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Authors’ contributions

This work was carried out in collaboration among all the authors. All authors have read and approved the final
manuscript.

Article Information

DOI: 10.9734/IJECC/2023/v13i81940

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer

review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/99333

Received:25/02/2023

Accepted:29/04/2023

Original Research Article Published:22/05/2023

ABSTRACT

In this study, non-homogeneous Poisson processes (NHPP) are assumed to analyze annual average
temperatures and rain precipitations, considering climate data for some regions of North America reported
for a long period. A power law process (PLP) is assumed for the intensity function (derivative of the mean
value function) or rate λ(t), t ≥ 0 of the NHPP which the Poisson events occur considering data (accumulated
number of years in a given time interval [0,t) where the climate measure is above a threshould given by the
overal average in the assumed period) in presence or not of a change-point. The parameters of the assumed
model are estimated under a Bayesian approach and using MCMC (Markov Chain Monte Carlo) methods.
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Alternatively to the use of a PLP process, we also assume a polynomial parametrical form for the mean value
function of the NHPP process where a simple Bayesian inference approach is proposed to get better fit for the
intensity and mean value functions of the NHPP process. From the fitted models it was possible to to detect the
years where climate changes occurred.

Keywords: Climate change; non-homogeneous poisson processes; PLP process; polynomial mean value function;
bayesian inference; change-point; MCMC methods.
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1 INTRODUCTION

Climate changes (precipitation, temperature, ocean
levels, among many others) have been observed
since the end of the 19th century all over the world.
These climate changes can be due to different causes,
among which we can mention the increase in carbon
dioxide and other anthropogenic emissions in the
atmosphere (https://www.ncdc.noaa.gov/monitoring-
references/faq/indicators.php). A significant
increasing in the temperature could be observed
especially in the last decades worldwide
(https://climate.nasa.gov/evidence/). To study the
world climate change, different statistical models have
been used by statisticians or climate experts in the
analysis of climatic data to obtain inferences of interest
(precipitation, temperature, level of the oceans among
many others) and its implications (see [1–19]). In some
studies it is considered the analysis of the years where
these anomalies occurred [14,20–22].

This situation can occur with continuous responses,
count responses or other kind of data assuming different
parametric or non-parametric models. Considering
count data under homogeneous Poisson processes
(HPP) or non-homogeneous Poisson processes
(NHPP) the literature presents different inference
approaches for models in presence of change-points
especially under a Bayesian approach. Bayesian
inference for HPP or NHPP processes has been
discussed by many authors in the literature (see for
example [23], [24], [25], [26], [27]). Those processes
have also been used by different authors to get
inference for change-point models (see for example
[28], [29], [30], [31], [24]). [32] consider a Bayesian
analysis for homogeneous Poisson processes in the
presence of a change-point. [33] introduce a Bayesian
analysis for change-points in NHPPs considering PLP
(power law processes) processes and dealing with a
random number of change-points.

In this study, Bayesian methods are used in the data
analysis. Under a Bayesian approach, Markov chain
Monte Carlo (MCMC) methods (see for example [34],
[35] or [36]) are used to develop a Bayesian analysis
assuming special parametric structures for the rates
in non-homogeneous Poisson processes in presence
of a change-point for the climate times series using the
OpenBugs software [37]. Assuming annual temperature
and rain precipitation averages collected from five
climate stations in North America for a long period of
time, the main goal of this study is to verify the behavior
of mean annual temperatures and precipitation over the
last decades in this region of the world from statistical
data analysis.

The paper is organized as follows: section 2
introduces the climate data sets used in the study;
section 3 introduces the use of Non-Homogeneous
Poisson processes (NHPP) models in two situations:
presence or non-presence of a change-point; section 4
introduces a polynomial regression model for the mean
value function (accumulated number of violations);
section 5 presents the obtained results assuming
two parametrical models, the PLP process and the
polynomial regression model for the mean value
function; section 6 presents the interpretation of the
obtained results; finally section 7 ends the paper with
some concluding remarks.

2 DATA SET

The data set considered in this study was extracted
from the Research Data Archive (RDA), managed
by the Data Engineering and Curation Section
(DECS) of the Computational and Information
Systems Laboratory (CISL) at the National Center
for Atmospheric Research, USA, contains a
large and diverse collection of meteorological
and oceanographic observations, operational and
reanalysis model outputs, and remote sensing datasets
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to support atmospheric and geosciences research,
(https://rda,ucar,edu/index,html?hash=data user&
action=register) (https://rda.ucar.edu/datasets/ds570.0
/#!subset.html). The RDA archive has data for over
4700 different stations (2600 in more recent years).
Different follow-up periods are given for the diferent
climate stations. In this study, as comparative purposes,
we assume a fixed follow-up period of 141 years for
the five assumed climate stations (1880 to 2020).
The original data set consists of monthly average

temperature and rain precipitation reported in five
climate stations for the last 141 years (1880 to 2020)
in North America (all climate stations in USA). The
assumed climate stations used in this study are
presented in Table 1. Table 1 also shows the latitude(lat)
in degrees, longitude(long) in degrees and elevation
(elev) of the climate station in meters.

Fig. 1 shows the annual mean temperatures and annual
mean rain precipitations for the five climate stations.

