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Abstract 
 

Finite-state automaton is a machine that processes input strings and produces output indicating whether 
the input string is accepted or not. It is an acceptor recognizer for input specification. A finite-state 
automaton is an input/output device that accepts strings as input and produces binary numbers 0s and 1s.  
Two automata are equivalent if they generate the same or similar output for each input string. That is to 
say, two automata are equivalent if and only if they have the same computing powers. In this paper, we 
develop an algorithm that can be used to determine if two automata are equivalent. Such automaton could 
be an non-deterministic finite automata (NFA) that is converted to deterministic finite automata (DFA) or 
a DFA that is minimized into another DFA (minimized DFA) which are equivalent in the sense that they 
have the same computing power and can therefore be used to compute the same regular expression. 
Examples of the use of the algorithms are provided and their results show that they are equivalent in all 
respects. From the examples, it is clearly seen that each pair of automaton accept the same language, 
hence they are said to be equivalent. The proposed algorithm performs better in terms of time and space 
complexities when compared with existing algorithms because it runs faster and occupies less space in 
the computer’s memory. 
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1 Introduction 
 
Finite automata are models of computation used for computing both hardware and software [1]. They are 
computational models that have applicability in many fields of study such as computer science, engineering, 
mathematics, and linguistics [2,3]. Finite automaton is similar to Turing machines except that its head moves 
in only one direction, whereas the Turing machine can rotate in directions, left or right. They are more 
restrictive in their capabilities and usage when compared to Turing machines. Therefore, we can describe a 
finite automaton as an acceptor recognizer for language specification. It is often used for lexical analysis 
when developing compilers. Positions in finite automata are represented with circles; these positions are 
referred to as states. The states are joined together using arrows that point from one state to the next;                  
these arrows are called edges. These edges are labeled with the input symbols or an empty string where       
there is no input symbol. A finite automaton with multiple states can have output devices attached to each 
state so that the automaton can classify input stings into different categories, one for each accepting state 
[4,5].  
 
A finite automaton [6] can be constructed by using a number of states which usually starts with the initial 
state and ends with one or final or accepting states, some input symbols, and specification for a next-state 
function. To construct an automaton, the transition diagram is used. It is the transition diagram that explains 
the structure of the automata by the edges with arrows which indicates the direction of flow of the transition 
diagram from one state to the other. These arrows are labeled with input symbols which points from one 
state to the other. The starting point is called the initial state and then moves on until it gets to the accepting 
state(s). Usually, the states are drawn using circles and final or accepting state(s) is represented by double 
circles to indicate that the automata has reached the terminal stage [7,8]. Two automata are equivalent if they 
generate the same or similar output for each input string [9,10].  
 
This paper proposes an algorithm that can be used to simulate two equivalent finite state automata. Often 
times, the automata that are equivalent could be an NFA that is converted to DFA or a DFA that is 
minimized or reduced to a smaller DFA with reduced number of states. A nondeterministic finite automaton 
transformed into a deterministic finite automaton having fewer states when compared with the original NFA. 
The two automata are said to be equivalent if they have the same power and can therefore be used to 
compute the same regular expression. Examples of the use of the algorithm are provided and their results 
show that they are equivalent in all respects. The two automata that are produced are equivalent if they 
produce identical output for each input string or if they have the same computing power by accepting and 
processing the same language.  
 

2 Describing Finite-State Automata 
 
A finite automaton [11] is an input/output device whose input consists of strings or labels and whose output 
consists of 0s and 1s. It is a machine that is used to process input strings and provides output showing 
whether the input string is accepted or not [12,13]. Informally, a finite automaton is a computational 
machine used for computation and for recognizing regular expressions [14].  
 
Definition 1 (Finite State Automata): Formally, we define an automaton as a quintuple � = (Q, Σ, �, qo, F), 
where Q  is a finite set of states, Σ represents the input symbols called alphabets,   δ : Q × Σ → Q = a 
transition function, qo is a start state (q0 ∈ Q), and F⊆S = a set of accepting states.  
 
