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Abstract 
 

Aims: To discuss different LMM-based approaches applied in GWAS and software packages 
implementation and Classify different computational tools that applies LMM approaches according to 
their applicability and performance. To identify possible SNPs associated to a particular disease using 
different computational tools based on LMM approaches. To estimate genetic and residual variance 
parameters that account phenotypic variation of the disease. 
Study Design: Case control study 
Place and Duration of Study: The research was carried out in Tanzania at African Institute of 
Mathematical Science for six months. 
Methodology: Linear Mixed Models (LMMs) are widely applied in genomic wide associations studies 
(GWAS) owing to their effectiveness of correcting hidden relationship, population structure and family 
structure. This essay is aimed at exploring different mathematical approaches of LMMs in GWAS. These 
approaches are linear mixed model with inclusion of all markers (LMMi) and linear mixed model with 

Original Research Article 



 
 
 

Wanyonyi et al.; AJPAS, 1(4): 1-31, 2018; Article no.AJPAS.44107 
 
 
 

2 
 
 

exclusion of all markers (LMMe) when calculating genetic relationship matrix. LMMi is more efficient as 
compared to LMMe when applied in studies of randomly ascertained quantitative traits. The LMM 
approaches are classified based on their applicability and performance. Two computational GWAS tools 
namely, PLINK and EMMAX were used which were based on LMM approaches to analyze unpublished 
real data from West Africa (Gambia and Ghana). Genetic and residual variance parameters were 
estimated that accounted for the phenotypic variation of the disease to be 0.0594 and 0.0723. A total of 
338408 variants and 959 people (484 males, 405 females and 70 missing phenotypes) pass filters and 
quality control using PLINK was used in the study. Among the remaining phenotypes, 864 are cases and 
95 are controls. The performance of different mathematical approaches of LMMs and their software 
implementation, including EMMAX and Plink via the application to a GWAS of tuberculosis (TB) in 959 
individuals in West Africa (Ghana and Gambia) was compared. Of these 864 cases of TB and 95 healthy 
individuals retained after quality control (QC) using Plink, and 329601 autosome single nucleotide 
polymorphisms (from chromosome 1 to chromosome 22) included in the analysis after 288 duplicands ID 
individuals removed after QC. The LMM approaches are classified based on their applicability and 
performance. Two computational GWAS tools, namely Plink and EMMAX were used in the analysis of 
data. Genetic and residual variance parameters were estimated that accounted for the phenotypic variation 
of the disease to be 0.0594 and 0.0723. 
Results: Result showed that SNPs associated with tuberculosis were ��7225581 on chromosome 17 and 
SNP ��491412  on chromosome 13 with both having 0.69%  false discovery rate with step up 
significance value. Plink failed to correct hidden relatedness. Although EMMAX reduced the false 
positive rate, it still exhibited very low presence of stratification. 
Conclusion: This study aimed at understanding and exploring different approaches of mixed models as 
applied in genetic studies. Overview of genetic variation, advantages, successes and application of mixed 
models and current challenges of mixed models in GWAS were discussed. Moreover, the study showed 
that SNPs was associated with a particular disease using computational tools that applies LMM 
approaches. The summary statistics from PLINK and EMMAX found two causal SNPs associated with 
the TB. These SNPs were rs7225581 on chromosome 17 and SNP rs4941412 on chromosome 13 with 
both having 0.69% FDR H. However, PLINK failed to correct hidden relatedness. This phenotypic 
variation showed that all common single nucleotide polymorphisms (SNPs) expressed approximately 
18.52% of phenotypic variation of the disease.  
 

 

Keywords: Genomic wide association studies (GWAS); mixed linear models approaches; single nucleotide 
polymorphism (SNP). 

 

1. Introduction and Background 
 
1.1 Overview 
 
A Linear Mixed Model (LMMs) is an extension of the standard linear regression. For formulation and 
estimation, we consider one of the simplest LMMs [1]: 

 
 � = �� + �� + �                                                                   (1.1.1) 

 

where � = (��,… . . ,��)
�  is vector of response on � subjects, � is � ×  � matrix of predictor values on the 

subjects, � = (��,… . . ,��)
�  is a vector of (unknown) coefficients of � , �  is � ×  �  matrix of predictor 

values associated with random effect, � = (��,… . . ,��)
�   is a vector of random effects and � is a vector of 

random errors, where  � ~ ��0,���� and � ~ �(0,���) [2,3]. The formulation of this model for continuous 

variation in human population has been useful in advancing the human genetics variation [4,5]. The model 
partitions the variation in a quantitative trait into three sources [6]: the effect of a single major gene, residual 
additive heritable effects of polygenic loci 1 , and the independent random effects of the environment. 

                                                      
1 polygenic loci refers to any individual locus which is included in the system of genes responsible for the genetic component of 
variation in a quantitative (polygenic) character 
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According to Guo and Thompson [6], model (1.1.1) can be used to unravel the genetic basis of quantitative 
traits such as height, weight and blood pressure. The model initially used to explain how the genetic 
component of a quantitative trait, such as weight, height, blood pressure is correlated between relatives [3]. 
In genetic association studies, extension of this LMM has been studied in order to estimate heritability of 
traits, capture genetic relatedness and breed values of individuals and location of quantitative trait loci (QTL) 
[3,7]. This LMM has gained popularity in testing for association in genome-wide association studies 
(GWAS) because of their demonstrated effectiveness in accounting for relatedness among samples and in 
controlling population stratification 2 and other confounding factors [8,9,10]. It tackles confounders using 
measures of genetic similarity to capture the probabilities that the pairs of individuals have causative alleles 
in common [11], and such measures include those based on identity by descent and the realised relationship 
matrix (RRM) [12]. According to Jiang et al. [10], the model (1.1.1) is primarily designed for quantitative 
traits, and when applied to case control data, it imposes a misspecified model on the binary phenotype, 
which can lead to power loss. This loss of power is due to several model violations dependence between 
variant used and tested causal variants in estimating kinship dependence between genetic and environmental 
effects and use of non-continuous traits [13,14]. The use of generalized linear mixed models (GLMMs) 
resolves this problem of sensitivity due to confounding, but leads to a different difficult issue of estimating 
parameters due to high dimensions [15]. 
 

1.2 Key concepts in Genetic Variation 
 
Genetic variation can be defined as the difference between individuals or the differences between population 
in terms of trait such as height, skin or color. The variation is a result of subtle differences in DNA caused by 
either mutation, gene flows, sexual reproduction or genetic drift 3 [16]. This causal relationship between 
genetic polymorphism within a species and phenotypic differences observed between individuals has been of 
fundamental biological interest for researchers in the field of GWAS [17]. GWAS has been used to identify 
causative/predictive factors for a given trait (i.e. the number of loci that contribute and their respective 
contribution to the phenotype) but it fails in the case of rare variants that cannot be detected due to 
confounding [18]. The other methods that have been used includes genomic control4, quantitative trait loci 
(QTL) 5, principal component analysis (PCA) 6 and LMM. All these methods fail in the case confounding 
expected LMM that incorporate pairwise genetic relatedness between every pair of individuals in the 
statistical model directly, reflecting that the phenotypes of two similar individuals are more likely to be 
correlated than genetically dissimilar individuals [13]. Linkage disequilibrium (LD): This is defined as 
non-random association of alleles at different loci that occurs when genotypes at two loci are not 
independent of another [19]. Heritability: The variance parameter that estimates how much variation in a 
phenotypic trait in a population is due to genetic variation among individuals in that population. It can also 
be defined as the extent to which genetic individual differences contribute to individual differences I n 
observed behaviour (or phenotypic individual differences). The total phenotypic variance ���  within a 

population is the sum of genetic variance (���) and environment variance (���), that is ��� = ��� +
��� . Where ���

 is given as ��� = ��� + ��� + ���,  ���
 is the additive (polygenic) genetic 

variance, ���
 dominance variance and ���

 is gene-gene interaction (epistatic) variance. Epistatic variance 
involves interaction between alleles at different loci. A dominance variance is due to non-linear interactions 
between alternative alleles at the same locus, while additive genetic variance is due to inheritance of a 
particular allele and depicts the effects of individual alleles on the phenotype. Heritability is grouped into 
two categories. Broad-sense heritability (� �) which is defined as the ratio of total genetic variance to total 
phenotypic variance, 
 

                                                      
2 population stratification is defined as the differences in allele frequencies between cases, and controls due to systematic differences in 
ancestry rather than association of genes with disease [18]. 
3 genetic drift is random fluctuations in allele frequencies over time due to sampling effects, particularly in small populations. 
4 Genomic control is defined as a method of detecting stratification based on the genome-wide inflation of association statistics. 
5 QTL is a section of DNA (the locus) that correlates with variation in a phenotype (the quantitative trait) [20] 
6 PCA is a dimensionality reduction technique used to infer continuous axes of variation in genetic data, often representing genetic 
ancestry. 
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 � � =
���

���
                                                                                                                                  (1.2.1)  

 
and narrow- senses heritability (ℎ�) which is the ratio of additive genetic variance to the total phenotypic 
variance,  
 

ℎ� =
���

���
 .                                                                                                                                  (1.2.2) 

 
Genotypes-Phenotype -: Genotype is the allelic constitution of an individual. It is part of DNA sequence of 
the genetic makeup of the cell that gives rise to observable traits (phenotype) of an organism [7]. Different 
alleles or forms in a genotype are produced by mutations to DNA, and may result into beneficial or 
detrimental changes. Phenotypes are all the observable traits (characteristics) of an organism [13], usually 
with emphasis on traits controlled by the genes under examination. The phenotypic observation on every 
animal is determined by environmental and genetic factors [7] as illustrated in Fig. 1.1. 
 

