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Abstract

In this paper we use Darboux’s theory to set up a second padéal differential equation. Later, we will
use the variable transformation method to rotate the Byi®2.875623% degree in order to remove the
interaction terms, which will allow us to find the geodesjuation of two parameter's extreme value
distribution. We also list and prove some useful momentthisf distribution. Finally, we apply six
transformations that relate this extreme value digfioin to other well known distributions, which will
extend the value of the results.
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1 Introduction

Extreme value distribution theory originated to ass&tomomers in evaluating the validity of outlying
observations. However, this distribution has also found a yawétapplications related to natural
phenomena such as rainfall, floods, wind gusts, air pollutioncar@dsion. The early papers by Fuller [1]
and Griffith [2] on the subject were highly specializbdth in the fields of application and in the methods of
mathematical analysis. This area of research thus tettragtially the interests of theoretical probabilists as
well as engineers and hydrologists, and only recently ofmi@stream statisticians. Historically work on
extreme value length problems may be dated back to lysasat 709 when Nicolas Bernoulli discussed the
mean largest distance from the origin when n points liaredom on a straight line of length t. (see Gumbel
[3]) The most detailed bibliography that contains morentB&0 references about this distribution can be
found in Johnson, N.L., Kotz, S. and Balakrishnan N [4].

In this paper we focus on the geodesic equation aspetieoéxtreme value distribution theory. We use
Darboux’s theory to set up a second order partial differeatightion. Later, we introduce a two variable
chain rule method to rotate the main axiy;, 22.875623% degree, to remove the interaction terms. In

this way, we can use the separable variable method tothadveecond order partial differential equation. In
section 5 we list and prove some related moments. Finallygiveesix transformations which transform

standard exponential distribution to some well known distributioasextend our results.

2 List the Fundamental Tensor

The standard form of the two-parameter extreme valueibdisbn has the cumulative function and the
probability density function given by,

X-u

F(x,u,v)=e* " ; (2.1)
f(x, u,v) SO Laevgy =1exp(—e_T S X4, (2.2)
oX Vv % Y
X-U
X—u

In f(x)=-Inv-e vV ———;
%
whereu,vare parameters -0 < x<o, -co<u<oo, v>0.

From the equation (2.1) and (2.2) above, we derive the basic remsor components for this distribution
as follows,

2
E= _E(L;(X)) =1 (2.3)
ou v
2
F:_E(a |nf(X)):_(l;y)’ (24)
ovou \Y;
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2 2
9 In;(X)) @« (2.5)
ov v

EG—FZ:V—:E((l )+ﬁ) a- V)Z

E(

6v4’ (2.6)

Equation (2.3), (2.4), (2.5) and (2.6) will be used to setheppartial differential equation (3.1) in the next
section.

azlnf(x)_azlnf(x)_—l 1% x-u X

vou | owv Vv ve @ o 2.7)
0°In f(x X — u2 XU o) XY o(x—u

aV() [( ) _(Te\/]_ (V3 ); 2.8)

Equation (2.7) and (2.8) used to define F and G.

In section IV, we will give more detail on how we find the esgation of these second partial derivatives.

3 The Geodesic Equation

In this section, we will find the geodesic equation of ¢ireme value distribution by solving one partial
differential equation. This idea originated from Darbouxisary. Chen W. [5,6,7,8] has applied similar
method in his previous paper to find the geodesic equationvefse Gaussian and some other useful
distribution. There are some other related useful refesefar example Kass RE, Vos PW [9], Struik DJ
[10], and Grey A. [11]. To avoid confusion, we will only indés$e formulas that will use later and ignore

the others. Base on result of section 2, we can easilpdd Z =1 as follows,

EZZ -2FZ,2,+GZi _

EG-F?
1., 21-y) 2 T, _ T,
—Z Z,Z, + 1- Z5 = ;
P20+ La-pr+ )u i
2
25+2(1—y>zuzv+((1-y)2+?)23: 6’3 (3.1)

where y = 0.57721566 49 known as Euler constant,

2
L-y)2+ % = 1.823680661

To solve the partial differential equation (3.1) above, we @oohsider the polar coordinate transformation.
Let u=rcosd, v =rsind, We should keep in mind that Z is a function (u,v) whilehbLv) are also
function of (r,8). In calculus we learn that the chain rule will give usftiiewing results.