Two types of automata exist. These are: Finite automata can be deterministic or non-deterministic. 
  

2.1 Nondeterministic finite automata (NFA) 
 
An NFA is a quintuple N = (Q, Σ, δ, qo, F), where Q is a finite set of states, Σ is of input symbols called 
alphabets,   δ : Q × Σ → Q = a transition function, qo is  an initial or start state (q0 ∈ Q), and F⊆ S  is a set of 
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accepting states. In a non-deterministic automaton, it is possible to have more than one edge with the same 
symbol. Thus to transit from one state to the other, the edge must be labeled with an input symbol. However, 
where there is no input symbol, the edge is marked with an empty string (λ) also or the epsilon (ε) are also 
used in NFA [15].  
 

In order to determine if an input symbol is set of strings, it is possible to use a finite automaton. This is done 
by selecting a particular state of the automaton as the initial or starting state. From the start state, there can 
be transition without input strings meaning the transition follows an empty string (or epsilon) transition to 
the next state or a symbol can be labeled by that input character. Thus the resultant automaton is 
nondeterministic since the transition is uniquely determined by the current state and the input symbol. This 
can be due to the fact that certain actions led to accepting whereas others do not. Thus, it suffixes to say that 
the current state is indicated as the accepted state if all the input symbols are read. In this case, the input 
symbol is contained in the language defined by the automaton. Therefore, nondeterministic finite automata 
can formally be defined as follows: 

 

Definition 2 (NFA): A nondeterministic finite automata (NFA) is a quintuple N = (Q, Σ, �, qo, F), where Q 
is a finite set of states, Σ is of input symbols called alphabets,   δ : Q × Σ → Q = a transition function, qo is  
an initial or start state (q0 ∈ Q), and F⊆ S  is a set of accepting states.  

 

2.2 Deterministic finite automata (DFA) 
 
A deterministic finite automaton (DFA) is a computational device that processes strings or input symbols of 
some alphabet(s) or input strings and produces a result that is either accepted or rejected [16,17]. If the string 
is accepted, it means that the string is part of a recognized language otherwise; it is not [18]. Thus if the 
language is accepted, it is then defined as all strings that bring the DFA into an accepting state. As an 
example, it is possible to construct a DFA that accept a language, an, where n > 2 as follows.  

 

Definition 3 (DFA): A deterministic finite automaton (DFA), �, is a quintuple � = (Q, Σ, �, qo, F), where Q 
is a finite set of states, Σ is of input symbols called alphabets,   δ : Q × Σ → Q = a transition function, qo is  
an initial or start state (q0 ∈ Q), and F⊆S = a set of accepting states.  

 

DFAs are usually represented by transition diagrams with the states represented as circles starting from the 
initial state to all the other states apart from the final or accepting state which is represented by double 
circles. If the language is recognized, then it will end in the final or accepting state; otherwise, the language 
is rejected. The states are connected by arrows indicating the direction in which the transition should               
move next [19,20].  However, there are some limitations to the kind of language the DFA can recognize.  
The number of input symbols and the number of states in the DFA must be finite for the DFA to be 
recognized. 

 

3 Equivalent Automata 
 
Two automata are equivalent if both they produce identical output for each input string [21]. This way, in 
can be said that two finite automata are equivalent if they both accept the same language [22,23].  

 

Definition 4 (Equivalent automata): Let Q and Q1 be two finite-state automata with the same set of input 
symbols I. Let L(Q) denote the language accepted by Q and L(Q1). We say Q is equivalent to Q1 if and only if 
L(Q) ≡ L(Q1).  

 

Definition 5 (Equivalence of finite state automata): Two automata A1 and A2 are equivalent (A1≡A2) if they 
both have the same input and output symbols and produce the same output for any input string if they both 
start from their respective initial states. 
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Definition 6 (Equivalence of states): Two finite-states automata A1 and A2 (which may or may not be the 
same as A1) are equivalent (A1≡A2) if t they both have the same input and output strings and if for any input 
string, automaton A1 started from state q1 produces the same output as automaton A2 which started from 
state q2. 