 
 

Fig. 1.1. A model defining phenotype 
 

Therefore, the phenotypic observation can be defined by the following model [12]: phenotypic observation = 
environmental effects + genetical effects + residual effects, or 
 

��� = �� + �� + �                                                                                                                         (1.2.3) 

 
where ���  is the record of � of the ���  animal; ��  refers to identifiable non random effects such as year of birth 

or sex of ��� animal; ��  is the sum of the additive (��), dominance (��) and epistatic (��) genetic values of 
the genotype of animal �; and ���  is the sum of random environmental factors affecting animal �.  
 
Single Nucleotide Polymorphisms (SNPs). SNPs is a single base pair mutation at a specific locus and 
usually consists of two alleles (where the rare alleles frequency is greater than one percentage) [21]. They 
are the most abundant type of sequence variation in the human genome. These SNPs are useful in many 
diverse applications that include disease gene mapping, evolution, pharmacogenetics and forensics in 
understanding genetic variation [22]. SNPs are formed as a result of various kinds of changes that occur in 
the nucleotide sequence [21]. For example, these changes can happen because of the errors during DNA 
replications or radiation of chemicals. The mutation can alter a gene, change its expression or stop a gene 
from working [21]. This depends on the type of mutation and the location it occurs in the nucleotide 
sequence [23]. The SNPs can also be used to identify multiple polymorphisms in a region of DNA [21]. 
Multiple polymorphisms are caused by linkage disequilibrium: particular combinations of alleles in regions 
that are nearby in the DNA tend to be inherited together, and when inherited together as blocks, they are 
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called haplotypes [21,23]. In association studies, haplotypes allow us to identify multiple polymorphisms on 
a short block of DNA just by genotyping a few of them. This has led to the use of tag SNPs [13] as 
illustrated in Fig. 1.2. 
 

 
 
 

(a) At the top, each line represents a section of DNA with three different single nucleotide 
polymorphisms. 

(b) In the middle, the DNA section has been compressed into only SNPs. 
(c) At the bottom the haplotype section has been further compressed into only a few 

SNPs that are enough to determine which haplotype the individual has [21]. 

 

Fig. 1.2 Tag SNPs and haplotypes 

There is a haplotype map (Hapmap) project that aims to map the haplotypes in the human genome across 
different populations [24]. The Hapmap project is intended to design genotyping array chip to measure the 
tags for world-wide population. This project contributes in advancing human variation and plays a crucial 
role in GWAS. Recently, genotyping chips can measure a million SNPs with the cost of around one hundred 
euros per sample [21]. This is the reason why SNPs are widely used in genetics because of the cheap 
genotyping cost, abundance of SNPs in the genome, and their robustness in capturing the changes in the 
genome [25]. Genome wide association studies (GWAS). GWAS is an examination of a genome-wide set 
of genetic variants in different individuals to see if any variant is associated with a trait [16,17]. In order to 
obtain a reliable signal, given the very large number of tests required, association must show a high level of 
significance to survive the multiple testing correction. Genome wide association studies are particularly 
useful in finding genetic variations that contribute to common, complex diseases such as schizophrenia and 
type II diabetes [26]. The main goal of GWAS is to identify loci which harbour causative variants hoping to 
implicate genes near these loci, thus leading to better understanding of disease and novel therapeutics [7]. In 
addition, GWAS use genetic risk factors to make predictions about who is at risk and to identify the 
biological underpinnings of disease susceptibility for developing new prevention and treatment strategies 
[26]. Using GWAS [21], the statistical association found are false positives or true associations [22,26]. 
False positives can be partially attributed to spurious associations caused by population structure and cryptic 
relatedness among individuals in a given cohort or results of false significant test results (type I error) [22]. 
True associations can result from the linkage disequilibrium: SNP tags a segment of the DNA, locus, which 



increases susceptibility for having low or high values of the phenotype or having a disease 
association can also be a consequence of the SNP causing a direct result, for example a single nucleotide 
polymorphism can directly increase levels of 
often use case control designs as illustrated in Fig
phenotype [10,21,28]. This approach is good in capturing common variants but may fail 
power to detect variants that are rare in the population 

Family-based study is another approach used in a GWAS 
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as families that suffer from a specific disease are needed 
(1.1.1) to detect SNPs associated to a trait. Researchers make use of LMM to capture fixed effects which 
represent a candidate SNP (βX), mean or other confounding variables and random effects represent genetic 
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to move beyond mere statistical associations to identify th
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rather than causation [30]. Second, SNP associations identified in one population frequently are not 
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increases susceptibility for having low or high values of the phenotype or having a disease 
association can also be a consequence of the SNP causing a direct result, for example a single nucleotide 
polymorphism can directly increase levels of high-density lipoprotein (HDL) [21]. Genome wide association 
often use case control designs as illustrated in Fig. 1.3 to identify genetic variants related to a specific 

. This approach is good in capturing common variants but may fail to achieve enough 
power to detect variants that are rare in the population [10]. 

 

Fig. 1.3. Case-cohort study 
 

based study is another approach used in a GWAS [21]. This approach provides protection against the 
heterogeneity of the population as well as genotyping errors since genotypes can be checked against 

. The biggest drawback of using a family-based study is that the samples are harder to obtain 
as families that suffer from a specific disease are needed [21]. Family-based studies are modeled using LMM 
(1.1.1) to detect SNPs associated to a trait. Researchers make use of LMM to capture fixed effects which 

), mean or other confounding variables and random effects represent genetic 
ng the candidate SNP (u), and they capture the individual relatedness through kinship 

matrix based on either pedigree or genetic markers. GWAS have the following limitations; first it is difficult 
to move beyond mere statistical associations to identify the functional basis of the link between a genomic 
interval and a given complex trait since the case control design of GWAS only indicates the association, 

. Second, SNP associations identified in one population frequently are not 
ransferable to members of other populations [30]. This is because most of SNPs identified by GWAS are 

. Third, the bulk of the heritable fraction of complex traits has not been 
accounted for in recent GWAS. This is because GWAS do not capture information about rare variants and 
have limited statistical power to detect small gene–gene and gene–environment interactions 

(GRM)-: Among early steps in GWAS that makes LMM possible is 
incorporation of kinship matrix into the statistical model that only needs to be estimated once 
decreases computing time, controls Type-I error and has good properties on the statistical power and the 

. In addition, it compels the estimated covariance matrix of the phenotypes to be positive 
. Kinship matrix describes how individuals are genetically related to each other according 

to their pairwise genotypic similarity [21]. Its structure incorporates population structure, cryptic relatedness 
. It has computational advantage when small amounts of data is to be read for each 

[32,33]. The estimated covariance matrix of the samples is based upon the 
variance of the sum of the random effects of the SNPs, summarised by a covariance parameter representing 
the genotypic additive variance of the phenotype [32,34]. Hence, the covariance matrix depends on the 

mposed by the kinship matrix [32]. The kinship matrix can be inferred 
based on known pedigree relations, genetic markers, or a combination of both [18,33]. Pedigree
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kinship describes the recent relatedness better while marker-based kinship has a better capture on the 
distance relations. Although correct use of a marker-based kinship is preferred due to its higher statistical 
accuracy [33,35], its estimation varies highly in computing time across different available algorithms and 
definitions. Moreover, the computing time tremendously increases with sample size. The kinship matrix is 
obtained using the following formula of calculating the relatedness for individual’s j and k [21]: 
 

��� =
�

�
∑

(�������)(�������)

���(����)

�
��� ,                                                                                                    (1.2.4) 

 
where � is the set of loci � without missing data for � and � individuals, ���and ���  denote the number of 

copies of the minor allele for the ���  and ���  individual in SNP �. ��  is the frequency of the minor allele for 
SNP �. 
 