1880 1900 1920 1940 1960 1980 2000 2020
17

18

19

20

21

Years

Mean temp. Charleston

1880 1900 1920 1940 1960 1980 2000 2020

19

20

21

22

23

Years

Mean temp. New Orleans

1880 1900 1920 1940 1960 1980 2000 2020

11

12

13

14

15

16

Years

Mean temp. Washington

1880 1900 1920 1940 1960 1980 2000 2020

8

9

10

11

12

13

Years

Mean temp. Chicago

1880 1900 1920 1940 1960 1980 2000 2020

9

10

11

12

13

14

Years

Mean temp. Portland

1880 1900 1920 1940 1960 1980 2000 2020
50

70

90

110

130

150

Years

Mean prec. Charleston

1880 1900 1920 1940 1960 1980 2000 2020
60

88

116

144

172

200

Years

Mean prec. New Orleans

1880 1900 1920 1940 1960 1980 2000 2020

50

68

86

104

122

140

Years

Mean prec. Washington

1880 1900 1920 1940 1960 1980 2000 2020

50

70

80

90

100

110

Years

Mean prec. Chicago

1880 1900 1920 1940 1960 1980 2000 2020

50

68

86

104

122

140

Years

Mean prec. Portland

Fig. 1. Annual mean temperatures and precipitations

143



Achcar et al.; Int. J. Environ. Clim. Change, vol. 13, no. 8, pp. 141-161, 2023; Article no.IJECC.99333

Table 1. Climate stations in North America (USA)

Climate Station Lat. (deg) Long.(deg) Elev. (meters)
Charleston 32.9 -80.0 15
New Orleans 30.0 -90.3 9
Washington 38.9 -77.1 20
Chicago 41.9 -87.6 190
Portland 45.6 -122.6 12

From the plots presented in Fig.1, we see that in all
stations there is an increasing behavior in the annual
meam temperature at the end of the follow-up period
(close to the year 2020). Considering the annual rain
precipitation, it is difficult to afirm that there is similar
behavior for each one of the climate stations.

In this study, This statement is not clear what the
author want to say. We consider the modeling of the
accumulated number of years where it is observed the
occurrence of a violation of some event of interest
in the climate series (here the climate mean to
be above the overall observed average during the
follow-up period) assuming non-homogeneous Poisson
processes (NHPP) with different parametric forms for
the intensity function (or equivalently the mean value
function).

The main goals of this study are:

• The first goal of this work is to detect the
year where it is observed a climate change-
point (temperature or rain precipitation). In this
way, we consider a special modeling approach
assuming PLP (Power Law Process) processes
in presence of a change-point in the assumed
NHPP considered in the statistical analysis of the
climate data sets.

• The second goal of this work is to get a better fit
for the mean value function to detect accurate
climate standards of each region of interest.
Since in practical work, usually it is difficult to
get accurate fit for the mean value functions
using the different existing parameterized forms
of NHPP models introduced in the literature, we
also propose, as a second model approach, a
simple Bayesian model based on a polynomial
structure for the mean value function assuming
the responses given by the accumulated number
of climate violations until each fixed time t where
there is the occurrence of a climate violation,

to get accurate estimators for the mean value
function. With the obtained fitted models for the
mean value functions (or the intensity or mean
value functions), we detect the climate change
years for each climate station.

3 USE OF NON-HOMOGENE-
OUS POISSON PROCESSES
(NHPP) MODELS

Non-homogeneous Poisson processes (NHPP) are
used in many applications (see for example [38],
[25], [39] [40] among many others). In this study, we
consider the use of non-homogeneous Poisson model
to estimate the probability that a climate (precipitation,
temperature) standard is exceeded a given number of
times in a time interval of interest.

Let M(t) ≥ 0, t ≥ 0 be the number of times a climate
standard is above the usual annual overall average in
the time interval [0, t). The climate standard average for
each year is obtained from the reported month averages
usually available in climate data sets. We assume that
the number of times the climate standard is above the
overall average follows a non-homogeneous Poisson
process where the random variable M(t) has a Poisson
distribution with rate function λ(t) and mean function
m(t) given by,

m(t) =

∫ t

0

λ(s)ds (3.1)

The rate function λ(t) models the behavior of the
Poisson process M = {M(t) : t ≥ 0}. Different
parametric models could be assumed for the rate
function that is parameterized by a parameter vector
θ. Thus, we assume a non-homogeneous Poisson
process with mean value function m(t | θ) where θ
is a vector of parameters. The function m(t|θ) denotes
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the expected number of events registered by M(t) up to
time t. In this study, the events are the climate standards
to be above the yearly overall average in a climate
station considering the total observed follow-up period.
The characterization of a non-homogeneous Poisson
process of this type is specified by the functional
form of m(t|θ), or equivalently, of its intensity function
λ(t|θ), given by the first derivative of m(t|θ), that is,
λ(t|θ) = dm(t|θ)/dt. In applications of climate data, it
is interesting to have a rate function λ(t|θ), t ≥ 0 that
presents different behaviors as decreasing or increasing
depending of time.

Different formulations of NHPP could be used in the
climate data analysis. One of these formulations,
usually used in software reliability studies and denoted
as NHPP-I, assumes that the mean value function is
given by m(t) = αF (t) where F (t) is the cumulative
function of a specified probability distribution and α
is an unknown parameter that should be estimated
(see [39]); another formulation also used in software
reliability studies and denoted as NHPP-II is given by
m(t) = − log(1–F (t)) where F (t) is the cumulative
function of a probability distribution also usually used in
reliability software applications [41].

For the statistical analysis of climate data, we could
consider some existing parametric structures as the

power law process (PLP), [42]; the Musa–Okumoto
process (MOP) [43]; the Goel–Okumoto process (GOP)
[44]; a generalized form of Goel–Okumoto (GGOP) and
the exponentiated-Weibull (GPLP) [45], [46], [39] that
generalizes the PLP process.

The power law process (PLP), the Musa–Okumoto
process (MOP) and the exponentiated-Weibull
process(GPLP) are defined as special cases of the
mean function m(t) = − log(1–F (t)), that is, in the
class NHPP-II, where F (t) is the cumulative function of
a Weibull distribution [47] by F (t) = exp−(t/σ)α, t > 0
for the PLP; F (t) is the cumulative function of a
Lomax or Pareto type II distribution [48], given by
F (t) = 1–(1–t/α)−β , t > 0 for the MOP and F (t) =
1− exp[−(t/σ)α]β , t > 0 is the cumulative distribution
of a exponentiated-Weibull distribution for the GPLP
that generalizes the PLP process.

