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Abstract

In this paper, we present a numerical based approach to develop an analytical solution of an
isothermal melt spinning process modeled by a system of coupled non-linear ordinary differential
equations. The obtained analytical solution is then compared with the numerical solution.
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1 Introduction

At industrial scales, melt spinning is the most economical and convenient method for polymer fiber
manufacturing. In the process of melt spinning, molten polymer is thrust out of the spinneret to
form thin, cylindrical fibers. The drum placed at a distance from the spinneret is used to collect
the fibers at a set take-up speed vL. The take-up speed is considerably higher than extruding speed
v0 so that the fiber filament considerably becomes stretched in length and decreases its diameter
between the take up point and the spinneret (die). The process is shown in the Fig. 1. The fiber
is cooled between spinneret and take-up point such that it becomes solid at the take up point.

Fig. 1. Melt Spinning Process [2]

There are different mathematical models with different level of demands available in the literature
that describe the process of melt spinning, e.g. see [1]-[6], [15]-[17]. In these research articles, the
melt-spinning process has been considered for draw resonance and stability analysis. In [1], [2], [6]
numerical solution of mathematical model describing the melt spinning process has been determined
and used for stability analysis of the process and for optimizing the melt spinning processes.
However, analytical solution of the said model has not been determined in any of these research
articles.

In recent years, many mathematical models describing important physical and real world problems
have been considered for obtaining some new properties such as solutions, physical meanings etc.(for
example see [4], [7]-[14]). Thus, the concept of finding accurate numerical as well as analyitcal
solutions of real world problems has attracted attention from all over the world.

In this article, we consider a steady-state model of an isothermal melt spinning process that consists
of coupled non-linear ordinary differential equations of first and second order [2], [6] and present an
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approach to find an analytical solution of the model.

With the specified initial and boundary conditions associated with the mathematical models given
in [2], [6], [16], it is not possible to determine an analytical solution of the model. The difficulty
lies in finding the constants of integrations that appears in the general solution. To overcome
this difficulty, we use a numerical approach called shooting method to convert the boundary value
problem into a set of initial value problems (Detailed procedure of conversion is given in subsection
2.2). Once the model has been converted into a system of initial value problems, we use an existing
integrating technique to determine the analytical solution.

The structure of the paper is as follows: In section 2, we give a brief description of the mathematical
model of the isothermal melt spinning process. In section 3, the approach is presented and applied
to find analytical solution of melt spinning process. The analytical and numerical solutions are
compared through their graphs in section 4. Section 5 is devoted for conclusion.

2 Isothermal Melt Spinning Model

In the process of melt spinning, molten polymer is thrust out of the spinneret to form thin, cylindrical
fibers. The drum placed at a distance from the spinneret is used to collect the fibers at a set take
up speed. The take up speed is considerably higher than the extruding speed. The process is shown
in the Fig. 1.

There are different mathematical models available in the literature that describe the process of
melt spinning, e.g. see [2] and [6]. Here we consider a mathematical model for an isothermal melt
spinning process [2] given as

∂A

∂t
+

∂

∂x
(Av) = 0, (2.1a)

∂v

∂t
+ v

∂v

∂x
− ρ−1 1

A

∂

∂x
(Aω) = 0, (2.1b)

along with the initial and boundary conditions:

A(x = 0, t) = A0, v(x = 0, t) = v0, v(x = L, t) = vL, for all t ≥ 0, (2.1c)

where L is the length of the spinline, t represents time and x denotes the coordinate along the
spinline. System (2.1) gives us the velocity v and the cross-sectional area A of the fiber. The
polymer density ρ is considered to be constant for isothermal process.

The constitutive model (2.1) needs a relation [2]

ω = 3η
dv

dx
, (2.2)

where ω is the axial stress and η is viscosity of melt polymer.