1.3 Advantages and success of mixed models in GWAS 
 
The difficult statistical problem in GWAS is to find the genetic location that has a significant effect with 
respect to trait. The statistical method currently used is LMM. LMMs are used to estimate component of 
heritability explained by genotype marker and predict complex trait using genetic data [27]. For example, 
Yang et al. [27] uses LMMs framework to address the problem of missing heritability [13]. The authors find 
out that the fraction of the heritability of the height explained by asset 500K genotyped SNPs 7  is 
considerably larger than the heritability explained by genome wide significant hits alone, suggesting that the 
height is indeed driven by a plethora of common variants with small effect [13,27]. 
 
Furthermore, LMMs provide an increase in power to detect causal variants associated with a particular 
disease by applying a correction that is specific to the sample structure [36]. This aid to unravel rare variants 
that usually pose a greater challenge for all methods owing to the differential confounding of rare and 
common variants [36]. 
 
LMMs have been used previously with family-based data, and have successfully found genetic variants that 
affect plasma plasminogen levels (PLG) and estimated heritability for the PLG using a cohort of sibling pairs 
[21]. They have also been used in testing association studies in many studies ranging from human 
intelligence to bread wheat [22]. 
 
LMMs are used for studies using population samples. Typically, using population sample implies that there 
needs to be a correction for population stratification. Here, different statistical methods are used to take into 
account the population structure, for instance, genomic control (GC), structured association (SA) and 
principle component analysis (PCA). However, these methods are inadequate in the case of model organism 
association mapping [13,18]. GC suffers from weak power when the effect of the population structure is 
large as in model organisms. SA or PCA , which assumes a small number of ancestral populations and 
admixture, only partially capture the multiple levels of population structure and genetic relatedness in model 
organisms [13]. By contrast, the genetic relatedness matrix (kinship matrix) used in the LMMs captures both 
population structure and the cryptic relatedness [13,21]. 
 
LMMs have been applied in breeding selection, in particular when choosing sires and dames to mate in order 
to improve trait, or phenotype in the next generation e.g Dairy yield [12]. 
 
LMMs are used in predicting disease risk in the Welcome Trust Case and Control Consortium (WTCCC) 
dataset and quantitative phenotypes in heterogeneous. For example, there are seven common diseases such 
as bipolar disorder, coronary artery disease, crohn disease, hypertension, rheumatoid arthritis, type 1 diabetes 
and type 2 diabetes that have been under WTCCC study, which have been previously used for assessing risk 

                                                      
7  genotyped SNPs are measurement of genetic variations of SNPs between members of a species that have been 

determined 
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prediction. In the case of prediction of quantitative phenotypes in heterogeneous, the mouse dataset has 
previously been used to compare phenotype prediction methods [37]. 
 

1.4 Current challenges in mixed models in GWAS 
 
1.4.1 False positive association 
 
A LMM is primarily designed for quantitative traits and therefore, when applied to case control data, it 
imposes a misspecified model on binary phenotype, which can lead to current challenges in Mixed models 
(CCMM) in GWAS to type 1 error [10,14]. The variance component estimated by various hill-climbing 
approaches such as the Nelder-Mead simplex algorithm and Newton Raphson algorithm provide only a 
locally optimal solution, which may cause the statistical inference based on these to be inaccurate [13]. 
 
1.4.2 Loss in power 
 
Loss in power by inclusion of the candidate marker. It has been shown that inclusion of the candidate marker 
in the GRM can lead to loss in power [11,38,39]. This is due to double-fitting of the candidate marker in the 
model, both as a fixed and random effect when computing GRM and testing genetic association between 
phenotype and genotype (Yang et al., 2014). Listgarten et al. [40], who referred to this phenomenon as 
‘proximal contamination,’ demonstrates that a LMM with the candidate marker excluded (LMMe) is the 
mathematically correct approach and provides an elegant and efficient algorithm for LMMe analysis 
(implemented in FaST-LMM software). 
 
However, owing to the computation time or the memory constraints and the complexities of LD, the LMM 
with the candidate marker included (LMMi) is more commonly applied in practice [33,36,41]. Yang et al. 
([36] derives a new expression, validated by simulations, to quantify the reduction in test statistics when 
LMMi is applied. For linear regression (LR), the expected means of χ2 association statistics, ����� , is; 
  

����� = 1 +
� ���

�
                                                                                                                     (1.4.1) 

 

where �  denotes the number of samples, �  is the number of markers and ℎ�� denotes the heritability 

explained by genotyped and/or imputed markers, regardless of the genetic architecture of the traits. For 
LMMi, 
 

����� = 1.                                                                                                                                  (1.4.2) 
 
Equation (1.4.2) highlights the dangers of using �����  (or ������� ) to assess the presence of population 
stratification or other artifacts. When one observes lower �����  (or ������� ) values for LMMi than for 
linear regression it might be concluded that this difference was due to correction for confounding, but this 
result is in fact expected, even in the absence of any confounding. Finally, for LMMe; 
 

����� = 1 +
�����

�������
,                                                                                                                 (1.4.3) 

 

where � =
����

�
 and � >  �. The ratio of �����  between LMMe and LMMi is 

 

1 +
�� ���

�������
,  

 
which is consistent for causal, null and all markers. 
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1.4.3 Using a small subset of markers in the GRM 
 
Here, we briefly discuss how GRM, a method that use a small subset of markers and can compromise 
correction for stratification. Some researchers in GWAS have advocated choosing a subset of markers to 
include the GRM when employing mixed linear model association (MLMA) methods [11,39,42]. FaST- 
LMM [40] uses an equally spaced subset of 4,000 (or 8,000) random markers (RMs) in the GRM, motivated 
by a computational speedup that reduces computational cost to CCMM in GWAS 
 
�((���)��) when ��� <  �. The researchers in GWAS make use of local minimum of the genomic 
control factor or the global maximum of out-of sample prediction when selecting markers (markers with 
genome-wide significance value). This selection is based on the result of GRM [39,42]. However, some 
include all the markers when analyzing genetic data, although it is always computational intensive due to 
high dimensional problems [15]. These are the problems confronted by researchers when performing genetic 
association analysis [33,41]. Yang et al. [36] evaluates the impact of these choices on both false positive 
associations and power and finds that there is subtle population stratification, in particular when a few 
thousand random markers are used and the TM associated markers selected on the basis of the first local 
minimum of the genomic control factor ������� . It concludes that using a small subset of markers in the 
genetic relatedness matrix can compromise correction for stratification. Based on the methods published so 
far, they recommend that studies of randomly ascertained quantitative traits in which population 
stratification is a key concern should generally include all markers (except for the candidate marker and 
markers in LD with the candidate marker) in the genetic relatedness matrix. 
 
1.4.4 Loss of power in ascertained case-control studies 
 
Most of research in GWAS on mixed model analysis assumes that study samples are randomly ascertained 
with respect to the phenotype of interest [10,36,43]. This is usually true for quantitative phenotypes but not 
for case-control studies, which generally oversample disease cases to increase study power [14,28]. Recent 
work highlights the loss of power that occurs in ascertained case-control studies when genetic or clinical 
covariates are modelled as fixed effects without accounting for ascertainment [10]. For example, in the case 
of nonrandom case-control studies, the performance of LMMs deteriorates with increasing sample [43]. 
However, a subset of these studies has developed new methods to address this problem [36]. For instance, 
Weissbrod et al. [43] proposes a framework called LEAP (liability estimator as a phenotype) that tests for 
the association with the estimated latent values corresponding to severity of phenotype. This problem can 
also be addressed by moving from the LMM to GLMM framework [13] using an appropriate link function �, 
where instead of assuming model (1.1.1), they assume that 
 

�(�(� =  1|�,�,�)) =  �� +  ��,                                                                                          (1.4.4) 
 
where � represents phenotype vector for individuals, � is fixed effect of data, � is the vector of fixed effects, 
� is vector of random effect and � is random effect data. 
 
1.4.5 Problem of confounding due to sharply designed structure and rare variant in GWAS 
 

Confounding in GWAS arises from population stratification and it has been recognized for many years 
[9,18]. It is attributed to spatial structure population in conjunction with rare variants, and no current 
available statistical genetic method could account it [40]. In particular, when simulating the non-genetic 
cause of disease arising from a sharply defined spatial regions, LMMs and principal component analysis all 
fail to correct for stratification resulting systemically inflated test statistics and needs geographical 
information [40]. FastLMM select was developed by Listgarten et al. [40] to address this particular problem 
of confounding due to sharply designed structure, rare variant and any other types of confounding. 
 

