
 
Asian Research Journal of Mathematics 
 
9(3): 1-11, 2018; Article no.ARJOM.40422 
 

ISSN: 2456-477X 
 

 

 

_____________________________________ 

*Corresponding author: E-mail: jagatpokhrel.tu@gmail.com; 
  
 

On Certain Properties on Vector - Valued Sequence Space on 
Product Normed Space 

 
Jagat Krishna Pokhrel1* 

 
1Department of Mathematics, Sano Thimi Campus, Tribhuvan University, Kathmandu, Nepal. 

 
Author’s contribution 

 
This work was carried out after the studying some of the basic normed space valued sequence spaces and 

their linear topological structures. We characterize the linear space structures and containment relations on 
the space of sequences whose terms from a product normed space. These results can be used for further 

generalization to examine the properties of the various existing sequence spaces studied in Functional 
Analysis. 

 
Article Information 

 
DOI: 10.9734/ARJOM/2018/40422 

Editor(s): 
(1) Nikolaos Dimitriou Bagis, Department of Informatics and Mathematics, Aristotelian University of Thessaloniki, Greece. 

Reviewers: 
(1) Murat Kirişci, İstanbul University, Turkey. 

(2) Oguz Ogur, Giresun University, Turkey. 
Complete Peer review History: http://www.sciencedomain.org/review-history/24251 

 
 
 

Received: 21st January 2018 
Accepted: 2nd April 2018 

Published: 20th April 2018 

_______________________________________________________________________________ 
 

Abstract 
 

The notion of vector valued sequence space is a generalized form of spaces of scalar valued sequences, 
and its terms consist of sequences from a vector space. In this work, we shall study some conditions that 
characterize the linear space structures and containment relations of the space of sequences whose terms 
from a product normed space.  

The aim of this paper is to deal with   a vector valued sequence space l (A  B, || . || ,  
–

, u–) with its terms 
from a product normed space A  B. We shall also investigate the linear space structure of l (A  B, || . ||, 


–

, u–) with respect to  co-ordinatewise vector operations, the primary  interest is to explore the conditions 

in terms of   u– and  
–
 so that a class l ( A  B, || . ||, 

–
, u–)  is contained in or equal to another class of  the 

same kind .  
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1 Introduction and Preliminaries 
 
Let A be a normed space over  , the field of  complex numbers and let (A) denotes  the linear space of all 

sequences  a 
–

  = (ak ) with ak   A , k   1 with  usual coordinatewise operations. We shall denote  () by . 
Any subspace S of  is then called a sequence space. A vector valued sequence space or a generalized 
sequence space is a linear space consisting of sequences with their terms from a vector space. 
 
Let (A, || . ||A) and (B, || . ||B)  be Banach spaces over the field  of complex numbers. Clearly the linear space 
structure of A and B provides the Cartesian product of A and B given by  
 

A × B = {< a, b > : a  A, b B} 
  
forms a normed linear space over  under the algebraic operations 
 

< a1, b1 > + < a2, b2 > = < a1 + a2, b1 + b2 > 
                             and    < a, b > = < a, b > 
 
with the  norm 
   

|| < a, b > || = max {|| a ||A, || b ||B }, 
 

 where < a1, b1 >, < a2, b2 >,< a, b >  A × B and  
 
Moreover since (A, || . ||A) and (B, || . ||B) are Banach spaces therefore (A × B, || < . , . > ||) is also a Banach 
space. 
 
The various types of vector valued sequence spaces has been significantly developed by several workers for  
instances, we refer a few [1,2,3,4,5,6,7,8]. 
 
Subsequently, in the works [9,10,11] and many others have introduced and examined some properties of 
bilinear vector valued sequence spaces defined on product normed space which generalize many sequence 
spaces.  
  

2 The Vector Valued Sequence Space   l (A  B, || . || ,  –, u–)    
 

Let u– = (uk) and v– = (vk) be any sequences of strictly positive real numbers and 
–

 = (k) and 
–

 = (k) be 
sequences of non-zero complex numbers. 
 
We now introduce and study the following class of Banach space A × B -valued sequences:  
 

l ( A  B, || . || ,  
–

, u–)  = {u– = (< ak , bk >) : < ak , bk >  A × B,     
sup

k
 || k < ak , bk > || uk  < }. 