The Goel–Okumoto process (GOP) [44] and the
generalized form of the Goel-Okumoto process (GGOP)
are obtained from formulation of the mean value
function given by m(t) = αF (t) where F (t) is the
cumulative function of a exponential distribution, that
is, F (t) = 1 − exp(−βt) for the GOP model and
F (t) = 1 − exp(−βtγ) is the cumulative distribution
of a Weibull distribution for the GGOP model.

The mean value functions for these popular NHPP processes are given by,

mPLP (t|θ) = (t/σ)α, where θ = (α, σ); α, σ > 0,

mMOP (t|θ) = β log(1 + t/α), where θ = (α, β); α, β > 0,

mGOP (t|θ) = α[1− exp(−βt)], where θ = (α, β); α, β > 0

mGGOP (t|θ) = α[1− exp(−βtγ)], where θ = (α, β, γ);α, β, γ > 0,

mGPLP (t|θ) = − log[1− FEW (t)], where θ = (α, β, σ);α, β, σ > 0,

(3.2)

and FEW (t) = {1− exp[−(t/σ)α]}β

The corresponding intensity functions λ(t|θ) = dm(t|θ)/dt for the mean functions (3.2) are given by,

λPLP (t|θ) = (α/σ)(t/σ)α−1, where θ = (α, σ);α, σ > 0,

λMOP (t|θ) = β/(t+ α), where θ = (α, β);α, β > 0,

λGOP (t|θ) = αβ exp(−βt), where θ = (α, β);α, β > 0,

λGGOP (t|θ) = αβγtγ−1 exp(−βtγ), where θ = (α, β, γ);α, β, γ > 0,

λGPLP (t|θ) = G(t)/[1− FEW (t)], where θ = (α, β, σ);α, β, σ > 0,

(3.3)

G(t) = αβσ−11– exp[−(t/σ)α]β−1 exp[−(t/σ)α](t/σ)α−1 and FEW (t) is defined in (3.2).

145



Achcar et al.; Int. J. Environ. Clim. Change, vol. 13, no. 8, pp. 141-161, 2023; Article no.IJECC.99333

Remark 1. The intensity functions given by (3.3) define the hazard rates of the time between occurrence of events
in the respective models.

Remark 2. From (3.3), the intensity function λPLP (t|θ) gives different forms for the PLP depending on the value
of α which could be constant, decreasing or increasing depending on whether α = 1, α < 1 or α > 1, respectively.
The intensities λMOP (t|θ) and λGOP (t|θ) presents a decreasing behavior as functions of t and λGGOP (t|θ)
describes the situation where the intensity increases slightly at the beginning and then begins to decrease with t.

Remark 3. For the rate λGPLP (t|θ) we observe that: if α ≥ 1 and αβ ≥ 1, λ(t) is a increasing function of t; if
α ≤ 1 and αβ ≤ 1, λ(t) is a decreasing function of t; if λ > 1 and αβ < 1, λ(t) has a bathtub form; if α < 1 and
αβ > 1, λ(t) is unimodel.

In this study, we focus on the use of the PLP process in the analysis of the North America climate data sets.

To have more flexibility of fit considering climate data, we also could assume superposition of NHPP processes
[23]. The sum of count NHPP processesM(t) =

∑J
(j=1)Mj(t) is also a NHPP where the intensity function is given

by λ(t|θ) = λ1(t|θ1)+λ2(t|θ2)+· · ·+λJ(t|θJ), where θ = (θ1,θ2, · · · ,θJ) [49]. Different superpositions of NHPP
processes could be assumed as superposition of power law (PLP) processes; superposition of Musa–Okumoto
(MOP) processes; superposition of Goel–Okumoto (GOP) processes; superposition of a generalized form of
Goel–Okumoto (GGOP) processes, superposition of exponentiated-Weibull (GPLP) processes or even superposition
of diferent parameterized forms of the values function.

In this way, we could consider the intensity function or the mean value function assumed as a polynomial, there is,
λ(t) = β0 + β1t + β2t

2 + · · ·+ βJ t
J (a superposition of a homogeneous Poisson process and Weibull processes

assuming known shape parameters). As a special case, we assume a polynomial structure for the mean value
function, instead of a polynomial structure for the intensity function, given by,

mPOLY (t|θ) = β0 + β1t+ β2t
2 + · · ·+ βJ t

J where θ = (β0, β1, β2, · · · , βJ) (3.4)

which implies in the intensity function given by,

λPOLY (t|θ) = β1 + 2β2t+ 3β3t
2 + · · ·+ JβJ t

J−1 (3.5)

for a fixed value of J. With an appropriate choice for J, we get accurate estimators for the mean value function
implying in accurate estimators for the intensity function.

3.1 Likelihood Function without the Presence of Change-points
Without the presence of change-points, let us assume the data set denoted by DT = {n; t1, · · · , tn;T} where n is
the number of observed occurrence times such that 0 < t1 < t2 < · · · < tn < T . In the application considered
here these values are the epochs of occurrence of climate standard violations (above observed average) up to
time T . The likelihood function for θ considering the time truncated model is (see for example [50] given by,

L(θ|DT ) =

 n∏
(i=1)

λ(ti | θ) exp[−m(T | θ)]

 (3.6)

3.2 Likelihood Function in the Presence of a Change-point
In many applications, we could have changes in the counting process over the time range (0, T ) linked to some
kind of event (e.g., in climate series there is observed precipitation or temperature changes in all world in the last
decades). That is, we have a single change-point τ making a transition between two NHPP models of the same
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type but with different parameters. In this way, the intensity function (see [51] [52], [53]) of the overall process is
given by,