0Z 0u 0Z ov

Z,=——+——=Z,c080+Z,sind,
ou or Qv or

Zg= _0Z 0u ‘Lzﬁ_z 4(~rsin@)+Z,rcosb, (3.2)
ou 08 ovod
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Using Cramer Rule in equation (3.2), we can solve reversélyZ,, andZV as a function of
Z, and Z, as follows:

Z, sind
Zy rco _rcosézZ, —sinéZy _
cosd Sin:’g‘ rcos @+rsin’ 6

u

CoSstZ, —}sinﬁzg
r

-rsin@d rco
coy Z,
-rsind Z +rsi .
.= 0 _ CotZg rS'_nng:smHZﬁ}cosHZQ (3.3)
cosd  sind| rcofB+rsintd r
-rsind rco

Substitute (3.3) into (3.1), we get

(sind Z, +?1cosé? Zg )2 +2(1-y)(sind Z, +?1coa9 Zg)(cosBZ, —Flsine Zg)

+((1-y)? +i)(cos€Zr _}SinHZg )2 = i (3.4)
6 r 6v2
Calculate the coefficient of , Z,
.2
%sinﬁcos&% 2A1-y)(- S'r; i Cofz 9y _(1-y)2 +§)§sin0cos& -0

sin20+ 2(1- y)cos26 - 1.82368066%in26 = 0
0.8455686 —0.82368066 tan26 =0
_ 0.84556867_

tan2d=——————=1.026573416
0.823680661

260 =4575124707 and 0=22.8756235
Calculate the coefficient o *
sin 6+ 2(1- y)sinfcosf +((1- y)? +§)cos2 6 =2.002059825

7. sin’ @

izcos2 6+2(1- y)(—rizsinecose) +(@A-p)? +F) 7

Calculate the coefficient oZ 5
_0.821620836

r2
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_ i _10.88548832
6v>  6(rsing)? r?

Constant term

After rotation 22.87562354 then equation (3.4) becomes

0.82162083622 _10.88548832

—— 4= —, 0r
r r

2.00205982%°Z7 =10.88548832- 0.82162083& (3.5)

2.00205982%2 +

We now can break above equation (3.5) into two separate gad let them equal the same constant, say
2
A%,

2002059825222 = A%, Z =+ A ;
art 1 \/2.002059825r
P A dr Alnr

=+ — == ; (3.6)
\/2.002059825° r 7/2.002059825

10.88548832- A2 1

10.88548832- 0.82162083&; = A*; Z, = *( )2;
part 2 0.821620836
1] 5 1
7 = i(10.88548832— A )20, 37)

0.82162083

Put the equations (3.6) and (3.7) together and finallgwieed the general solution of equation (3.5),

2 1
74 Alnr +( 10.88548832 A )26:

~J2.002059825 = 0.821620836 ’

Applying the Darboux Theory, we find that the geodesicaéqn of extreme value distribution is given by,

0z _

Z-B:
0A
2 _1 _
4 Inr il 10.88548832 A ) 2 2A _ (3.8)
72002059825 2 0.821620836 0.821620836

From previous defined relations, we know that,¢ ) and (u,v) are related to

re=u?+v? and tand= l;

u
or r=vJu?+v? and @=tan*Y (3.9)
u

hence after substituting the relation (3.9) into equatid®) (8e find our geodesic equation of extreme value
distribution as:
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-1V
In(u2+v2) N 1 Atan u

" 212002059825 /1088548832 A2 +/0.821620836

Where A, B are arbitrary constants.
4 Deriving the Basic Tensor

We demonstrated the detailed calculation of the four expegcities that used to support the results in
section 2. To simplify the complicated integrand we alwgsesthe following transformation.