 

Further, when  k = 1 for all k, then  l ( A  B, || . || ,  
–

, u–) will be denoted by l ( A  B, || . ||, u–) and when   

uk = 1 for all k  then   l ( A  B, || . || ,  
–

, u–) will be denoted by  l ( A  B, || . || ,  
–
). 

 

3 Main Results 
 

In this section we shall derive the linear space structure of the class l (A  B, || . || ,  
–

, u–)  over the field C of 

complex numbers and thereby investigate conditions in terms of u–, v–, 
–
 and m

–
  so that a class is contained in 
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or equal to another class of same kind. As far as the linear space structure of l (A  B, || . || ,  
–

, u–)   over  C 

is concerned we throughout take the  co-ordinatewise vector operations i.e., for w– = (< ak , bk >), z– = (< a'k , 

b'k >) in l ( A  B, || . || ,  
–
, u–)  and  scalar , we have 

 

w– + z– = (< ak , bk >) + (< a'k , b'k  >) = (< ak + a'k, bk + b'k  >) 

 
and 

 

u– = (< ak , bk  >) = (< ak , bk >). 
 

Further, by u– = (uk)  �, wemean 
sup

k
 uk < and we see below that  

sup
k

 uk <  is the necessary condition 

for linearity of the space.  
 

We shall denote M = max (1, 
sup

k
 uk) and A() = max(1, ||). The zero element of the space will be denoted 

by  


–

 = (< 0, 0 >, < 0, 0 >, < 0, 0 >, .....). 

 

Theorem 1:  l ( A  B, || . || ,  
–

, u–)  forms a  linear space over  C    if and only if  u– = (uk)  . 

 
Proof:  
 

For the sufficiency, assume that u– = (uk)  and w–  = (< ak , bk >) and z– = (< a'k , b'k >)   (A × B, 
–
, u–,|| . 

|| ) .So that we have 
 

sup
k

 || k < ak , bk > || uk    and  
sup

k
 || k < a'k , b'k >|| uk . 

 
Thus considering 
 

sup
k

 || k (< ak , bk > + < a'k , b'k >)|| uk
 /M  

sup
k

  || k < ak , bk > || uk
 /M   + 

sup
k

 || k < a'k , b'k >|| uk
 /M 

 

and we see that 
sup
k  || k (< ak , bk > + < a'k , b'k >)|| uk /M

 

and hence  w– + z–  l ( A  B, || . || , 
–
, u–). Similarly for any scalar , we have w–  l (A B, || . || ,  

–
, u–)    

since 
 

sup
k

 || k < ak , bk >|| uk
 /M    =  

sup
k

  || uk
 /M   || k < ak , bk > || uk

 /M   

                              A()
sup

k
  || k < ak , bk > || uk

 /M  

 

Conversely if u– = (uk)   then we can find a sequence (k(n)) of positive integers with  

 
k(n) < k(n + 1), n  1 
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such that uk(n) > n for each n  1. Now taking < r, t >  A × B, || < r, t > || = 1 we define a sequence  

w–  = (< ak , bk  >) by  
 

< ak , bk  >  =


 –1

k(n)
 n – r

k (n)   < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
  

 
where < r, t >  A × B with || < r, t >|| = 1, then we have 
 

sup
k

 || k < ak , bk > || uk     = 
sup

n
 || k(n) < ak(n), bk(n) > || uk (n) 

                   = 
sup

n
 || n –rk(n)  < r, t > || uk (n) 

                                            =   
sup

n
  

1
n   = 1. 

 

Thus we easily see that w–  l (A  B, || . || ,  
–
, u–)   but on the other hand for k = k(n)‚ n  1 and for the 

scalar 
 
 = 2, we have 
 

sup
k

 || k ( < ak , bk > ) || uk    =  
sup

k
 || k(n) (< a k(n) , b k(n) > )|| uk (n) 

                                               =  
sup

n
  |2| uk (n)   || n – r

k (n)  < r, t > || uk (n) 

                                             =  
sup

n
  |2| uk (n)   . 

1
n   > 

sup
n  

2n

 n  1 

 

 This shows that w–    (A × B, 
–
, u–,|| . || ). Hence l (A  B, || . || ,  

–
, u–)  will form linear space 

 

if and only if u– = (uk)  . 

 

Theorem 2:  For any  u– = (uk), l (A  B, || . ||,  
–

, u–)     l ( A  B, || . ||, 
–

, u–)   if and only if 
 

lim 
sup

k
 




k

 k

uk

  > 0. 