λ(t | θ) =


λ(t | θ1) if 0 ≤ t ≤ τ

λ(t | θ2) if t ≥ τ
(3.7)

where λ(t|θj), j = 1, 2 are intensity functions related to the mean functions defined in (3.2) and θj , j = 1, 2 are the
parameters associated to the NHPP before and after the change-point. The corresponding mean value functions
m(t|θj), j = 1, 2, are given by,

m(t | θ) =


m(t | θ1) if 0 ≤ t ≤ τ

m(τ | θ1) +m(t | θ2)−m(τ | θ1) if t ≥ τ
(3.8)

In this way, the data set is given by: DT = {n; t1, · · · , t(Nτ ); tN(τ+1)
, · · · , tn;T} where tk , k = 1, 2, · · · , n is the

time of occurrence of the kth event (in the present case is the kth violation of the climate standard) and τ is the
change-point. Therefore, the likelihood function of the model is given by,

L(θ | DT ) =

[
Nτ∏
i=1

λ(ti | θ1)

]
exp[−m(τ | θ)]

×

 n∏
Nτ+1

λ(ti | θ2)

 exp[−m(T | θ2) +m(τ | θ2)]

(3.9)

As a special case, considering PLP models in the presence of a change-point, the intensity function (3.3) is given
by,

λ(t | θ) = (α1/σ1)(t/σ1)
α1−1 if 0 ≤ t ≤ τ (3.10)

and

λ(t | θ) = (α2/σ2)(t/σ2)
α2−1 if t ≥ τ

with corresponding mean value function given by,

m(t | θ) = (t/σ1)
α1 if 0 ≤ t ≤ τ (3.11)

and

m(t | θ) = (τ/σ1)
α1 + (t/σ2)

α2 − (τ/σ2)
α2 if t ≥ τ

In the same way, we get the intensity function and mean value functions for the other NHPP processes in presence
of one change-point.

Given the complexity of the likelihood function assuming non-homogeneous Poisson processes especially in
presence of change-points, where we usually have difficulties to get maximum likelihood estimators for the
parameters of the models assuming the different parameterized forms of the intensity function (or the mean value
function), we consider a Bayesian approach using MCMC (Markov Chain Monte Carlo) simulation methods as the
Gibbs sampling or the Metropolis-Hastings algorithms [34], [36] to get the estimators for the parameters of the
models. Using a Bayesian approach we also could incorporate prior opinions of experts leading to more accurate
inferences. Although it is possible to get accurate parameter estimation for the parameters of the assumed NHPP
model using Bayesian methods, usually it is difficult to get accurate fit for the mean value function when compared
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to the empirical accumulated function even considering the NHPP processes defined by (3.2) and (3.3) in the
presence of many change-points.

In this work, we consider the use of a polynomial mean value function (3.4) to get very accurate fit for the mean
value function and the corresponding intensity function, although the existence of great computational problems
considering the likelihood function (3.6) where it is included only the information of the epochs where occurs
climate violation DT = {n; t1, · · · , tn;T}, n is the number of observed occurrence times such that 0 < t1 < t2 <
· · · < tn < T . These computational problems are related to non convergence of the MCMC simulation algorithm to
get samples of the joint posterior distribution of interest using different prior distributions elicited by the researcher
and the convergence of the simulation algorithm is only obtained using very informative prior distributions for the
parameters β0, β1, β2, · · · , βJ , to get the convergence of the MCMC simulation algorithm.

4 A POLYNOMIAL REGRESSION MODEL FOR THE MEAN VALUE
FUNCTION (ACCUMULATED NUMBER OF VIOLATIONS)

With the polynomial mean value function (3.4), we usually have great difficulties to get accurate fit for the mean
value function assuming the likelihood function (3.6) under the time truncated model even assuming very informative
prior distributions for the parameters of the model as mentioned above. In this way, we propose a simple polynomial
regression model also under a Bayesian approach and using MCMC estimation methods to get the posterior
summaries of interest.

In this way, using the information of the epochs where occurs climate violation denoted by DT = {n; t1, · · · , tn;T},
with n denoting the number of observed occurrence times such that 0 < t1 < t2 < · · · < tn < T , we assume a
standard multiple linear polynomial regression model given by,

yi = β0 + β1ti + β2t
2
i + + βJ t

J
i + εi (4.1)

where yi is the accumulated number of violations at time ti of each violation occurrence and εi is a error term
(non-observed random variable) assumed to be independent with a normal distribution N(0, σ2).

In this situation, the likelihood function is given by,

L(θ | DT , y) =
n∏
i=1

1√
2πσ2

exp

[
− 1

σ2

(
yi − β0 − β1ti − · · · − βJ tJi

)2]
(4.2)

where θ = (β0, β1, β2, · · · , βJ , σ2); DT = {n; t1, · · · , tn;T} and y = (y1, y2, · · · , yn). We assume normal N(a, b2)
prior distributions for the parameters β0, β1, β2, · · · , βJ with known hyperparameters a and b and a Gamma(c, d)
prior distribution with mean c/d and variance c/d2 for the parameter τ = 1/σ2 . We further assume prior
independence.

5 RESULTS

In this section, we present the Bayesian results
assuming the two model formulations presented in
sections 3 and 4 for the climate data of the five
climate stations in North America (USA) introduced
in section 2.

5.1 Use of the PLP-NHPP Introduced
in Section 3

The first model denoted as “model 1” to be used
in the data analysis of the climate data of the five
climate stations in North America (USA) introduced
in section 2 is the PLP process defined in (3.2) and
(3.3) in presence of one change-point considering
uniform U(1,141) prior distribution for the change-point
τ ; uniform U(0, 10) prior for the scale parameters
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σj , j = 1, 2; uniform U(0, 3) prior distributions for
the shape parameters αj , j = 1, 2 for all climate
series (annual mean temperature and annual mean
rain precipitation). Simulation of samples for the joint
posterior distributions were obtained using MCMC
methods and the OpenBugs software (Spiegelhalter et
al., 2003) from where it was generated 1,000 Gibbs
samples (taking every 100th sample from 100,000
simulates sample) after a burn-in-sample of 11,000
samples discarded to eliminate the effect of the initial
values. Convergence of the simulation algorithm was
verified from trace plots of the simulated sample for
each parameter.