S X-u
let y=e v, Iny=-T; X-u=-viny;, or x=-viny+u;
then d—X:—X; dx:—ldy; (4.2)
dy vy y
XU e xu e xu =
E(e v):erve ede:jyeydy:r(Z):l. (4.2)
—oo0 0
X419 U e x
E((x-u)e ¥ )==[(x-u)e *e* e ¥ dx
V—OO
==[(vin y)yedy=-v"(2) = ~v({- ) (4.3)
0

X-u
i \'
From (4.1) we substitutey=e V , x=-vIiny+u; and dx=-—dy into (4.2) and (4.3) then
y

integral turns out to be well known gamma and digamma fundtiomathematical analysis by Apostol T.
[12], p284, defined this ‘derivative of the gamma functias’follows:

7 (t) =[xl xe™dx.
0

This function obtained by differentiating the integral f6r(t) under the definite integral sign. The

derivative /~ (t) exists for each t>0.

_x-u 100 _x-u -
E((x-uy’e v )== [(x-uj’e Ve® e Vdx

—00

=v2[(Iny)2ye Ydy=v?r(D(2) =3 (¢ (2)+( (2)?)
0
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Apostol T. p303 defined the nth derivative of the gamma funetoiollows:

rMWt)=x(nx)"eXdx, t>0
0

r(x_e

- _4d -
deflnew(x)—dxln/'(x) 700 kzo(k+1 x+k) 12
yQ)=r (1)=-y
r(2)_
Ww(2)= (2) =/ (2)= kzo(k"'l 2+k) y=1-y,

W(2)=r (2)=1-y=1-0577215664% 0422784335
I ()2 (x) = (' (x))?

(7 (x)?
W (2)=r®(2)-(r(2)>

W (x)=

f‘z)(2)=w'(2)+(r'(2))2:(1—y)2+§_1,
1 7
Y (2)=y¢ (1)-1, andw(l)_k TR

5List and Prove Some Related M oments

(5.1) meanu+ W  where yis Euler sconstant
2
(5.2) variance:

(5.3) mode:u
(5.4) median:u — v In(In2)

(5.5) coefficient of variation:

_nv__
(u+vy)W6

Assume random variable x has extreme value distribution tleecaw find the moment generating function
of x:
XUy
tX 1 \' )

M (1) = E(é )—Te—e e v dx

= [yt Vi lele Ydy = e/ (1-vt) vt<l

o'—-S

Then as usual we can take derivativeMf, (t) and let t=0 find the mean value of the distribution.
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M, (t)=e(ur (1-vt)-v/ (1-vt));
M, (0)=E(x)=u/ (1)-v/ (1)=u-v(-y)
(5.1) mean: u+vy where-y =/ (1); yis Eulerconstant.
M, (t)=e" (ur (1-vt)(-v)-v/ (1-vt)(-v))+

eu(u/ (L-vt)=v/ (1-vt))
My (0)= E(x?)=(-uv/" (1)+V?/ (1))+u(u-v/ (1))
(52) Var(x) = E(x*) - ( E(x))?
=(~uv/" (1)+Vv2r (1) +u? —uv/ (1)) - (u-v/ (1))?
ala

=VA( (1) (F (1)?)=v?¥ (1) =

X-U
Ty X—u X-U
Inf(x)=-Inv-e -—— = -
e =1; _ﬁ:mlzo
\

v
X-Uu
onf(x)__ v (_1y_1_5. (53) hence x = uisthemode.
e vV (--) 0;
ox (VARY

-0 <X<00,-c0<U<o0, V>0.

e vV =-In 2, X =In(In2);
%
(5.4) x=u-vIn(In2) isthemedian.