1.4.6 High computational cost 
 

According to Loh et al. [41], LMM analysis is computational expensive despite a series of recent algorithmic 
advances. The current algorithm requires a total running time of either O(MN2) or �(���) (where � is the 



 
 
 

Wanyonyi et al.; AJPAS, 1(4): 1-31, 2018; Article no.AJPAS.44107 
 
 
 

10 
 
 

number of samples and � is the number of SNPs). Therefore, this cost is becoming prohibitive for large 
cohorts, compelling existing methods to subsample the markers so that � <  �  [40]. Loh et al. [41] 
proposes a more efficient mixed model association method, BOLT-LMM [41], which requires only a small 
number of �(��) time iterations and increases power by modeling more realistic, non-infinitesimal genetic 
architectures via a Bayesian mixture prior on marker effect sizes in order to address this problem. 
 
Linear mixed effect models are statistical models that contains both the fixed and random effects which 
contribute linearly to the response function [13]. They are developed to handle clustered data or data with 
repeated measurements (longitudinal data). Clustered data are data in which observations are grouped into 
disjoints classes (data grouped into clusters by a common trait), according to some classification criterion 
[1]. Observations within the same cluster share common random effects and are statistically dependent [44]. 
 
The parameters of mixed effect are categorised into two groups: fixed effects and variance-covariance 
component [3]. Fixed effects are the average effects of predictors on the response while variance-covariance 
component is associated with the covariance structure of the random effect and of the error term [44]. The 
general form of the model is 
 

� = �� + �� + �                                                                                                                  (2.1.1) 
 
where � is a � ×  1 vector of responses, � is a � ×  � design matrix for fixed effect, �  is a � ×  � design 
matrix for random effect, � is a � ×  � vector of unknown fixed parameters and u is a � ×  1 is vector of 
random variable and is the error vector. It is assumed that 
 

� ∼  �(0,�) 
and 

� ~ �(0,�), 
 
where �  and �  are variance-covariance matrix. The variance-covariance matrix �  represents the within 
cluster variances and covariances while �  denotes variances and covariances of the between-cluster effect. 

According to Waterman [44], the vectors � and � are also assumed to be independent and can be expressed 
in matrix notation as follows 
 

�
�
�
� ~ �� ��

0
0
��,��

� 0
0 �

��                                                                                                            (2.1.2) 

 
The expected value of � conditioned on the random effect equals to 
 

�[�|�] =  �� +  ��                                                                                                                  (2.1.3) 
 
and the expected value of � is 
  

�[�] =  �[�[�|�]] =  ��.                                                                                                         (2.1.4) 
 
The variance of y can be found using the conditional expectation and conditional variance as 
 

� ��(�|�) =  �. 
 

The total variance of model (in 2.1.1) is expressed thus: 
 

� ��(�) =  �[� ��(�|�)] +  � ��(�[�|�]). 
=  � +  �� � ′. 
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It was noticed that conditional distribution of �|� follows a normal distribution with mean equal to �� +
��  and variance equal to �  under the normal assumption of vectors � and � . In addition, the distribution � 
follows a normal distribution with mean �� and variance covariance matrix equal to � +  �� � ′. 
 
The variance component model (Random effect model) and mixed effect (ANOVA) model as well as linear 
model for longitudinal data are special cases of model (in 2.1.1) [45]. The researchers in GWAS make use of 
this model to unravel the genetic basis of quantitative traits such as height, weight and blood pressure [6]. 
 
A fixed effect model (in 2.1.1) is a statistical model that represents the observed quantities in terms of 
explanatory variables that are treated as if the quantities were non-random [1]. It is formed when random 
variable is excluded from the model (2.1.1), The general form of the model is as follow 
 

� = �� + �                                                                                                                                  (2.1.5) 
 

where 

                    � = �

��
⋮
��
�    is a � ×  1 vector of responses. 

 

2 Likelihood Estimation of Parameters 
 
According to Searle et al. [46], there are different estimation methods for the parameters in model (2.1.1), 
but maximum likelihood (ML) and restricted maximum likelihood (RML) are most commonly used [1]. 
 

Pinheiro [1] shows that when writing the likelihood of � in model (in 2.1.1), it is convenient to factor out the 
variance of the error term, ��, from the variance-covariance matrix of random effect. For example, in the 
following formula let; 

 
� =  ��� ,                                                                                                                                   (2.2.1) 

 

where �  is called the scaled variance-covariance matrix of the random effects. Then, the total variance in 
model (2.1.1) can be expressed as follows; 
 

� = ����(�)= ��� ′�� + ���, 
                          = ��(� ′��� + ��), 

= ���                                                                                                                     (2.2.2) 
 

where � = (� ′��� + ��). 
 

We find the maximum log-likelihood function of y in model (in 2.1.1) as follows; 
  

�(�,��|�)= −
1

2
 [� log (2����)+ log (|� |)+

1

��
(� − ��)�� ���(� − ��)], 

 
then estimate the values of � and �� that maximizes (the equation in 2.2.3). This can be done by taking the 
derivative of equation (in 2.2.3) with respect to each parameter then equating it to zero [44]. The values of β 
and σ2 that maximize (equation in 2.2.3) are given by the following formulae: 

  
���� = (��� ���)(��� ���)                                                                                                       (2.2.4) 
  

����� =
�

�
�� − ������

�
� −1

�� − ������                                                                   (2.2.5) 
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2.1 Restricted maximum likelihood (RML) 
 
According to Pinheiro [1] and Kang et al. [33], RML estimates of the variance-covariance components are 
usually preferred to ML estimates in LMMs. This is because RML estimates take into account the estimation 
of fixed effects when calculating the degrees of freedom associated to the variance components estimates, 
while ML estimates do not [33]. In this subsection we discuss how to obtain the estimates of parameters for 
both fixed and random effect model using RML. 
 
RML estimates are defined as ML estimates of the likelihood of a set of � − � linear combination of the 
response vector y, corresponding to n − p vectors that span the orthogonal compliment of the column space 
of fixed effects design matrix [1]. According to Thisted [47], one way to define such a set of vector n − p is 
by considering the ��  decomposition of � 

 

� = �� = [���,���]�
��
0
�= ����                                                                                          (2.2.6) 

 
where R1 is the upper triangular matrix, ��  and �� are set of orthonormal vectors that span the orthogonal 
compliment of the column space � [11]. The RML estimates can be obtained from the likelihood of the 
following equation: 
 

�∗ = ���                                                                                                                                      (2.2.7) 
 
Equation (in 2.2.7) is simplified further by substituting � from model (in 2.1.1), which leads to 

  
�∗ = ���� + ��� 
(since   ��

�� = 0  equation (in 2.2.6)). 
 
The total variance is now given as 

  
���(�∗)= ��

��� � ��� + ��
����, 

= ����
��� � ��� + ��

����
��, 

= ��(��
��� � ��� + �) 

 
(after substituting G from (2.2.1) and � = ���), 

 
since ��

��� = 1 because  �� is orthonormal vectors. Taking � ∗ = ��
��� � ��� + �)   implies that 

 
� ��(�∗) = ��� ∗.                                                                                                                      (2.2.8) 

 
Therefore,            
 

�∗ ~ �(0,��� ∗). 
 

Letting n∗ = n − p, we can write the corresponding restricted likelihood as [1] 
 

�� (�,�
�|�)= −

�

�
 [�∗ log (2����)+ log (|� ∗|)+

�

��
(�∗� ∗���∗�)].                 (2.2.9) 

 
The value of σ2 that maximizes (equation in 2.2.9) is thus; 

 

���� =
1

�∗
(�∗� ∗−1�∗).                                                                                                            (2.2.10) 
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Notice that the restricted likelihood of equation (in 2.2.9) does not depend upon β and hence no fixed effects 
RML estimates are available. 
 
These methods ML and RML are widely applied in GWAS. A number of tools have been developed to 
implement these methods. The GWAS tools include EMMAX [35], EMMA [33], GCTA [48], FAST-LMM 
[40], Grammar-Gamma method [49], FASTA [50], GEMMA [8] and TASSEL [51]. 
 

2.2 Random effect model 
 

A random effect model is a statistical model which assumes that the data being analyzed are drawn from a 
hierarchy of different populations whose differences relate to that hierarchy [44]. It was proposed by 
Visscher et al. [52] to model the genetics factors affecting the phenotypes in GWAS. The general model is 
given as thus 

 
�� = � + ∑ �����

�
�� � + �� .                                                               (2.2.11) 

 
Where ��  is a � × 1 vector representing the number of individuals with quantitative traits phenotypes, so 

�[���]=  0 and � ��(� ��)= 1. �� ∼  �(0,���) is the effect of the ���  individual,  �� ∼  �(0,���) is the 

environment effect which is assumed to be independent and identically distributed across individuals.µ is the 
mean term, that is typically assumed to be known and equal to 0 and � is the number of causal SNPs. ���  is 

the value the ���  causative SNP of the ���   individual after standardizations, and is defined by the following; 
 

��� =
�������

����(����)
,                                                                                                                   (2.2.12) 

  

Where ���  is the genotype indicator of the ���   SNP (�� =  0,1 �� 2), ��  is the minor allele frequency, and 

� is the environment effect [52]. 
 