Table 2 shows the posterior summaries of interest
(posterior means, posterior standard-deviations and
95% credible intervals for the parameters of the model)
assuming the PLP-NHPP process in presence of a
change-point for the accumulated numbers of violations
(accumulated number of years in each time where it is
observed a climate violation, that is, the annual mean of
temperature or rain precipitation is above a threshould
considering as threshould the averages of the observed
annual temperatures and annual rain precipitations).

5.2 Use of the Polynomial Regression
for the Accumulated Number of
Violations (Mean Value Function)
Introduced in Section 4

A second model used in the data analysis denoted
as “model 2” assumed in this work is the polynomial
regression model defined in (3.4) and (3.5) for the
accumulated number of climate violations considering
normal N(0, 1) prior distribution for β0; normal N(1, 1)
prior for β1; normal N(0, 0.1) prior for β2; normal
N(0, 0.01) prior for βj , j ≥ 3; and a Gamma G(1, 1)
prior distributions for the parameter τ = 1/σ2 for all
climate series (annual mean temperature and annual
mean rain precipitation). Simulation of samples for the
joint posterior distributions were obtained using MCMC

methods and the OpenBugs software [37] from where it
was generated 1,000 Gibbs samples (taking every 100th

sample from 100,000 simulates sample) after a burn-
in-sample of 111,000 samples discarded to eliminate
the effect of the initial values. Convergenge of the
simulation algorithm was verified from trace plots of the
simulated sample for each parameter.

Table 3 shows the posterior summaries of interest
(posterior means, posterior standard-deviations and
95% credible intervals for the parameters of the
model) assuming the polynomial regression model for
the accumulated numbers of violations (accumulated
number of years in each time where it is observed
a climate violation, that is, the annual mean of
temperature or rain precipitation is above a threshold
considering as threshold, the averages of annual
temperatures and annual rain precipitations). The
choice of the polynomial order J in each case was
decided using the Bayesian discrimination method DIC
(Deviance Information Criterian), [51] available in the
OpenBugs software and parcimony.

Fig. 2 shows the plots of the empirical accumulated
numbers of climate violations (above the annual
averages) and the fitted Bayesian mean value function
m(t) considering the PLP process in presence of
a change-point and the polynomial NHPP process
(superposition of non-homogeneius Poisson processes)
for the annual mean temperatures of the five climate
stations in USA.

From the plots of Fig. 2 we observe a very good
fit of “model 2” assuming a polynomial mean value
function for all cases considering the annual mean
temperatures. Fig. 3 shows the plots of the empirical
accumulated numbers of climate violations (above
the annual averages) and the fitted Bayesian mean
value function m(t) considering the PLP process in
presence of a change-point and the polynomial NHPP
process (superposition of non-homogeneous Poisson
processes) for the annual mean rain precipitations of the
five climate stations in USA [52]- [56].

Table 2. Posterior summaries assuming a PLP process in presence of a change-point (“model 1”)

Charleston n Parameter Means Sd 95% Credible
Interval

Temperature α1 1.023 0.2783 (0.6508;1.819)
(annual α2 1.362 0.1921 (0.9231;1.672)

average = 18.714); σ1 2.474 1.359 (0.5104;5.885)
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n=68 violations; σ2 6.093 2.627 (0.8873;9.831)
T=141 years) τ 82.21 (years 1961) 41.66 (3.969;131.40)
Precipitation α1 1.306 0.5544 (0.5932;2.710)

(annual α2 1.400 0.1544 (0.9919;1.599)
average =102.24); σ1 3.682 1.882 (0.5823;8.129)

n=67 violations; σ2 7.243 2.266 (1.635;9.908)
T=141 years τ 36.25 (year 1915) 27.31 (4.458;105.60)
New Orleans Parameter Means SD 95% Credible

Interval
Temperature α1 1.492 0.2517 (0.8046;1.840)

(annual α2 1.222 0.1593 (0.8747;1.468)
average =20.881) σ1 6.562 2.021 (2.249;9.710)
n=65 violations; σ2 6.433 2.519 (1.269;9.865)

T=141 years τ 74.52 (year 1954) 18.97 (10.540;117.80)
Precipitation α1 1.089 0.4528 (0.4309;2.327)

annual α2 1.286 0.2183 (0.6671;1.572)
average =130.47); σ1 3.330 1.963 (0.5784;8.046)

n=68 violations; σ2 5.927 2.610 (0.5294;9.785)
T=141 years τ 34.64 (year 1914) 37.88 (1.739;139.10)
Washington Parameter Means SD 95% Credible

Interval
Temperature α1 0.6102 0.2919 (0.0928;1.227)

(annual α2 1.486 0.1584 (1.101;1.709)
average =13.819); σ1 6.822 2.340 (1.682;9.893)

n=72 violations; σ2 7.109 2.192 (1.947;9.881)
T=141 years τ 46.33 (year 1925) 7.642 (27.93;58.39)
Precipitation α1 1.263 0.5012 (0.7124;2.611)

(annual α2 1.189 0.2070 (0.7509;1.533)
average =87.27); σ1 2.433 1.356 (0.5017;5.355)
n=63 violations; σ2 5.110 2.670 (0.4638;9.718)

T=141 years τ 53.12 (year 1932) 46.58 (2.401;137.70)
Chicago Parameter Means SD 95% Credible

Interval
Temperature α1 1.148 0.3643 0.5117;2.259)

(annual α2 1.164 0.2084 (0.7495;1.524)
average =10.153); σ1 3.047 1.706 (0.8046;7.559)

n=70 violations; σ2 4.672 2.726 (0.4763;9.656)
T=141 years τ 62.32 (year 1925) 45.04 (1.432;139.60)
Precipitation α1 1.211 0.5382 (0.5343;2.587)