 
Proof :  
 

Suppose lim 
inf
k  




k

 k

uk

 > 0, and w– = (< ak , bk >)  l ( A  B, || . || ,  
–

, u–) . Then there exists m > 0, such that  

 
m|k|

 u
k < |k|

 u
k 

 
for all sufficiently large values of k. Thus 
 

sup
k

  || k < ak , bk > || uk  
sup

k
  

1
m || k < ak , bk > || uk       <   

 

for all sufficiently large values of k, implies that w–   l ( A  B, || . || ,  
–

, u–). Hence  
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l ( A  B, || . ||, 
–
, u–)   l ( A  B, || . || ,  

–
, u–) . 

 
Conversely, let   

l ( A  B, || . ||,  
–
, u–)   l ( A  B, || . || ,  

–
, u–)    

 

but lim 
inf
k  




k

 k

uk

 = 0. Then we can find a sequence (k(n)) of positive integers with  

 
k(n) < k(n + 1), n  1 
 

such that 
 

|k(n)|
 u

k (n)   > n|  k(n)|
 u

k (n)   

 

So, if we take the sequence w–  = (< ak , bk >) defined by 
  

< ak , bk  >  =


 –1

k(n)
 < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
  

 
where < r, t >  A × B with || < r, t >|| = 1, then we easily see that 
 
 

sup
k

 || k < ak , bk > || uk = 
sup

n
 || k(n) < ak(n), bk(n) > || uk (n)   

                                                      = 
sup

n
 || < r, t > || uk (n)    = 1 

and ,                           
sup

k
 ||k < ak , bk > || uk  =  

sup
n

 ||k(n) < a k(n), b k(n) >|| uk (n)   

                                                       = 
sup

n
 












k(n)

(n)
 uk(n) || < r‚ t > || uk(n)  

                                                        > 
sup

n
 n =  

 

Hence w–   l ( A  B, || . || ,  
–
, u–)  but w–  l ( A  B, || . || ,  

–
, u–)  , a contradiction. This completes the 

proof. 
 

Theorem 3:  For any  u– = (uk), l (A  B, || . ||, 
–

, u–)    l ( A  B, || . || ,  
–
, u–) 

 

if and only if  lim 
sup

k
 




k

 k

uk

 < . 

 
Proof: 

For the sufficiency, suppose lim 
sup

k
 




k

 k

uk

 < , and w– = (< ak , bk >)  l ( A  B, || . || ,  
–

, u–).  

 
Then there exists   L > 0, such that  
 

L|k|
 u

k  >  |k|
 u

k 

 
for all sufficiently large values of k. Thus 
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sup
k

 || k < ak , bk > || uk  
sup

k
  L || k < ak , bk > || uk  < , 

 

for all sufficiently large values of k, implies that  w–   l ( A  B, || . || ,  
–
, u–). Hence  

 

l ( A  B, || . ||,  
–

, u–)     l ( A  B, || . || ,  
–

, u–). 
 
For the necessity, suppose that  
 

l ( A  B, || . || ,  
–

, u–)     l ( A  B, || . || ,  
–

, u–) 
 

but lim supk 



k

 k

uk

= . Then we can find a sequence (k(n)) of positive  integers  

 
k(n) < k(n + 1), n  1 
 

such that 
 

n|k(n)|
 u

k (n)  < | k(n)|
 u

k (n)  , for each n  1  

 

For < r, t >  A × B with || < r, t > || = 1 we define sequence  w–  = (< ak , bk >)   such that 
 

< ak , bk  >  =


 –1

k(n)
  < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
  

 
Then we easily see that 
 

sup
k

 || k < ak , bk > || uk   = 
sup

n
 || k(n) < ak(n), bk(n) > || uk (n)   

                                                       = 
sup

n
 || < r, t > || uk (n)       = 1 

and                         
sup

k
 ||k < ak , bk > || uk      = 

sup
n

 ||k(n) < a k(n), b k(n) >|| uk (n)   

                                                        = 
sup

n
 












k(n)

(n)
 uk (n)   || < r‚ t > || uk (n)   

                                                         > 
sup

n
 n =  

 

Hence w–   l ( A  B, || . || ,  
–

, u–)    but w–  l ( A  B, || . || ,  
–
, u–)   , which leads to a contradiction. 

 
This completes the proof. 
 