The � ��(� ����) is defined as follows; 

, 

� ���� �����= � ���� ������(��)=
�������− 2������(��)

2���1− ���
= ���(��)  

 

since �������− 2���= 2���1 − ��� under Handy-Weinberg principle8 [13]. 

 
Defining 

�� = � � ����
�

���
 

 
as genetic random effect of individuals �. The genetical variance is given by [33] 
 

� ��(��)= ��� = ���   
and 

���(��,��)=
���

�
 ∑ ���� ��

�
���                                                                                           (2.2.13) 

 
It follows that 
 

� ~ �(0,���� + ���), 
 

                                                      
8 Handy-Weinberg principle state that allele and genotype frequencies in a population will remain constant from generation to 

generation in the absence of other evolutionary influences. 
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where 

� =
1

�
� � ′ 

 
and �  and �  can be interpreted as genotypes matrix and the genetic correlation matrix. 
 
This model forms the basis of LMM based association analysis (LMMA) when computing GRM by 
including the candidate SNP [48]. The variance ���

 and ���
 are estimated using ML or RML implemented 

in LMMs based approach GWAS tool such as Fast-LMM [50], EMMAX [35] and GEMMA [8]. 
 

2.3 Linear mixed model association (LMMA) approaches 
 
LMMA is widely applied in GWAS. It is used to determine the genetic association between phenotypes and 
genotypes of all individuals [18,48]. The general form of the model is 
 

� = 1� + �� + � + �,                                                                                                           (2.3.1) 
 
where 1 is vector of ones, � is the mean term, � is a � × � matrix of (genotype indicator variable of the 
candidate SNP) predictor values, � is a � ×  1 vector of fixed effect of the candidate SNP, � is a � ×  1 
vector of polygenic effects with each element being the aggregates effect of all SNPs for all individuals and 
is the error term [18]. It assumes as follows that; 
 

� ~ �(0,����) 
 

and 
 

� ~ �(0,����), 
 
where �  is genetic relationship matrix estimated from SNP data as described in equation (1.2.4) and � is a 
� ×  � identity matrix. Therefore, 
 

���(�)= ���(� + �) 
                    = ���� + ����. 

 

The mean µ in (2.3.1) is set to zero by normalizing the phenotype (�) and the genotype indicator variable 
(�) [36]. For example, considering as follows; 
 

� ∼  �(0,1) 
and 

   ��� =
������

���(����)
 , 

 

where ��  is the allele frequency and ���  is the genotype indicator of the ���  SNP (�� =  0,1 �� 2). 
 

The LMMA is categorised into two thus: LMMA including the candidate SNP (LMMi) and LMMA 
excluding the candidate SNP (LMMe). They are tools to implement LMM-based approaches. These tools 
either include or exclude the candidate SNP when computing GRM in (1.2.4). They include EMMAX [35], 
EMMA [33], GCTA [48], FAST-LMM [40], Grammar-Gamma method [52], FASTA [50], GEMMA [8] 
and TASSEL [51]. 
 

2.3.1 Linear regression analysis 
 

Linear Regression (LR) is widely used in GWAS for analysis of genetic associations between phenotypes 
and genotype. LR is defined as an approach for modeling the relationship between a dependent variable y 
and one or more independent variables (explanatory variable). 
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Let �, � and �� be the cohort (sample) size, the number of markers and the causal markers respectively. 
Assuming that no population structure or other artefacts and all markers are independent. Yang et al. [36] 
derives a new expression, validated by simulations to quantify the reduction in test statistics when LMMi is 
applied. For LR, the expectation of �� association statistics2 (����� ) LR analyses is as follows; 
 

����� (��)= 1 +
����

�
 for all SNP markers, 

����� (��)= 1 +
����

��
for causal SNP markers, 

����� = 1 for all markers, 
 
which does not depend on the genetic architecture of the trait as opposed to ������� . �������  is the median 
of �� association statistics divided by expected median under the null hypothesis of no association [53]. The 
�������  is often slightly lower than �����  when there is highly polygenic trait, but much lower for the case 
of less polygenic trait or very large sample size [54]. The derivation of LR analysis for LMMi and LMMe is 
summarized in Table (2.1) below. 
 
For LMMi (in 2.3.2). Here, we closely follow the discussion of Yang et al. [36] on how LMMi is applied in 
GWAS. LMMi contains two random variables and one fixed effect. These two random variables are as result 
of inclusion of candidate SNP when computing GRM as well as the random variable associated with all 
other SNPs. For example, in model (in 2.3.1) � can be defined as 
 

� =  ��  + � ��� 
 

where ��  is the random variable associated with all other SNPs before inclusion of candidate SNP while 
� ���  is the random variable associated with candidate SNP after inclusion. The general form of the model is 
 

� = �� + �� + � ��� + �                                                                                                 (2.3.2) 
 
where � is a � ×  1 vector of responses, � is a � ×  � matrix of fixed candidate SNP genotypes, � is a � × 1 
vector of fixed candidate SNP genotypes, ��  is a � × 1 vector of the random effect of the candidate SNP with 
� � being the corresponding genotype matrix, � is a vector of the random effects of all the other SNPs �  
being the corresponding genotype matrix and  is the error term. It is assumed that as follows that; 
 

 � ~ ��0,�����, 

�� ~ �(0,��
�
�) 

� ~  �(0,����),  
 
where � is a � ×  �  identity matrix and �  is GRM. Yang et al. [36] shows that if all the SNPs are 
independent and assuming the variance explained by the candidate SNP is small, then it follows that; 
 

��� = ℎ�� 

��� = 1 − ℎ�� 

��� =
���

�
, 

 

where ℎ��  is the variance explained by all SNPs. Notice that the effect of the candidate SNP is fitted twice, 

once as fixed effect ��  and once as random ��. They also show that the analysis to estimate ��   is equivalent 
to analysis of the candidate SNP and the phenotype correcting for the effects of all the SNPs. This is done by 
letting �∗ = �� , then  
 

�∗ = � − �∗ 
= �� + � ��� + (�∗ − ��∗)+ �, 
= �� + � ��� + �

∗                                                                                                                      (2.3.3) 
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where  �∗ ~  �(0,����∗) 
 

���∗ = ���(�∗)= ���(�)+ ���(�∗ − ��∗), 
        = �(1 − ��ℎ�) 

 

where �� is the accuracy of squared of predicting �∗, �� =
�

����������
   with  � =

���

�
 

 

The value of ��   and ��  can be estimated from equation (in 2.3.3) by mixed model equation (MME) [55]. 
. 

  . 

�

� ′
�� � � ′

�� �

� ′
�� � � ′

�� � +
���∗

���

��
���
��̂
�= �

� ′
��

∗

� ′
��

∗� 

 

�
���
��̂
�= �

� ′
�� � � ′

�� �

� ′
�� � � ′

�� � +
���∗

���

�

��

�
� ′

��
∗

� ′
��

∗�                                                                 (2.3.4) 

 

Notice that the value of ��� = (� ′
�� �)

��� ′
��

∗is the same as the least square estimate of regression � on 
� � after solving MME (in 2.3.4). The estimate value of � =̂ 0 because of fitting the same SNP as fixed 
effect and random variable [36]. 
 

LMMi applies the Wald test to determine the significance of the fixed effect �� on genetic association 
between phenotype and genotype. The expected value of the chi-square statistics is expressed thus, [56] 
 

�(��)=
� ����

�
�

��������
 , 

=
���

�
��

���∗

�
�

�����
���∗

�
�
. 

 

The average �� statistics should be taken across all the SNPs [36] such that 
 

1

�
� ��

�

�

�

=
ℎ��
�

= �2� 

 

so that the mean of the �� association statistics from LMMi analyses is thus 
 

����� (����)=
�2�+�

�2�∗
�

�  

�2�+�
�2�∗
�

�

= 1     at all SNPS 

  ����� (����)=

���

� �
+�

�2�∗
�

�  

�2�+�
�2�∗
�

�

=

� ���

� �
� (�������)

� ���

�
� (�������)

      at causal markers 

����� (����)=
�
���∗

�
�  

��� ��
���∗

�
�

=
(�������)

� ���

�
� (�������)

           at null markers 

 

Where �� ≈  
����

�
    when � > �. 