(55) itistrivial thatcvis Simplyfromdefinition.

iV
(U+vy)We6
6 Conclusion and Remarks

There are three types of extreme value distributiomfakima and three corresponding types of extreme
value distribution for minima. The term extreme valuetrifigtions includes all distributions with
cumulative distribution function:

Gk(%) and Hk(%) . k=123

with the standard member when U=0 and V=1 (see appendix.) e axreme value distribution has been

X-U
used in literature only for distributions with a cuntive distribution H3(—). We should keep in
V

mind that all six types of extreme value distributions givethe appendix are closely related to exponential
distributions. Let x have a standard exponential distributimhtlae six transformed random variables have
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1 1 1 1

X @, Xa, InX, X, -X7, -InX (6.1)
respectively, the distributions

G G Gs, Hlp/, HZ,O" H3

la "™2a

Using the method suggested by Balakrishnan N. and Nevzorav[Y3Bon page 194~196, we can easily

find the other six related distribution corresponding moments f¢6.1). In this way it may fit more
applications.

Competing Interests
Author has declared that no competing interests exist.

References
[1]  Fuller WE. Flood flows. Transactions of the American 8gcof Civil Engineers. 1914;77:564.

[2]  Griffith AA. The phenomena of rupture and flow in solidsil®ophical Transactions of the Royal
Society of London, Series A. 1920;221:163-198.

[3] Gumbel EJ. Statistics of extremes. New York, Columbié/é&fsity Press; 1958.
[4] Johnson NL, Kotz S, Balakrishnan N. Continuous Univariataibigtons, second edition. 1995;2.
[5] Chen WWS. A note on finding geodesic equation of two paramgtarsna distribution. Applied

Mathematics. 2013;5:3511-3517.
Available;www.scrip.org/journal/am

[6] Chen WWS. A note on finding geodesic equation of two param®teibull distribution. Theoretical
Mathematics & Applications. 2014,;4(3);43-52.

[7] Chen WWS. On finding geodesic equation of two parameters tiogisstribution. Applied
Mathematics. 2015;6(12).
Available;www.scrip.org/journal/am

[8] Chen WWS. On finding geodesic equation of two parametersdav@aussian distribution. British
Journal of Mathematics & Computer Science. 2016;15(1):1-8icl&r no. BIJMCS. 24577
Available;www.sciencedomain.org

[9] Kass RE, Vos PW. Geometrical foundations of asymptoticénfze. John Wiley & Sons, Inc; 1997.
[10] Struik DJ. Lectures on classical differential geomeSgcond Edition. Dover Publications, Inc; 1961.
[11] Grey A. Modern differential geometry of curves and sw@$a€RC Press, Inc. Boca Raton; 1993.
[12] Apostol TM. Mathematical analysis. Addison-Wesley PubtighCtompany. Second Edition; 1974.

[13] Balakrishnan N, Nevzorov VB. A primer on statistical wdgitions. John Wiley & Sons, Inc; 2003.



Chen; BJMCS, 18(4): 1-10, 2016; Article no.BIJIMC$ZB

APPENDIX

We list the six corresponding cumulative distribution functiofodews;

1-¢97 x<0,a>0
Gi(X)=Gyqe(Xx)= : '

x=0.
0 x <0,
G ()=Goa ()= 4 ,
1-e x>0,a>0.
X
Gs(x)= 1-e* -0 < X< 00

All cumulative distribution functions

Gk(xv'“), k=1,2,3,
where-o <u <o ,andv>0,

can also be limiting distribution of minimal values.

G2 is commonly known as the Weibull distribution.

x<O0,
Hy(X) =H . (x) =

N a

ex x>0, a >0.

e x<0,a>0
HZ(X):HZ,D/(X): ! ,
1 x>0;

_aX
Hy(x)= e*", -0 <X <00
All cumulative distribution functions
H, &Y, k=1,2,3,
\'
where- o < u<c,andv >0,

can also be limiting distribution of normalized maxima veiaald-|1 is called the Frechet-type distribution,

H2 the Weibull-type distribution, andi'lgis also referred to in the literature as the log-wéjkdduble
exponential, and doubly exponential distribution.
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