(annual α2 1.384 0.1585 (0.9939;1.606)
average =73.55); σ1 2.750 1.630 (0.4251;6.926)
n=67 violations σ2 6.977 2.242 (1.581;9.901)
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T=141 years τ 31.68 (year 1911) 35.04 (2.156;130.70)
Portland Parameter mean SD 95% Credible

Interval
Temperature α1 1.111 0.5236 0.2973;2.579)

(annual α2 1.473 0.1589 (1.056;1.679)
average =12.081); σ1 6.975 2.260 (1.701;9.927)

n=75 violations; σ2 7.245 2.223 (1.674;9.928)
T=141 years τ 38.67 (year 1918) 27.75 (2.486;126.60)
Precipitation α1 1.115 0.2386 (0.7442;1.693)

(annual α2 1.072 0.2763 (0.3098;1.468)
average =84.68); σ1 2.871 1.506 (0.7152;6.682)
n=69 violations; σ2 4.824 2.797 (0.3045;9.705)

T=141 years τ 80.68 (year 1960) 44.23 (2.318;140.10)

Table 3. Posterior summaries assuming a polynomial process of order J (“model 2”)

Charleston Parameter Means Sd 95% Credible
Interval

Temperature β0 -0.2066 0.5827 (-1.313;0.9396)
(annual β1 0.6408 0.0355 (0.5726;0.7074)

average =18.714); J=3; β2 -0.00553 0.00061 (-0.0067;-0.0043)
n=68 violations; β3 0.0000309 < 0.0001 (0.000025;0.000036)

T=141 years 1/σ2 0.3689 0.05977 (0.2595;0.4915)
Precipitation β0 1.044 0.6644 (-0.1976;2.629)

(annual β1 0.5656 0.0804 (0.3714;0.7202)
average =102.24); J=4; β2 -0.01233 0.0022 (-0.0165;-0.0068)

n=67 violations; β3 0.000166 < 0.0001 (0.00011;0.00021)
T=141 years β4 < 0.0001 < 0.0001 (-0.0000007;-0.0000004)

1/σ2 0.6915 0.1209 (0.4735;0.9453)
New Orleans Parameter Means Sd 95% Credible

Interval
Temperature β0 2.189 0.8476 (0.4977;3.847)

(annual β1 -0.6786 0.0806 (-0.8513;-0.5009)
average =20.881); J=4; β2 0.03793 0.0023 (0.03232;0.04257)

n=65 violations; β3 -0.0004 < 0.0001 (-0.00045;-0.00034)
T=141 years β4 < 0.0001 < 0.0001 (0.0000011;-0.0000014)

1/σ2 0.2517 0.04665 (0.1722;0.3597)
Precipitation β0 1.976 0.3506 (1.292;2.649)

(annual β1 0.1515 0.0192 (0.1152;0.1875)
average =130.47); J=3; β2 0.00443 0.00031 (0.00382;0.00506)

n=68 violations; β3 -0.000016 < 0.0001 (-0.000019;-0.000013)
T=141 years 1/σ2 1.629 0.2651 (1.140;2.166)
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Washington Parameter Means Sd 95% Credible
Interval

Temperature β0 1.753 0.8797 (-0.0283;3.500)
(annual β1 -0.4123 0.03175 (-0.4710;-0.3458)

average =13.819); J=3; β2 0.00994 0.00041 (0.00914;0.01071)
n=72 violations; β3 -0.000025 < 0.0001 (-0.000028;-0.000021)

T=141 years 1/σ2 1.406 0.2424 (0.9624;1.928)
Precipitation β0 0.7493 0.4603 -0.1265;1.640)

(annual β1 0.7043 0.0308 (0.6458;0.7646)
average = 87.27); J=3; β2 -0.00451 0.00054 (-0.0056;-0.0035)

n=63 violations; β3 0.000018 < 0.0001 (0.000013;0.000023)
T=141 years 1/σ2 0.6157 0.1106 (0.4290;0.8627)

Chicago Parameter Means Sd 95% Credible
Interval

Temperature β0 1.591 0.5149 (0.6030;2.647)
(annual β1 0.2684 0.0442 (0.1739;0.3555)

average =10.153); J=4; β2 0.00867 0.0012 (0.0062;0.0110)
n=70 violations; β3 -0.000094 0.00001 (-0.00019;-0.000066)

T=141 years β4 < 0.0001 < 0.0001 (0.0000002;0.0000004)
1/σ2 0.8932 0.1554 (0.6199;1.2130)

Precipitation β0 1.949 0.5818 (0.8306;3.293)
(annual β1 0.2851 0.0751 (0.0971;0.4233)

average =73.55); J=4; β2 -0.0008 0.0023 (-0.0050;0.0049)
n=67 violations; β3 0.000028 < 0.0001 (-0.000034;0.000073)

T=141 years β4 < 0.0001 < 0.0001 (-0.0000002;0.0000001)
1/σ2 0.7511 0.1354 (0.5068; 1.039)

Portland Parameter Means Sd 95% Credible
Interval

Temperature β0 0.5842 0.7437 (-0.8659;2.001)
(annual β1 -0.1092 0.0347 (-0.1789;-0.0412)

average =12.081); J=3; β2 0.00706 0.00053 (0.00914;0.01071)
n=75 violations; β3 -0.000018 ¡0.0001 (-0.000023;-0.000013)

T=141 years 1/σ2 0.5525 0.09361 (0.3872;0.7520)
Precipitation β0 0.7100 0.5612 (-0.3427;1.931)

(annual β1 0.5500 0.0509 (0.4401;0.6472)
verage =84.68); J=4; β2 -0.00399 0.0014 (-0.0069;-0.00079)

n=69 violations; β3 0.000072 0.00001 (0.000036;0.000106)
T=141 years β4 ¡0.0001 ¡0.0001 (-0.0000005;-0.0000002)

1/σ2 0.6761 0.1177 (0.4608; 0.9259)
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Fig. 4 shows the plots of the Bayesian fitted intensity functions λ(t) for the numbers of climate violations (above
the annual averages) considering the polynomial NHPP process (don’t repeat) for the annual mean temperatures
and the annual rain precipitations for the five climate stations in USA. The intensity functions where obtained from
(3.5).