 

Definition 7 (Strongly connected automata): A finite-state automaton A is strongly connected if, for any two 
states s1 and s2 in the state space of A, there is a finite sequence of transitions that transit A from state s1 to 
state s2. 

 

In order to determine if two automata are equivalent, output devices are usually attached to the states of a 
finite automata to show if they are accepting or rejecting states. As an example, suppose there is a finite 
automaton with accepting states that produces an output of 1 and rejecting states with an output 0, then such 
a finite automaton can be regarded as an input/output device whose values consists of strings and output 
values consists of strings of 0’s and 1’s. Therefore, a finite automaton is a  machine that processes input 
strings and produces outputs strings whether these output strings are accepted or not. Fig. 1 shows an 
algorithm that can be used to determine if two automata are equivalent. 

 

Algorithm 1: Algorithm for Two Equivalent Automata 

Input:  Two different deterministic finite automata (DFA) 

Output: Two automata that are equivalent 

begin  
     for automata A determine the: 

  0-equivalence classes; 

  1-equivalent classes; 

  2-equivalent classes ; 

                 construct the automata 

      end // end for 

         begin 
              for automata A1 determine the: 

      0-equivalence classes; 

      1-equivalent classes ; 

      2-equivalent classes; 

                      construct the automata 

         end; //end for 
    if transition diagrams A and A1 are identical then  

         automata A ≡ A1  

         if A is equivalent to A1 then 
  A ≡ A1  

         endif; // end if 

     endif; //end if 

end. 

 

Fig. 1. Determiningr two equivalent automata 
 

4 Examples of Equivalent Automata 
 
In this section, we solve some problems and show by proving that the set of automata in consideration are 
equivalent or not. We also supported our claims with reason why such automata are considered equivalent. 

 
Theorem 1: Prove that the two automata in A and A1 in Fig. 2 are equivalent. 
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A       A1 

Fig. 2. Two automata A and A1 

Proof 

 

In order to show that the two automata are equivalent, we first consider automaton A in Fig. 2.  

 

For automaton A: the 0-equivalence classes are determined by first identifying the accepting and rejecting 
state. In the case of automaton A, the states that are accepting and rejecting are: 

 

 q0 and q1 are accepting states 

 q2 and q3 are not accepting states 

 

We grouped the accepting states as a set and the non-accepting states as a set. That is, {q0, q1} and {q2, q3} 
respectively. Next, we consider the 1-equivalence classes. 

 

The 1-equivalence classes are as follows: 

 

Since, N(q0, 1) = but N(q1, 1) = q3, then we choose {q0], {q1}, and {q2, q3} as 1-equivalent. Thus the pair of 
states below shows whether they are 0 or 1-euqivalence or both q0 and q1 are not 1-equivalent 

 

 q1 is not 0-equivalent 

 q2 and q3 are 1-equivalent 

 

The 2-equivalence classes are as follows: 

 

Since q2 and q3 are 1-equivalent, therefore, we choose states {q0], {q1}, and {q2, q3}. From the foregoing, it 
can be seen that the set of 1-equivalent classes are the same as the set of 2-equivalent classes. Based on the 
*-equivalent classes, it follows that the *-equivalent classes are: 

 

{q0], {q1}, and {q2, q3} 
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which state that if A is a finite-state automaton, then for some integer i ≥ 0, the set of i-equivalent classes 
are of states A equals the set of (i + 1)-equivalent classes of states of A, and for all such i these are both 
equal to the set of *-equivalent classes of states of A.  

 

From the automaton A1: Based on similar reasons given for automaton A, we determine the 0-equivalent 
classes. 