When Theorems 2 and 3 are combined, we get 
 

Theorem  4: For any  u– = (uk),   l ( A  B, || . || ,  
–

, u–)    = l ( A  B, || . || ,  
–

, u–)    

                           

if and only if   0 < lim 
inf
k

 




k

 k

uk

  lim 
sup

k
 




k

 k

uk

 < . 

 



 
 
 

Pokhrel; ARJOM, 9(3): 1-11, 2018; Article no.ARJOM.40422 
 
 
 

7 
 
 

Corollary: For any  u– = (uk), 
 

(i) l ( A  B, || . || ,  
–

, u–)     l ( A  B, || . || ,  u–)     if and only if lim 
inf
k  |k|

 u
k > 0; 

(ii) l ( A  B, || . || ,  u–)       l ( A  B, || . || ,  
–

, u–)     if and only if lim 
sup

k
  |k|

 u
k  < ; 

(iii) l ( A  B, || . || ,  
–

, u–)     =  l ( A  B, || . || ,  u–)    if and only if  

                                                      0 < lim 
inf
k

  |k |
 u

k  lim 
sup

k
 |k|

 u
k < . 

 
Proof: 
 
Proof follows if we take k = 1 for all k in Theorems 2, 3 and 4.     
       

Theorem 5: For any  
–
 = (k), l (A  B, || . || ,  

–
, u–)        l ( A  B, || . || ,  

–
, v–)       

 

if and only if  lim 
sup

k
 
vk

uk
 < . 

 
Proof: 
 
Let the condition hold. Then there exists L > 0 such that vk < Luk for all sufficiently large values of k. Thus  
 

sup
k  || k < ak , bk > || uk     N for some N > 1 

 
implies that  
 

sup
k

 || k < ak , bk >|| vk  NL, 

 

and hence  l ( A  B, || . || ,  
–

, u–)     l ( A  B, || . || ,  
–
, v–) . 

 

Conversely, let the inclusion hold but lim 
sup

k
 
vk

uk
 = . Then there exists a sequence (k(n)) of positive integers 

with 
 

k(n) < k(n + 1), n  1 
 

 such that 
 

  vk(n) > n uk(n) , n  1.  
 

We now define a sequence w–  = (< ak , bk >) as follows: 
 

< ak , bk  >  =


 –1

k(n)
 2 1/ u

k (n)  < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
  

 
where < r, t >  A × B with || < r, t > || = 1. 
 
Then for k = k(n)‚ n  1, we easily see that 
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sup
k

 || k < ak , bk > || uk  = 
sup

n
 || k(n) < ak(n), bk(n) > || uk (n) 

             = 2 
sup

n
 ||  < r, t > || uk (n)  = 2 

 

and , 
sup

k
 ||k < ak , bk > || vk       = 

sup
n

 ||k(n) < a k(n), b k(n) >|| vk (n)   

                     =  
sup

n
 || 2 1/ u

k (n)  < r‚  t > || vk (n)   

                     > 
sup

n
 2 n =  

 

Hence w–   l ( A  B, || . || ,  
–

, u–)     but w–   l ( A  B, || . || ,  
–

, v–) , a contradiction.  
 
This completes the proof. 
 

Theorem 6: For any  
–
 = (k) , l (A  B, || . ||,  

–
, v–)   l ( A  B, || . || ,  

–
, u–)      

 

if and only if  lim 
inf
k

  
vk

uk
 > 0. 

 
Proof: 
 

Let the condition hold and w–  = (< ak , bk >)  l ( A  B, || . ||, 
–

, v–)  .Then there exists m > 0 such that vk < m 
uk for all sufficiently large values of k and  
 

sup
k

 || k < ak , bk >|| vk 
    N for some N > 1. 

 
This implies that  
 

sup
k

 || k < ak , bk >|| uk N1/m  

 

i.e, w– = (< ak , bk >)  l ( A  B, || . || ,  
–

, u–) and hence 
 

l ( A  B, || . || ,  
–

, v–)    l ( A  B, || . || ,  
–
, u–). 

 

Conversely let the inclusion hold but lim 
inf
k   

vk

uk
 = 0. Then we can find a sequence (k(n)) of positive 

integerswith   k(n) < k(n + 1), n  1 
 
such that 
 

n vk(n) < uk(n), n  1. 
 