6 INTERPRETATION OF THE OBTAINED RESULTS
Table 4 shows the annual averages assumed as thresholds in the NHPP processes, the number (n) of violations
in each time, that is, the annual mean is greater than the annual average in the follow-up period of T = 141 years
(1880 to 2020) and the Bayesian estimate of the year change-point assuming a PLP process in presence of a
chang-point

Table 4. Estimated Bayesian years of change-points using PLP processes in presence of a change-point

Cimate station Annual Number of Estimated
average violations (n) change-point (year)

Annual mean temperatures(C0)
Charleston 18.714 68 1961

New Orleans 20.881 65 1954
Washington 13.889 72 1925

Chicago 10.153 70 1941
Portland 12.081 75 1918

Annual mean precipitations(ml)
Charleston 102.24 67 1915

New Orleans 130.47 68 1914
Washington 87.27 63 1932

Chicago 73.55 67 1911
Portland 84.68 69 1960

Fig. 2. Fitted mean value functions for the annual mean temperatures
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Fig. 3. Fitted mean value functions for the annual mean precipitations

Assuming the polynomial NHPP (superposition of NHPP processes) we get very accurate estimation for the mean
value functions and the intensity function from where we could get complete information on the climate behavior,
as for example, the numbers of violations in each period of 10 years.

Table 5 shows some estimated mean value functions (accumulated numbers of violations) considering the annual
mean temperatures fitted by a superposition of NHPP (polynomial NHPP process) from where it is possible to see
the periods of 10 years with more violations (annual mean temperatures above the average annual temperature in
the follow-up period of T=141 years).
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Fig. 4. Bayesian fitted intensity functions for the annual mean temperatures and mean rain precipitations
assuming polynomial mean value functions

Table 6 shows some estimated mean value functions (accumulated numbers of violations) considering the annual
mean rain precipitationss fitted by a superposition of NHPP (polynomial NHPP process) from where it is possible
to see the periods of 10 years with more violations (annual mean rain precipitations above the average annual
temperature in the follow-up period of T=141 years).

Table 5. Some estimated mean value functions for the accumulated numbers of violation considering the
annual mean temperatures

Climate Station year - estimated accumulated Number of violations
number of violations in periods of 10 years

Charleston 40(1919) 18.5600 1919-1929= 3.31 (≈ 3)

50(1929) 21.8700 1929-1939= 3.14 (≈ 3)

60(1939) 25.0100 1939-1949= 3.14 (≈ 3)

70(1949) 28.1500 1989-1999= 5.94 (≈ 6)

110(1989) 44.4700 1999-2009= 7.06 (≈ 7)

120(1999) 50.4100 2009-2019= 8.37 (≈ 8)

130(2009) 57.4700
140(2019) 65.8400

New Orleans 30(1909) 6.2420 1909-1919= 7.288 (≈ 7)

40(1919) 13.5300 1919-1929= 7.85 (≈ 8)

50(1929) 21.3800 1929-1939= 7.44 (≈ 7)

60(1939) 28.8200 1939-1949= 6.4 (≈ 6)

70(1949) 35.2200 1999-2009= 4.47 (≈ 4)

120(1999) 51.3000 2009-2019= 7.86 (≈ 8)

130(2009) 55.7700
140(2019) 63.6300
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Washington 60(1939) 7.4300 1939-1949= 5.64 (≈ 6)

70(1949) 13.0700 1949-1959= 6.59 (≈ 6)

80(1959) 19.6600 1959-1969= 7.38 (≈ 8)

90(1969) 27.0400 1969-1979= 8.03 (≈ 8)

100(1979) 35.0700 1979-1989= 8.52 (≈ 9)

110(1989) 43.5900 1989-1999= 8.87 (≈ 9)

120(1999) 52.4600 1999-2019= 9.07 (≈ 9)

130(2009) 61.5300 2009-2009= 9.12 (≈ 9)

140(2019) 70.6500
Chicago 21(1900) 10.240 1900-1910= 5.49 (≈ 5)

31(1910) 15.730 1911-1921= 5.86 (≈ 6)

32(1911) 16.300 1921-1931= 5.87 (≈ 6)

42(1921) 22.160 1931-1941= 5.68 (≈ 6)

52(1931) 28.030 1949-1959= 4.91 (≈ 5)

62(1941) 33.710 1977-1987= 3.99 (≈ 4)

70(1949) 38.010 1991-2001= 3.93 (≈ 4)

80(1959) 43.010 2010-2020= 4.81 (≈ 5)

98(1977) 50.960
108(1987) 54.950
112(1991) 56.510
122(2001) 60.440
131(2010) 64.230
141(2020) 69.040

Portland 36(1915) 4.9370 1915-1925= 3.76 (≈ 4)

46(1925) 8.6930 1926-1936= 4.74 (≈ 5)

47(1926) 9.1200 1941-1951= 5.86 (≈ 6)

57(1936) 13.8600 1959-1969= 6.88 (≈ 7)

62(1941) 16.5300 1969-1979= 7.29 (≈ 7)

72(1951) 22.3900 1988-1998= 7.76 (≈ 8)

80(1959) 27.5200 1999-2009= 7.84 (≈ 8)

90(1969) 34.4000 2009-2019= 7.81 (≈ 8)

100(1979) 41.6900
109(1988) 48.5100
119(1998) 56.2700
120(1999) 57.0500
130(2009) 64.8900
140(2019) 72.7000
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Table 6. Some estimated mean value functions for the accumulated numbers of violation considering the
annual mean rain precipitations

