·+ 1

n!
αn Dn(pn) = npn−1

By equating the corresponding terms, we get

α1 = 1 and αr = 0 for all r ≥ 2

Thus we proved the theorem (5) �

The above theorem (5) gives a method to chart out the sequence of Appell polynomials and to
find the corresponding delta operator. Here, by keeping the length of the present paper within
bounds, we have choosen the following three Appell polynomials to verify the Theorem (5).

(i). The Bernoulli Polynomials

The generating function for the Bernoulli polynomials is

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!

The nth Bernoulli polynomial Bn(x) is defined as follows :

Bn(x) =

n∑
k=0

(
n

k

)
Bk xn−k,

for n ≥ 0 and Bk, (k = 0, 1, 2, · · · ) are the Bernoulli numbers.
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Multiplying both sides by et − 1, we get

t[1 + tx+
t2x2

2!
+ · · · ] = [t+

t2

2!
+ · · · ][B0(x) + tB1(x) +

t2

2!
B2(x) + · · · ]

Equating coefficients of various powers of t, we obtain

B0(x) = 1
B1(x) = x− 1

2

B2(x) = x2 − x+ 1
6

B3(x) = x3 − 3
2
x2 + 1

2
x

B4(x) = x4 − 2x3 + x2 − 1
30

B5(x) = x5 − 5
2
x4 + 5

3
x3 − 1

6
x and so on

Fig 1. Bernoulli polynomials

For n = 1,
QBn = nBn−1 becomes QB1 = 1B0

From Table 1, we get QB1 = α1 and 1B0 = 1
Thus we get

α1 = 1

For n = 2,
QBn = nBn−1 becomes QB2 = 2B1

By Table 1, we get QB2 = 2α1x+ α2 − α1

and also 2B1 = 2x− 1
Equating the corresponding terms, we get

α1 = 1 & α2 = 0

For n = 3,
QBn = nBn−1 becomes QB3 = 3B2

From Table 1, we get QB3 = 3α1x
2 + 3α2x− 3α1x+ α3 − 3

2
α2 +

1
2
α1

And also 3B2 = 3x2 − 3x+ 1
2

Equating the corresponding terms, we get

α1 = 1, α2 = 0 & α3 = 0

8
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Similarly proceeding as above ,

α1 = 1 and α2 = α3 = · · · = αn = 0

Thus the characterization of the delta operator for Bernoulli polynomials being α1 = 1, and αr = 0
for all r ≥ 2.
Thus the following Proposition holds.

Proposition 1.

For the Bernoulli polynomials Bn(x) =
n∑

k=0

(
n
k

)
Bk xn−k , the characterization of the delta operator

being α1 = 1, and αr = 0 for all r ≥ 2. �

(ii). The Hermite Polynomials
The (probabilists) Hermite polynomials are given by

Hen(x) = (−1)n e
x2

2
dn

dxn
e

−x2

2 .

The Hermite polynomials constitude an Appell sequence, i.e., they are a polynomial sequence
satisfying the following identity

d

dx
Hen(x) = n Hen−1(x)

The first few Hermite polynomials are :

He0(x) = 1
He1(x) = x

He2(x) = x2 − 1
He3(x) = x3 − 3x

He4(x) = x4 − 6x2 + 3
He5(x) = x5 − 10x3 + 15x

Fig 2. Hermite polynomials

For n = 1,

QHen = nHen−1 becomes QHe1 = 1He0
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From Table 1,
QHe1 = α1 and 1He0 = 1 ⇒ α1 = 1

For n = 2,
QHen = nHen−1 becomes QHe2 = 2He1

By Table 1,
QHe2 = 2α1x+ α2 and 2He1 = 2x ⇒ α1 = 1 and α2 = 0

For n = 3,
QHen = nHen−1 becomes QHe3 = 3He2

From Table 1,
QHe3 = (3α1)x

2 + (3α2)x+ α3 − 3α1 and 3He2 = 3x2 − 3

Equating the corresponding terms, we get

α1 = 1 , α2 = 0 and α3 = 0

By similar procedure, we get

α1 = 1 and αr = 0 for all r ≥ 2

Hence the characterization of the delta operator for Hermite polynomials being α1 = 1, and αr = 0
for all r ≥ 2.

Thus we obtain the following Proposition.