The LMMi has become increasingly important in GWAS. The GWAS tools that implement LMMi include 
EMMAX, EMMA, GCTA-LMMi [48]
 
For LMMe (in 2.3.3). This method is applied when the candidate SNP is not included in calcula
GRM. The model can be written based on equation (in 2.3.3) as follows;
 

�∗ = � − �∗ = �� + (�∗ −
  

= �� +∈∗                                                              
 
This implies that 
 

�∗ = �� +∈∗                                             
 
which is analogue to standard linear model of regressing 
 
The Wald test is used to determine whether a certain predictor variable 
expected chi-squared test statistics is defined by 

�(��)=
� ����

�
�

��������
=
���

�
+ ���

���

Yang et al. [36] shows that the expectation of the 
 

����� (����)= 1 +

���

�
 

�
���∗

�
�

����� (����)= 1 +

���

� �
 

�
���∗

�
�

����� (����)= 1 
 

where �� ≈  
����

�
    when � > �. 

 
Some of the researchers have implemented this model (in 2.3.7) in LMM packages (GWAS tools ) to analyse 
GWAS data [36,41,48,49,50. They include GCTA (GCTA
LOCO [41], GRAMMAR-Gamma [49]
 

Table 2.1. Showing expected mean of test statistics for causal, null and all markers 
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The LMMi has become increasingly important in GWAS. The GWAS tools that implement LMMi include 
[48], FAST-LMM [40], GEMMA and TASSEL [51]. 

For LMMe (in 2.3.3). This method is applied when the candidate SNP is not included in calcula
GRM. The model can be written based on equation (in 2.3.3) as follows; 

��∗)+ �                                                                             
 

                                                                                                                            

                                                                                                                              

which is analogue to standard linear model of regressing �∗ on �� [1]. 

The Wald test is used to determine whether a certain predictor variable �� is significant or not 
squared test statistics is defined by [36,56] 

. 

� ��������

��������
= 1 +

����
��

�∗
 , 

 
shows that the expectation of the χ2 association statistics from MLMe analyses is given by

�

= 1 +

� ���

�
 

�������
 for all markers, 

�

= 1 +

� ���

� �
 

�������
   for causal markers and, 

 for null markers. 

Some of the researchers have implemented this model (in 2.3.7) in LMM packages (GWAS tools ) to analyse 
. They include GCTA (GCTA-MLMe or GCTA-LOCO) [48], BOLT

[49] and FAST-LMM [50]. 

g expected mean of test statistics for causal, null and all markers 
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The LMMi has become increasingly important in GWAS. The GWAS tools that implement LMMi include 

For LMMe (in 2.3.3). This method is applied when the candidate SNP is not included in calculating the 

                                                                             (2.3.5) 

                                                               (2.3.6) 

                                               (2.3.7) 

is significant or not [56]. The 

association statistics from MLMe analyses is given by 

Some of the researchers have implemented this model (in 2.3.7) in LMM packages (GWAS tools ) to analyse 
, BOLT-LMM 

g expected mean of test statistics for causal, null and all markers [54] 
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    where    � =
�(���)�� (���)��������

���
       with � =

����

�
 if � > �, �� ≈  

����

�
 

 
2.3.2 Summary of LMMs approach tool. Here, we provide a summary of GWAS tools that use LMMs.  
 

Table 2.2. Summary of different LMMs-based approaches applied by GWAS 
 

Method APPROACH Testing Cost Applicability Reference 
EMMAX LMMi LRT �(���) Pop [33] 
FAST-LMM LMMe LRT �(���) pop and cc [40] 
GEMMA LMMi LRT �(���) Pop [8] 
FASTA LMMe LRT �(���) pop and cc [50] 
GRAMMAR-
Gamma 

LMMe ST �(���) Pop [49] 

GCTA LMMi/LMMe LRT �(���) pop and cc [48] 
MMM LMMi LRT �(���) pop and cc [3] 
Mendel LMMi LRT �(���) pop and cc [57] 
TASSEL LMMi LRT �(���) pop and cc [51] 
EMMA LMMi LRT �(���) Pop [33] 
PLINK LMMe ST �(���) pop and cc [58] 
BOLT-LMM LMMi/LMMe BAYES �(���.�) pop and cc [41] 

 
Where � is the sample size (the number of individuals in one study), � is the number of tested SNPs, cc is 
case-control cohort, pop is population cohort, LRT is the likelihood ratio test taken in GWAS; ST is the 
score test in GWAS. 
 

3 Data Analysis and Interpretation 
   
3.1 Introduction 
 
The genomic wide association is an important approach in identifying causal variants associated with 
diseases. The number of variants to be tested for associations with phenotypes requires a large number of 
SNPs to be investigated in order to understand GWAS clearly. Moreover, the association test for each SNP 
is performed, and both p-values and linear regression estimate of the effect size (β) in (2.3.7) are obtained. 
The nominal p-values always need to be corrected for multiple testing given the number of tests. This is 
because significant results can arise by chance with many tests. A p-value in GWAS has significance 
threshold of 5×10−8, which referred to as genome-wide significance is obtained by dividing the usual α of 
0.05 by 1 million (the effective number of tests performed). According to Ehret [59], such a Bonferroni 
correction9 is always conservative, increasing the credibility of loci with a p-value less than 5 × 10−8. The 
sample size should be large enough; for instance, highly, significant results can be reached only by analyzing 
large samples (generally ≥ 1000 participants). This requirement is an important limitation of the method 
[59]. 
 
In this chapter, we use two methods that apply mixed model to identify causal SNPS that cannot be 
identified by GWAS. This is done by leveraging new GWAS approaches that consider the distinction 
between inflation from bias and true signal from polygenicity as discussed in chapter 2. These two tools 
include PLINK and EMMAX. PLINK is one of the most popular tools used in the GWAS [58]. It provides a 
compact, comprehensive tool-box for GWAS from basic quality control filtering, SNP association testing to 
advanced features including gene-based analysis, annotation and epistasis test. It uses regression-based 

                                                      
9 Bonferroni correction is an adjustment made to p-values when several dependent or independent statistical tests are being performed 

simultaneously on a single data set [62] 
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methods on SNP alleles [32]. Boost algorithm has been implemented in PLINK and it helps in transforming 
genotype data to Boolean representation that allows fast logic computing [60]. On the basis of the genome-
wide average proportion of alleles shared identical by state (IBS) between any two individuals [13], PLINK 
offers tools to cluster individuals into homogeneous subsets, perform classical multidimensional scaling 
(MDS) to visualize substructure, provide quantitative indices of population genetic variation, identify 
outlying individual population genetic variation, and identify outlying individuals. PLINK uses complete 
linkage hierarchical clustering to assess population stratification with the use of whole genome SNP data 
[58]. 
 
EMMAX is a statistical test for large scale human or model organism association mapping accounting for the 
sample structure in GWAS [35]. Both identical-by-descent (IBD) and identical by-state (IBS) kinship matrix 
are implemented in EMMAX. The marker-based IBS kinship matrix is used to reflect the polygenic 
background [18,35], which assumes small SNP-effects. The test statistic is a Wald-based F-approximation 
based on the restricted log-likelihood [32,35,56]. According to Armitage [61], the binary trait can be 
interpreted as a quantitative difference score. Using this line of reasoning, the developers of EMMAX 
implement the same analysis for both binary and quantitative trait [32]. 
 
Lippert et al. [11] points out that EMMAX, along with its predecessor EMMA, achieves additional 
computational efficiency (over and above that achieved by simply estimating parameter ��� and ���  only by 

reparametrizing the likelihood in terms of a parameters � =
���

���
 and by making use of spectral 

decompositions. This results in total computational complexity of �(�� +  �� +  ��) where �(�� +  ��) is 
the computational complexity at stage 1 and �(��) at stage two, � is the number of observation of the 
phenotypes, �  is the number of SNP tested and �  denotes the number of iterations i.e. the number of 
evaluations of the likelihood required. 
 

3.2 Materials and Methods 
 
3.2.1 Data description 
 
We analyse unpublished real data enrolled from West Africa (Gambia-Ghana). The data consist a total of 
338408 variants and 959 individuals (484 males and 405 females, 70 missing phenotypes). Of these, 864 
cases of tuberculosis (TB) and 95 healthy individuals (controls) are retained after performing quality control 
(QC) using PLINK, 288 duplicants ID individuals are removed after QC, and 329601 autosome SNPs (from 
chromosome 1 to chromosome 22) are included in the analysis. 
 