2.1 Dimensionless form

The dimensionless form of model (2.1) is obtained by introducing the following dimensionless scales

t̃ =
tv0
L

, ṽ =
v

v0
, x̃ =

x

L
, Ã =

A

A0
, ω̃ =

ωL

ηv0
,
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into the model equations. The resulting dimensionless model equations are then given as

∂A

∂t
+

∂

∂x
(Av) = 0, (2.3a)

∂v

∂t
+ v

∂v

∂x
− 3

Re

1

A

∂

∂x

(
A
∂v

∂x

)
= 0, (2.3b)

with the conditions

A(x = 0, t) = 1, v(x = 0, t) = 1, v(x = 1, t) = d, for all t ≥ 0, (2.3c)

where we have removed the tilde notation for sake of simplicity, Re =
ρLv0
η

is the dimensionless

parameter known as Reynolds number and d =
vL
v0

> 1 denotes the draw ratio, an operating

parameter of the melt spinning process. For the isothermal Newtonian flow of the melt spinning,
the viscosity η of the melt polymer remains constant throughout the process and is considered as
1.

The steady state form of the model (2.3) is represented by a system of coupled nonlinear ordinary
differential equations

d

dx
(Av) = 0, (2.4a)

−v
dv

dx
+

3

Re

1

A

d

dx

(
A
dv

dx

)
= 0, (2.4b)

along with the conditions

A(x = 0) = 1, v(x = 0) = 1, v(x = 1) = d. (2.4c)

The system (2.4) represent a steady state form of an iso-thermal melt spinning process. We are
interested to develop an analytical solution of this system.

2.2 Shooting method

We can solve boundary value problems analytically by different methods available in literature.
The solution given by these methods contains constants of integration that can be easily found by
using boundary conditions. However, there exist some problems (e.g problem (2.4)) where we are
unable to find constants of integration with the given boundary conditions (see [2], [16]). In such a
case, we may take help of a numerical method that transforms the boundary value problem into an
initial value problem. Shooting method is the numerical technique, used to transform a boundary
value problem of the type

d2y

dx2
= f(x, y,

dy

dx
) y(a) = α, y(b) = β,

into an initial value problem

d2y

dx2
= f(x, y,

dy

dx
) y(a) = α,

dy

dx
(a) = w, (2.5)

where the number w is simply a guess and sometimes it is called an integrator. We apply one of the
step-by-step numerical techniques like Euler’s method or the MATLAB ODE solver ode45 (based
on Runge-Kutta method) to the second order differential equation (2.5) to find an approximation
wi for the value of y(b). Let the first guess w1 be assumed as

w1 =
dy

dz
(a) ≈ y(b)− y(a)

b− a
.
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Let us consider N segments between the two boundaries z = a and z = b and define the step size

h =
b− a

N
. We use Euler’s method with w1 to find an approximation β1 for y(b). If β1 agrees with

the given value y(b) to some pre-assigned tolerance, we stop, otherwise consider another guess w2

defined as

w2 = 2w1,

to obtain a second approximation β2 for y(b). If β2 agrees with the value y(b) to pre-assigned
tolerance, we stop. If it does not agree, we use the secant approach to make further guesses using
the formula

wi+1 =
dy

dz
(a) ≈ wi − e(wi)

(
wi−1 − wi

e(wi−1)− e(wi)

)
, i = 2, 3, . . . (2.6)

where

e(wj) = βj − y(b), j = 1, 2, . . .

be the error in the result of the shooting method.

Repeating the Euler’s method with w3 to obtain an approximation β3 for y(b). If β3 agrees with
the given value, we stop; otherwise, make a new guess w4 using (2.6) to obtain an approximation β4

for y(b). This method can be continued in a trial and error manner until βi agrees with the value
y(b) to pre-assigned tolerance.

Once we able to find a most suitable guess w, we can find an analytical solution of initial value
problem of type given in (2.5).

3 Analytical Solution

To find an analytical solution of the steady state model (2.4), we proceed as follows:

By using (2.4c), solution of the continuity equation (2.4a) in terms of state variable v is given as

A =
1

v
, v > 0, (3.1)

where A and v are functions of x ∈ Ω. This solution shows a constant flow rate of the melt polymer.