Proposition 1. For the Hermit’s polynomial Hen(x) = (−1)n e
x2

2 dn

dxn e
−x2

2 . the characterization
of delta operator being α1 = 1, and αr = 0 for all r ≥ 2. �

(iii). The Genocchi Polynomials
The Genocchi numbers are a sequence of integer that are defined by the exponential generating
function :

2t

et + 1
= eGt =

∞∑
n=0

Gn
tn

n!
(|t| < ϕ)

When we multiply with ext in the left hand side , then we have

∞∑
n=0

Gn(x)
tn

n!
=

2t

et + 1
ext, (|t| < ϕ)

Here, Gn(x) are called Genocchi polynomials. (see [11])

We now list a few Genocchi polynomials as follows :

G1(x) = 1
G2(x) = 2x− 1
G3(x) = 3x2 − 3x
G4(x) = 4x3 − 6x2 − 1

Since G1(x) is a constant value 1, let us start from n = 2
For n = 2,

QGn = nGn−1 becomes QG2 = 2G1

By Table 1,
QG2 = 2α1x and 2G1 = 2 ⇒ α1 = 1

10



Maheswaran and Elango; BJMCS, 18(4), 1-12, 2016; Article no.BJMCS.28442

Fig 3. Genocchi polynomials

For n = 3,
QGn = nGn−1 becomes QG3 = 3G2

From Table 1,
QG3 = 6α1x+ 3α2 − 3α1 and 3G2 = 6x− 3

Equating the corresponding terms, we get

α1 = 1 , and α2 = 0

For n = 4,
QGn = nGn−1 becomes QG4 = 4G3

QG4 = 12α1x
2 + (12α2 − 12α1)x+ 4α3 − 6α2 and 4G3 = 12x2 − 12x

Equating the corresponding terms, we get

α1 = 1, α2 = 0 and α3 = 0

By similar procedure, we get

α1 = 1 and αr = 0 for all r ≥ 2

Hence the characterization of the delta operator for Genocchi polynomials being α1 = 1, and
αr = 0 for all r ≥ 2.

Thus we obtain the following Proposition.

Proposition 3. For the Genocchi polynomial Gn(x), the characterization of delta operator being
α1 = 1, and αr = 0 for all r ≥ 2. �

From above three examples, we observe that the characterization of delta operator for Appell
polynomials being α1 = 1, and αr = 0 for all r ≥ 2 and hence the theorem (5) is verified.

5 Conclusions and Further Work

The properties of q-delta operator for q-basic polynomial sequence is discussed and analyzed in
[12]. It is envisaged that the investigation of the characterization of q-delta operator for q- Appell
polynomials may be developed in future.

11



Maheswaran and Elango; BJMCS, 18(4), 1-12, 2016; Article no.BJMCS.28442

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Dattoli G, Migliorati M, Srivastava HM. Sheffer polynomials,monomality principle, algebraic
methods and the theory of classical polynomials. Mathematical and Computer Modelling.
2007;45(9-10):1033-1041.

[2] Octavian Agratini. Binomial polynomials and their application in approximation theory.
Conferenza tenuta il, Babes-Bolyai University, Romania; 2000.

[3] Rota GC. Finite Operator Calculus, Academic Press, London; 1975.

[4] Maheswaran A, Elango C. Sequential representation of delta operator in finite operator
calculus. British Journal of Mathematics and Computer Science. 2016;14(2):1-11.

[5] Maheswaran A, Elango C. On new identities for basic polynomial sequences in finite operator
calculus. British Journal of Mathematics and Computer Science. 2016;16(3):1-11.

[6] Do Tan Si. Differential calculus for differential equations, special functions, laplace transform.
Canadian Center of Science and Education, Applied Physics. 2016;8:1.

[7] Costabile FA, Longo E. A determinantal approach to Appell polynomials. Journal
Computational and Applied Mathematics. 2010;234:1528-1542.

[8] Subuhi Khan, Nusrat Raza. General-Appell polynomials with in context of monomiality
principle. International Journal of Analysis. 2013;2013, Article ID 328032.

[9] He MX, Ricci PE. Differential equation of Appell polynomials via the factorization method.
Journal of Computational and Applied Mathematics. 2002;139:231-237.

[10] Piergiulio Tempesta. On Appell sequences of polynomials of Bernoulli and Euler type.
J.Math.Anal.Appl. 2008;341:1295-1310.

[11] Serkan Araci, Mehmet Acikgoz, Erdogan. Some new formulae for genocchi numbers and
polynomials involving bernoulli and euler polynomials. International Journal of Mathematics
and Mathematical Sciences. Volume 2014(2014), Article ID 760613, 7 pages.

[12] Maheswaran A. Extension of finite operator calculus to q-Monodiffric theory , M. Phil
Dissertation, Bharathiyar University. Coimbatore, Tamil Nadu, India; 1988.

——————————————————————————————————————————————–
c⃝2016 Maheswaran and Elango; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://sciencedomain.org/review-history/16059

12

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Sequential Representation of Delta Operator Q
	Appell Polynomials and Their Delta Operators
	Conclusions and Further Work