 

The 0-equivalence classes are:  

 

{q1
0, q

1
2, q

1
3} and {q1

1} 

 

The 1-equivalence classes are:  

 

{q1
0, q

1
3}, {q1

2}, and {q1
1} 

 

The 2-equivalence classes are:  

 

Since q2 and q3 are 1-equivalent, therefore, we choose states {q1
0], q

1
1, {q1

2, q
1
3} 

 

Therefore, it can be seen that the set of 1-equivalent classes are the same as the set of 2-equivalent classes. 
Based on the *-equivalent classes, it follows that the *-equivalent classes are: 

 

{q1
0, q

1
3}, {q1

2}, and {q1
1} 

 

Based on the proof above, it can be seen that the two automata A and A1, are equivalent. Finally, the 
resulting equivalent automata for automata A and A1 in Fig. 3 are: 
 

 

 
 

��                                                                               �1 
 
 

Fig. 3. Finite automata with minimized states equivalent to A and A1 
 
These two automata are equivalent except that the position of state q1 and q2 changes.  
 
Theorem 2: Prove that the two automata B and B1 in Fig. 4 are equivalent. 
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B          B! 

 
Fig. 4. Two automata B and B1 

 
Proof 
 
We first consider automaton B.  
 
For automaton B: the 0-equivalence classes are: 
 
First, we identify the accepting and non-accepting state. 
 
 q0 and q1 are accepting states 
 q2 and q3 are not accepting states 

 
We then group the accepting states as a set and the non-accepting states are a set. 
 
Next, we consider the 1-equivalence classes 
 
The 1-equivalence classes are as follows: 
 
Since N(q0, 1) = but N(q1, 1) = q3{q0], {s1}, and {q2, q3}, then q0 and q1 are not 1-equivalent; q1 is not 0-
equivalent; and q2 and q3 are 1-equivalent 
 
The 2-equivalence classes are as follows: 
 
Also, since q2 and q3 are 1-equivalent; {q0], {q1}, and {q2, q3} 
 
From the foregoing, it can be seen that the set of 1-equivalence classes are the same as the set of 2-
equivalence classes. Based on the *-equivalence classes, it follows that the *-equivalence classes are: 
 

{q0}, {q1}, and {q2, q3} 
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which state that if A is a finite-state automaton, then for some integer i ≥ 0, the set of i-equivalence classes 
are of states A equals the set of (i + 1)-equivalent classes of states of X, and for all such i these are both 
equal to the set of *-equivalent classes of states of A.  
 

Automaton B1: Based on similar reasons given for automaton B, we determine the 0-equivalence classes. 
 
The 0-equivalence classes are:  
 

{q1
0, q

1
2, q

1
3} and {q1

1} 
 

The 1-equivalence classes are: 
  

{q1
0, q

1
3}, {q1

2}, and {q1
1} 

 

The 2-equivalence classes are the same just as in automaton B, which makes them the same as *-equivalence 
classes. Therefore, the *-equivalence classes are: 
 

{q1
0, q

1
3}, {q1

2}, and {q1
1} 

 

Based on the proof above, it can be seen from Fig. 5 (��  and �1) that automata B and B1, are equivalent. 
 

 
��          �1 

 

Fig. 5. Finite automata with minimized states equivalent to B and B1 

 

Also, these two automata are equivalent except for the position of states q1 and q2.  
 

5 Conclusion 
 
Often times, two automata that are equivalent could be an NFA that is converted to DFA or a DFA that is 
minimized into an equivalent DFA. A nondeterministic finite automaton can be converted to a deterministic 
finite automaton having fewer states when compared with the original NFA. The two finite-state automata 
are equivalent if they have the same power and can therefore be used to compute the same regular 
expression. In this paper, we develop an algorithm that can be used to simulate two equivalent finite state 
automata. Two finite-state automata are said to be equivalent if they produce identical output for each input 
string. The concept of finite automaton has been in existence for decades. It is very useful when developing 
compilers in programming languages and programming in general. It captures all possible states and 
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transitions that a machine can take while reading a sequence of input strings or symbols. Examples of the use 
of the algorithm are provided and their Results show that they are equivalent in all respects. 
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