3.2.2 Methods 
 
A genome-wide association test was performed on the full dataset of 959 people, which contain related 
individuals. First, text genotype was converted into numeric genotype score (0,1 or 2) using PLINK 
v1.90b3b software [58] based on the count of the alleles. Three files were created when making binary PED 
files (PED files are compact representation of the data and save space and speed up subsequent analysis). 
These files included: GWAS.bed that contained the raw genotype of the data, GWAS.map that contained 
two extra columns that provided the names for each SNP, and GWAS.fam that represented the first six 
columns GWAS.ped (see [58] for more description). The input data was specified in binary format as 
opposed to the normal text PED/MAP format by making use of this command “plink1.9 - -bfile option”. The 
input data for our analysis was 329601 autosome SNPs after performing quality control and filtering using 
PLINK. Genetic association test was performed using PLINK v1.90b3b software and EMMAX. 
 
In order to perform association using EMMAX, the first the marker-based kinship matrix had to be created, 
IBS matrix from the transposed genotype and phenotype data. The IBS matrix was used to perform genetic 
association as opposed to the Balding-Nichols (BS). This is because IBS is known to be more robust in 
constructing the empirical kinship matrix [35]. The empirical kinship matrix was constructed by applying 
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EMMAX-kin [35] that computed a pair-wise GRM from our dataset which represented the structure of our 
samples. EMMAX software estimated the contribution of the sample structure to the TB phenotype using 
variance component model (in 2.2.11). The estimated covariance matrix of phenotype that modeled the 
effect of genetic relatedness on the TB phenotype was obtained. The genome-wide significance level (p-
value threshold) was computed using [63]. 
 

� =
�

�×�
 ,                                                                                                                         (3.2.1) 

 
where α = 0.05 and � is the number of SNPs tested (from typed or imputed data set). Two types of graphs 
were plotted: Manhattan plot and Q-Q plots. The Q-Q plot is defined as a graphical representation of the 
deviation of the observed p-values from the null hypothesis. Q-Q plots (as shown in Fig. (3.2a), (3.2b) and 
(3.2c)) were used to compare the genome-wide distribution of the test statistics with the expected null 
distribution. Genomic control inflation factor10 (���) was used to check the presence of stratification. ���  
was calculated using [64]. 

 

��� =
������(��)

�.���
 ,                                                                               (3.2.2) 

 

where 0.455 is the median of ��  distribution with one degree of freedom. The acceptable values of 

��� ranged from 0.95 to 1.00 that indicated no presences of population stratification or hidden relationship 

[56]. The observed ��values for each SNP were sorted in descending order and plotted against expected 
values. Manhattan plots (as shown in Fig. (3.1a), (3.1b) and (3.1c)) are used to represent the � − values of the 
entire GWAS on a genomic scale [59], the p-values are normally represented in genomic order by 
chromosomes and the position of chromosome (on the x-axis)). The values on the y axis on Manhattan plot 
represent − ���(�) (equivalent to the number of zeros after the decimal points plus 1). 

 

3 Results and Discussion 
 

A total of 338408 variants and 959 people (484 males, 405 females and 70 missing phenotypes) passed 
filters and quality control using PLINK. Among the remaining phenotypes, 864 were cases and 95 controls. 
A summary statistic for PLINK and EMMAX was obtained shown in Table 3.1 and 3.2 respectively. PLINK 
identified SNP rs4127341 (� − values = 8.693e-08) on chromosome 1 and ��1343869  (� − value = 9.948e-
08) on chromosome 13 to be the most genomic-wide significance. The threshold p-values for genomic-wide 
association was 7.3875e-08 which was calculated using equation (in 3.2.1), where � =  338408. The SNP 
��10916338 was identified in both cases as shown in Tables (3.1), (3.2) and (3.4), but the Bonferroni value 
in Table (3.4) showed that this was not significant since 0.278 was greater than the general threshold 
� − values of 0.05 for each SNP, with 0.6% false discovery rate as indicated in Table (3.4). 
 
Table 3.1. Summary statistics from PLINK with top genetic variants with significant association signal 

 
CHR SNP Position P values 
1 rs4127341 68144093 8.693e-08 
1 rs6588294 68144964 1.030e-07 
1 rs10916338 226782546 8.214e-07 
10 rs2144861 51979762 4.094e-07 
10 rs10883553 102625465 8.807e-07 
10 rs2181834 102651241 5.056e-07 
10 rs1122556 102696588 7.374e-07 

                                                      
10 The genomic control inflation factor is defined as the ratio of the median of the empirically observed distribution of the test statistic 

to the expected median, hence quantifying the extent of the bulk inflation and the excess false positive rate [64]. 
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CHR SNP Position P values 
10 rs10883567 102745769 2.134e-07 
10 rs752974 102752246 9.274e-07 
13 rs1343869 41223871 9.948e-08 

Key: CHR = Chromosome 
SNP = Single Nucleotide Polymorphisms 

  
Table 3.2. Summary statistics from EMMAX with top genetic variants with significant association 

signal. 
 

 
CHR SNP BP P values 
1 rs10916338 226782546 1.581316e-06 
2 rs12328060 49824910 8.848916e-06 
8 rs17217757 106682497 1.931775e-06 
10 rs10824524 78746132 5.667582e-06 
13 rs1343869 41223871 2.168218e-06 
13 rs4941412 41402448 1.335220e-06 
14 rs11620836 46226436 9.576813e-06 
17 rs7225581 56372595 7.351500e-06 
1 rs11203368 17539095 1.371354e-05 
1 rs6694316 56197709 4.928598e-05 

Key: CHR = Chromosome 
SNP = Single Nucleotide Polymorphisms 

 
The summary statistics for restricted ML from EMMAX was obtained as shown in Table 3.3. EMMAX 
estimated genetic variance ���

 and residual variance ���
 of model (in 2.2.11) to be 0.0594 and 0.0723 

respectively. Moreover, EMMAX estimated a narrow sense of heritability (pseudo-heritability described in 
equation (in 1.2.2) to be 1.852e-01. This phenotypic variance showed that all common SNPs expressed 
approximately 18.52% of phenotypic variation of the disease. 
 

Table 3.3. Summary for restricted maximum likelihood from EMMAX 
 

Parameters Values 
Log-likelihood with variance component (model 2.2.11) -197.5286 
Log-likelihood without variance component (model 2.1.5) -202.4196 

The ratio between variance parameters    �
���

(���
� 

1.2163 

The genetic variance parameter (��
�
) 0.0594 

Residual variance (���) 0.0723 
The pseudo-heritability (ℎ�) 0.1852 

 
Figs. 3.1a, 3.1b and 3.1c shows Manhattan plots obtained from the association analyses using PLINK and 
EMMAX. The −log10(p) for the association between each genetic variants and TB was plotted on the vertical 
axis, and the genomic control coordinates (the autosomal chromosome) is plotted along the horizontal axis. 
The gray line in the plots represented genome-wide significance line (−log10(7.3875e − 08)). A number of 
SNPs display p-values above the significance threshold. The SNP rs7225581 on chromosome 17 (as shown 
in Fig. (3.1a)) and SNP rs4941412 on chromosome 13 were both identified using PLINK and EMMAX as 
most genomic-wide significant. In addition, it was noticed that false positives were reduced when EMMAX 
is applied as compared to PLINK. This was evidenced from Manhattan plots 3.1a and 3.1c from PLINK and 
EMMAX respectively. 



(a) Fig. 3.1a. Manhattan plot for genetic association from PLINK.

(b) Fig. 3.1b. Manhattan plot for adjusted genetic association from PLINK
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Manhattan plot for adjusted genetic association from PLINK 
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(c) Fig. 3.1c. Manhattan plot for genetic association from EMMAX

Fig. 3.2. These are Q-Q plots of genetic associations effect that compare the distributions of observed 
values with the expected distribution. The genomic control 
population stratification effect. 

(a) Fig. 3.2a. Q
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Manhattan plot for genetic association from EMMAX
.. 

Fig. 3.1. Manhattan plot 
 

Q plots of genetic associations effect that compare the distributions of observed 
values with the expected distribution. The genomic control lambda ���  values indicate the residual 

 

 
Q-Q plot for genetic association from PLINK. 
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Manhattan plot for genetic association from EMMAX 

Q plots of genetic associations effect that compare the distributions of observed p-
indicate the residual 

 



(b) Fig. 3.2b. Q-Q plot for adjusted genetic association from PLINK.

(c) Fig. 3.2c. 

 
From Fig. 3.2a, it was noticed that there was an early separation of the expected from the observed. This 
indicated that many moderately significant 
hypothesis. In addition, ��� = 1.132844
stratification that was not well accounted for by known family relationship. This could be attrib
fact that PLINK did not account for cryptic relatedness in the sample.
 
The Q-Q plots from EMMAX and PLINK (adjusted genetic association) are shown in Fig
The genomic control lambda is ���= 
association when using EMMAX. The genomic control lambda for both adjusted PLINK association and 
EMMAX show little departure from the null expectation, implying that there was still very low levels of 
existing population stratification. 
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Q plot for adjusted genetic association from PLINK. 