Climate Station year - estimated accumulated Number of violations in periods
number of violations of 10 years

Charleston 3(1882) 2.635 1882-1892= 4.025 (≈ 4)

13(1892) 6.660 1912-1922= 2.17 (≈ 2

33(1912) 11.530 1935-1945= 3.14 (≈ 3)

43(1922) 13.700 1935-1945= 3.69 (≈ 4)

56(1935) 17.280 1946-1956= 4.76 (≈ 5)

66(1945) 20.970 1959-1969= 5.95 (≈ 6)

67(1946) 21.400 1979-1989= 6.93 (≈ 7)

77(1956) 26.160 1992-2002= 6.56 (≈ 7)

80(1959) 27.770 2006-2016= 4.84 (≈ 5)

90(1969) 33.720
100(1979) 40.350
110(1989) 47.280
113(1992) 49.350
123(2002) 55.910
127(2006) 58.280
137(2016) 63.120

New Orleans 26(1905) 8.634 1905-1915= 3.81 (≈ 4)

36(1915) 12.440 1919-1929= 4.53 (≈ 4)

40(1919) 14.120 1930-1940= 4.98 (≈ 5)

50(1929) 18.650 1949-1959= 5.48 (≈ 5)

51(1930) 19.130 1964-1974= 5.63 (≈ 6)

61(1940) 24.110 1980-1990= 5.56 (≈ 6)

70(1949) 28.860 1991-2001= 5.36 (≈ 5)

80(1959) 34.340 2002-2012= 5.05 (≈ 5)

85(1964) 37.130
95(1974) 42.760

101(1980) 46.130
111(1990) 51.690
112(1991) 52.230
122(2001) 57.590
123(2002) 58.110
133(2012) 63.160

Washington 10(1889) 7.360 1889-1899= 5.82 (≈ 6)

20(1899) 13.180 1902-1912= 4.95 (≈ 5)

23(1902) 14.780 1922-1932= 3.97 (≈ 4)

33(1912) 19.730 1934-1944= 3.60 (≈ 4)

43(1922) 24.140 1945-1955= 3.39 (≈ 3)

53(1932) 28.110 1969-1979= 3.40 (≈ 3)

55(1934) 28.860 1979-1989= 3.58 (≈ 4)

65(1944) 32.460 1993-2003= 4.03 (≈ 4)

66(1945) 32.810 2004-2014 = 4.53 (≈ 5)

76(1955) 36.200
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90(1969) 40.840
100(1979) 44.240
110(1989) 47.820
114(1993) 49.330
124(2003) 53.360
125(2004) 53.780
135(2014) 58.310

Chicago 3(1882) 2.798 1882-1892= 2.78 (≈ 3)

13(1892) 5.578 1892-1902= 2.82 (≈ 3)

23(1902) 8.396 1921-1931= 3.55 (≈ 4)

42(1921) 14.280 1935-1945= 4.10 (≈ 4)

52(1931) 17.830 1951-1961= 4.78 (≈ 5)

56(1935) 19.350 1965-1975= 5.33 (≈ 5)

66(1945) 23.450 1977-1987= 5.74 (≈ 6)

72(1951) 26.110 1991-2001= 6.04 (≈ 6)

82(1961) 30.890 2009-2019= 6.11 (≈ 6)

86(1965) 32.920
96(1975) 38.250
98(1977) 39.360

108(1987) 45.100
112(1991) 47.470
122(2001) 53.510
130(2009) 58.420
140(2019) 64.530

Portland 1(1880) 1.256 1880-1890= 5.11 (≈ 5)

11(1890) 6.368 1891-1901= 4.72 (≈ 5)

12(1891) 6.853 1902-1912= 4.68 (≈ 5)

22(1901) 11.570 1916-1926= 4.96 (≈ 5)

23(1902) 12.030 1927-1937= 5.32 (≈ 5)

33(1912) 16.710 1940-1950= 5.74 (≈ 6)

37(1916) 18.620 1959-1969= 5.96 (≈ 6)

47(1926) 23.580 1970-1980= 5.69 (≈ 6)

48(1927) 24.100 1996-2006= 3.12 (≈ 3)

58(1937) 29.420
61(1940) 31.090
71(1950) 36.830
80(1959) 42.180
90(1969) 48.140
91(1970) 48.730

101(1980) 54.420
117(1996) 62.040
127(2006) 65.160
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7 CONCLUDING REMARKS

In this study, we have considered the use of non-
homogeneous Poisson processes (NHPP) under
a Bayesian approach to analyze annual average
temperatures and rain precipitations of climate data
for some regions of North America reported for a long
period. In the data analysis, we assumed a special
parametrical form of the NHPP given by the PLP
process which is very flexible for the fit of the climate
data (temperature or rain precipitation). The unknown
parameters of the intensity function or rate λ(t), t ≥ 0
of the PLP-NHPP process in which the Poisson events
occur considering data (accumulated number of years
in a given time interval [0, t) with the climate index is
above a threshold given by the overal average in the
assumed period) in presence or not of a change-
point were obtained using MCMC (Markov Chain
Monte Carlo) methods and the free OpenBugs
software.

Assuming “model 1” (PLP-NHPP process) It is not clear
what the author want to say.

The obtained Bayesian inferences using the PLP-HHPP
processes (“model 1”) were satisfatory, especially in
the detection of one change-point, but the use of
a polynomial structure for the mean value function
(“model 2”) improved the estimation of the mean value
function (or the intensity function).

Assuming the polynomial NHPP (superposition of
NHPP processes) or “model 2”, we obtained very
accurate estimation for the mean value functions
and the intensity functions from where we can get
complete information on the climate behavior,
as for example, the detection of more than
one change-point and the numbers of violations
in each period of 10 years.

The obtained results are of great interest for
understanding the climate changes occurring across
the world. It is important to point out that the statistical
techniques proposed in this study can be also used for
other regions of the world.
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