Now taking < r, t >  A × B with || < r, t > || = 1, we define the sequence  w–  = (< ak , bk >) by 
 

< ak , bk  >  =


 –1

k(n)
 21/ v

k (n)  < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
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  Then for k = k(n)‚ n  1, we easily see that 
 

sup
k

 || k < ak , bk > || vk      = 
sup

n
 || k(n) < ak(n), bk(n) > || vk (n) 

                                     = 2 
sup

n
 ||  < r, t > || vk (n)       = 2 

and     
sup

k
 ||k < ak , bk > || uk  =  

sup
n

 ||k(n) < a k(n), b k(n) >|| uk (n) 

                          =  
sup

n
 || 2 1/ v

k (n)     < r‚  t > || uk (n)   

                              > 
sup

n
 2 n =  

 

Hence w–   l ( A  B, || . || ,  
–

, v–)    but w–   l ( A  B, || . || ,  
–

, u–), a contradiction.  
 
This completes the proof. 
 
On combining Theorems 5 and 6, we get the following theorem: 
 

Theorem 7: For any 
–
 = (k), l (A  B, || . ||,  

–
, u–) = l ( A  B, || . || ,  

–
, v–)     

                             if and only if    0 < lim 
inf
k

 
vk

uk
    lim 

sup
k

 
vk

uk
 < . 

  

 Corollary: For any  
–
 = (k), 

 

(i)  l ( A  B, || . ||,  
–

)   l ( A  B, || . ||,  
–
, u–)  if and only if lim 

sup
k

 uk < ; 

(ii) l ( A  B, || . ||,  
–

, u–)   l ( A  B, || . ||,  
–
)   if and only if lim 

inf
k

 uk > 0; 

(iii) l ( A  B, || . ||,  
–

, u–)  = l ( A  B, || . ||,  
–

)   if and only if 

0 < lim 
inf
k

  uk  lim 
sup

k
 uk < . 

 
Proof: 
 
Proof easily follows when we take uk = 1 and vk = uk for all k in theorem 5, 6 and 7. 
 

Theorem 8: For any sequences 
–

 = (k), 
–

 = (k), u
– = (uk) and v– = (vk),    

 

l ( A  B, || . ||,  
–
, u–)    l ( A  B, || . || ,  

–
, v–)    

 

if and only if     (i)  lim 
inf
k

 




k

 k

uk

 > 0, and    (ii)  lim 
sup

k
 
vk

uk
 < . 

 
Proof: 
 
Proof directly follows from Theorems 2 and 5. 

In the following example we show that l (A  B, || . ||,  
–

, u–)     is strictly contained in l ( A  B, || . || ,  
–
, v–) 

 
however (i) and (ii) of Theorem  8 are satisfied. 
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Example: 
 

 Let w–  = (< ak , bk >) be a sequence in  Banach space A × B such that  
 

||< ak , bk >|| = k k. 
 
Take uk = k -1 if k is odd integer and uk = k -2, if k is even integer, vk = k -2 for all values of k, k = 3k for all 
values of k; and k = 2k, for all values of k. Then 
 





k

 k

uk

 = 
3
2
 if k is odd integer and 





k

 k

uk

= 


3

2

1/2

, if k is even integer. 

 

Thus lim 
inf
k  




k

 k

uk

 = 1 i.e. condition (i) of Theorem 8 is satisfied. 

 

Further since 
vk

uk
 = 

1
k , if k is odd integer and 

vk

uk
 = 1, if k is even integer, therefore condition (ii) of Theorem 8 

is also satisfied as  lim 
sup
k  

vk

uk
 = 1.  

 

We now see that w–  = (< ak , bk >)  l ( A  B, || . ||,  
–

, v–)    for all k  1 as 
 

sup
k

 || k < ak , bk > || vk = 
sup

k
  (2k)1/k  <  2, 

 

but w–  = (< ak , bk >)  l ( A  B, || . || ,  
–

, u–)  , when k is odd integer  as 
 

sup
k

 || k < ak , bk >|| uk   =  
sup

k
 3k  =   

 

This shows that the condition (i) and (ii) are satisfied but l (A  B, || . || ,  
–
, u–)    is strictly contained in 

  

l ( A  B, || . || ,  
–

, v–). 
 

4 Conclusion 

 
This paper establishes some of the results that characterize the linear space structures and containment 
relations on the space of sequences whose terms from a product normed space. In fact, these results can be 
used for further generalization and unification to investigate the properties of the various existing sequence 
spaces studied in Functional Analysis. 
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