 Q-Q plot genetic association from EMMAX. 
 

Fig. 3.2. Q-Q plots 

3.2a, it was noticed that there was an early separation of the expected from the observed. This 
indicated that many moderately significant p-values were more significant than expected under null 

132844  suggest the presences of additional relatedness or population 
stratification that was not well accounted for by known family relationship. This could be attrib
fact that PLINK did not account for cryptic relatedness in the sample. 

Q plots from EMMAX and PLINK (adjusted genetic association) are shown in Figs. 
= = 1.054329 for adjusted plink association, and ���= 1.063 

association when using EMMAX. The genomic control lambda for both adjusted PLINK association and 
EMMAX show little departure from the null expectation, implying that there was still very low levels of 
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3.2a, it was noticed that there was an early separation of the expected from the observed. This 
values were more significant than expected under null 

of additional relatedness or population 
stratification that was not well accounted for by known family relationship. This could be attributed to the 

 3.2b and 3.2c. 
063 for genetic 

association when using EMMAX. The genomic control lambda for both adjusted PLINK association and 
EMMAX show little departure from the null expectation, implying that there was still very low levels of 
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Table 3.4. Summary statistics from adjusted association using PLINK with top significant genetic 
variants 

 
CHR SNP UNADJ GC BONF HOLM SIDAK 

SS 
SIDAK 
SD 

FDR BH 

17 rs7225581 5.604e-08 4.713e-06 0.01896 0.01896 0.01879 0.01879 0.006971 
13 rs4941412 6.584e-08 5.292e-06 0.02228 0.02228 0.02203 0.02203 0.006971 
1 rs4127341 8.693e-08 6.462e-06 0.02942 0.02942 0.02899 0.02899 0.006971 
13 rs1343869 9.948e-08 7.119e-06 0.03366 0.03366 0.03310 0.03310 0.006971 
1 rs6588294 1.030e-07 7.299e-06 0.03485 0.03485 0.03425 0.03425 0.006971 
10 rs10883567 2.134e-07 1.233e-05 0.07222 0.07222 0.06968 0.06968 0.012040 
10 rs2144861 4.094e-07 1.969e-05 0.13850 0.13850 0.12940 0.12940 0.019790 
10 rs2181834 5.056e-07 2.293e-05 0.17110 0.17110 0.15730 0.15730 0.021390 
10 rs1122556 7.374e-07 3.008e-05 0.24950 0.24950 0.22080 0.22080 0.026150 
1 rs10916338 8.214e-07 3.251e-05 0.27800 0.27790 0.24270 0.24270 0.026150 

KEY:UNADJ = Unadjusted, asymptotic significance value; 
GC = Genomic control, is adjusted significance value; 

BONF= Bonferroni, is adjusted significance value; 
HOLM = Holm is step-down adjusted significance value; 

SIDAK SS = Sidak is single-step adjusted significance value; 
SIDAK SD = Sidak is step-down adjusted significance value; 

FDR H = False discovery rate, step up significance value [65]. 
 

4 Discussion 
 
LMM approaches such as those implemented in the package EMMAX and Plink was well demonstrated 
through using application of real data. These methods offered a convenient and robust approach for 
analyzing quantitative or binary trait and controlling overall genomic inflation factor to an appropriate level 
and offer higher power than traditional family association such as those implemented in FBAT [56]. 
However, from the analysis of real data indicated that, for plink, care may need to be taken to use estimated 
kinships based on SNP data rather than known pedigree relationship, if one is to avoid any inflation in 
GWAS test statistics. We therefore believe that our results highlight the concordance between different 
LMM methods are equally relevant and useful to researchers carrying out GWAS of apparently unrelated 
individuals as to researchers carrying out family-based studies [56]. 
 
Systematic biasness from unrecognized genotyping artifacts or population structure was detected using (Q-
Q) plots as shown in Fig. 3.2 of p-values from Plink and EMMAX. The Q-Q plots showed that the observed 
distribution of the test statistics closely follows the expected (null) distribution implying low levels of 
existing population stratification. However, when using Manhattan plots, a few �-value fall exactly on gray 
line in the plot (as shown in Fig. 3.1a). The deviation from gray line was attributed to functional variants in 
the TB phenotype since standard GWAS association analysis using LMM (such as Plink and EMMAX) or 
logistic models usually tends to have imperfect asymptotic distribution in the case of rare (1-5%) variants 
which usually results to SNPS falsely attaining of genome wide significance in standard test (Chimusa et al; 
2014). Although in the study in Chimusa et al. [63] in the admixed South African coloured population 
indicated that the non-African ancestral component confers no risk to TB, it is not completely unreasonable 
to consider a possible systematic bias arising from using Linkage disequilibrium (LD) scores from African 
population to calibrate the Bayesian association statistics in BOLT-LMM. This highlighted the need for 
analyses beyond the standard GWAS and imputation using different LMM approaches. In association 
analysis using Plink, SNPs ��10916338 on chromosome 1 showed substantial association with TB. This 
SNP was also replicated in analyzing using EMMAX although it was not statistically significance. 
Moreover, new variants �� 4941412 on chromosome 13 and ��  722558 on chromosome 17 were detected 
with a significant association. It was expected after imputation to observe more SNPs in LD to or nearby the 
identified SNPs, particularly �� 10916338 on chromosome 1 to either also be associated or moderately 
associated with TB but was not the case. Therefore, this implies that our result is, in general, inclusive.    
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The model in (2.2.13) formed the basis of LMM based association analysis when computing GRM by 
including the candidate SNP [48]. The variance ��� = 0.0594 and ��� = 0.0723  were estimated using 

RML implemented in LMMs based approach GWAS tool EMMAX. The ���  showed that 7.23% the 
environment effect which was assumed to be independent and identically distributed across individuals and 
��

� showed 5.94% was the variations across individuals. This implied that �� ∼  �(0,0.0723) and �� ∼

 �(0,0.0594 ) as described in Equation 2.2.13 [33]. 
 
 LMMA was used to determine the genetic association between phenotypes of all individuals [18,48]. The 
general form of the was   � = 1� + �� + � + � as described in model (2.3.1). LMMi was applied in GWAS. 
LMMi contained two random variables and one fixed effect. These random variables were as result of 
inclusion of candidate SNPs when computing GRM as well as the random variable associated with all other 
SNPs. The general form of the model was as Equation (2.3.2). The variance explained by all SNPs (ℎ�� ) 
was found to be 0.1852. We noticed that the effect of the candidate SNP was fitted twice once as fixed effect 
and once as random variable. They also showed that the analysis to estimate ��   in model (2.3.3) was 
equivalent to analysis of the candidate SNP and the phenotype correcting the effect of all the SNPs. 
  

5 Conclusion 
 
This study was aimed at understanding and exploring different approaches of mixed models as applied in 
genetic studies. Overview of genetic variation, advantages, successes and application of mixed models and 
current challenges of mixed models in GWAS were discussed. Moreover, SNPs associated with a particular 
disease using computational tools that applies LMM approaches were identified. 
 
Two mathematical approaches of mixed models LMMi and LMMe which were applied in GWAS and the 
methods used to estimate parameters, ML and RML were discussed. The ratio of expectation of �� 

association statistics ����� between LMMe and LMMi was found to be consistent for causal, null and all 
markers as shown in Table 2.1. In addition, LMMi was found to be more efficient than LMMe when all 
markers were used during genetic association analysis, since at all markers ����� =  1  for LMMi as 

opposed to LMMe. This indicated that there was no presences of stratification. The genetic variance ���
 

and residual variance ���
 that account for phenotypic variation of disease were estimated to be 0.0594 and 

0.0723 respectively. The computational tools that applied different LMM approaches based on their 
applicability and performance were classified as shown in Table 2.2. 
 
The unpublished real data from West Africa (Gambia and Ghana) consisting of 959 individuals (864 cases of 
TB and 95 controls) were analyzed using the computational tools EMMAX and PLINK. The summary 
statistics from PLINK and EMMAX found two causal SNPs associated with the TB. These SNPs were 
rs7225581 on chromosome 17 and SNP rs4941412 on chromosome 13 with both having 0.69% FDR H. 
However, PLINK failed to correct hidden relatedness as depicted from Q-Q plot (in Fig. 3.2a), but EMMAX 
reduced false positives as evidenced from Q-Q plot (in Fig. 3.2a), although there was still very low presence 
of stratification exhibited by EMMAX. 
 
The main challenge in this study was to correct presence of stratification exhibited by EMMAX. It is 
therefore recommended the extension of LMM-based approach tools in order to asses’ rare variant which 
posed a greater challenge for all methods. It is recommended studies of randomly ascertained quantitative 
traits to include all markers when computing GRM. 
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