Now, the equation (2.4b) can be put into the form

d2v

dx2
=

Re

3
v
dv

dx
+

1

v
(
dv

dx
)2. (3.2a)

This is a non-linear ordinary differential equation along with the conditions

v(x = 0) = 1, v(x = 1) = vd. (3.2b)

We transform the boundary value problem (3.2) into two initial value problems by setting

dv

dx
=

1

3
ω, (3.3)

and hence

d2v

dx2
=

1

9
ω
dω

dv
.
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The initial value problem corresponding to the boundary value problem (3.2) is then defined as

dv

dx
=

1

3
ω, (3.4a)

dω

dv
− 1

v
ω = Rev, (3.4b)

with the conditions

v(x = 0) = 1, ω(x = 0) = ω0, (3.4c)

where ω0 is an approximated value guessed by shooting the value of v at 1 i.e. v(1) = vd. (The
procedure to obtain this approximation by shooting method has been explained in section 2).

Equation (3.4b) is integrated to get

ω = Re v2 + C1v, (3.5)

where C1 is a constant of integration, still to be determined.

Using (3.3), the solution (3.5) is put in the form

3
dv

dx
= Re v2 + C1v. (3.6)

Separating variables and then integrating, we have∫
1

Re

3
v2 +

1

3
C1v

dv = x+ C2,

where C2 is another constant of integration.

Solving the left hand integral, we reach at

3

C1
ln

∣∣∣∣∣∣∣
v

v +
1

Re
C1

∣∣∣∣∣∣∣ = x+ C2. (3.7)

From equations (2.2), (2.4c) and (3.6), we get value of C1 in the from

C1 = ω(0)−Re, (3.8)

where ω(0) is the numerical value guessed by shooting the boundary v(x = 1) = d and Re =
ρLv0
η

is the Reynold’s number whose value is obtained using values given in Table 1.

In view of (2.4c), the equation (3.7) gives us the numerical value of C2, i.e.

C2 = − 3

C1
ln

∣∣∣∣1 + 1

Re
C1

∣∣∣∣ . (3.9)

Equation (3.7) yields us

v =

C1exp

[
1

3
(C1x+ C1C2)

]
Re

[
1− exp

(
1

3
(C1x+ C1C2)

)] , (3.10)

where v is the analytical form of steady state solution of the melt spinning model (2.4) along with C1

and C2 given in (3.8)-(3.9). Thus, the solutions A, obtained using (3.1), and v together constitute
the analytical solution of the steady state model (2.4). Both of the solutions are plotted in the Fig.
2.
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4 Comparison with Numerical Solution

To obtain the numerical solution of the steady-state model (2.4), we follow the strategy explained
in section 2. The values of the parameters appearing in the steady state model equations (2.4)
are given in the Table 1. Fig. 2 shows the numerical as well as the analytical solutions of the
steady-state model (2.4) for velocity v and cross-sectional area A of the fiber along the spinline.
We can observe that both of the solutions are overlapping each-other. The errors between the
numerical and the analytical solutions for velocity v and cross-sectional area A, as shown in Fig. 3,
are multiple of 10−7 and 10−5 respectively, which are negligibly small.
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Fig. 2. Steady-state analytical and numerical solutions for velocity v and
cross-sectional area A with h = 0.01
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Fig. 3. Errors between analytical and numerical Steady-state solutions for velocity v
and cross-sectional area A with h = 0.01
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Table 1. Summary of parameteric values appearing in the steady state model (2.4)

Parameter Symbol Approximate Value Units

Density of the polymer ρ 0.001 kg/m3

Feeding speed v0 10 m/s
Take up speed vL 50 m/s
Length of the spinline L 1 m
Viscosity of the polymer η 1 kg/ms

5 Conclusions

In this work we have used a numerical approach to find analytical solution of a boundary value
problem where one cannot find constants of integrations with the given boundary conditions. The
approach is to convert a boundary value problem into initial value problems and then to develop
the analytical solution of the resulting problems with the usual methods. To explain the approach,
we have developed an analytical solution of a steady-state model of an isothermal melt spinning
process with the help of shooting method. The obtained analytical solutions are also plotted and
compared with the numerical solution for error analysis.
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