

Journal of Advances in Mathematics and Computer Science

29(5): 1-10, 2018; Article no.JAMCS.37848

ISSN: 2456-9968
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

*Corresponding author: E-mail: edward_ogheneovo@yahoo.com;

A New Algorithm for Determining the Equivalence of Two
Finite-State Automata

Edward E. Ogheneovo1*

1Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAMCS/2018/37848

Editor(s):
(1) Dr. Octav Olteanu, Professor, Department of Mathematics-Informatics, University Politehnica of Bucharest, Bucharest,

 Romania.
Reviewers:

(1) T. Marimuthu, Ayya Nadar Janaki Ammal College, India.
(2) Sangeeta Ahuja, Delhi University, Senior Scientist IASRI (ICAR), India.

(3) Udoinyang G. Inyang, University of Uyo, Nigeria.
Complete Peer review History: http://www.sciencedomain.org/review-history/27526

Received: 18 September 2017
Accepted: 21 November 2017

Published: 01 December 2018

Abstract

Finite-state automaton is a machine that processes input strings and produces output indicating whether
the input string is accepted or not. It is an acceptor recognizer for input specification. A finite-state
automaton is an input/output device that accepts strings as input and produces binary numbers 0s and 1s.
Two automata are equivalent if they generate the same or similar output for each input string. That is to
say, two automata are equivalent if and only if they have the same computing powers. In this paper, we
develop an algorithm that can be used to determine if two automata are equivalent. Such automaton could
be an non-deterministic finite automata (NFA) that is converted to deterministic finite automata (DFA) or
a DFA that is minimized into another DFA (minimized DFA) which are equivalent in the sense that they
have the same computing power and can therefore be used to compute the same regular expression.
Examples of the use of the algorithms are provided and their results show that they are equivalent in all
respects. From the examples, it is clearly seen that each pair of automaton accept the same language,
hence they are said to be equivalent. The proposed algorithm performs better in terms of time and space
complexities when compared with existing algorithms because it runs faster and occupies less space in
the computer’s memory.

Keywords: Algorithm; equivalent; finite automata; language; computational model; computing.

Original Research Article

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

2

1 Introduction

Finite automata are models of computation used for computing both hardware and software [1]. They are
computational models that have applicability in many fields of study such as computer science, engineering,
mathematics, and linguistics [2,3]. Finite automaton is similar to Turing machines except that its head moves
in only one direction, whereas the Turing machine can rotate in directions, left or right. They are more
restrictive in their capabilities and usage when compared to Turing machines. Therefore, we can describe a
finite automaton as an acceptor recognizer for language specification. It is often used for lexical analysis
when developing compilers. Positions in finite automata are represented with circles; these positions are
referred to as states. The states are joined together using arrows that point from one state to the next;
these arrows are called edges. These edges are labeled with the input symbols or an empty string where
there is no input symbol. A finite automaton with multiple states can have output devices attached to each
state so that the automaton can classify input stings into different categories, one for each accepting state
[4,5].

A finite automaton [6] can be constructed by using a number of states which usually starts with the initial
state and ends with one or final or accepting states, some input symbols, and specification for a next-state
function. To construct an automaton, the transition diagram is used. It is the transition diagram that explains
the structure of the automata by the edges with arrows which indicates the direction of flow of the transition
diagram from one state to the other. These arrows are labeled with input symbols which points from one
state to the other. The starting point is called the initial state and then moves on until it gets to the accepting
state(s). Usually, the states are drawn using circles and final or accepting state(s) is represented by double
circles to indicate that the automata has reached the terminal stage [7,8]. Two automata are equivalent if they
generate the same or similar output for each input string [9,10].

This paper proposes an algorithm that can be used to simulate two equivalent finite state automata. Often
times, the automata that are equivalent could be an NFA that is converted to DFA or a DFA that is
minimized or reduced to a smaller DFA with reduced number of states. A nondeterministic finite automaton
transformed into a deterministic finite automaton having fewer states when compared with the original NFA.
The two automata are said to be equivalent if they have the same power and can therefore be used to
compute the same regular expression. Examples of the use of the algorithm are provided and their results
show that they are equivalent in all respects. The two automata that are produced are equivalent if they
produce identical output for each input string or if they have the same computing power by accepting and
processing the same language.

2 Describing Finite-State Automata

A finite automaton [11] is an input/output device whose input consists of strings or labels and whose output
consists of 0s and 1s. It is a machine that is used to process input strings and provides output showing
whether the input string is accepted or not [12,13]. Informally, a finite automaton is a computational
machine used for computation and for recognizing regular expressions [14].

Definition 1 (Finite State Automata): Formally, we define an automaton as a quintuple � = (Q, Σ, �, qo, F),
where Q is a finite set of states, Σ represents the input symbols called alphabets, δ : Q × Σ → Q = a
transition function, qo is a start state (q0 ∈ Q), and F⊆S = a set of accepting states.

Two types of automata exist. These are: Finite automata can be deterministic or non-deterministic.

2.1 Nondeterministic finite automata (NFA)

An NFA is a quintuple N = (Q, Σ, δ, qo, F), where Q is a finite set of states, Σ is of input symbols called
alphabets, δ : Q × Σ → Q = a transition function, qo is an initial or start state (q0 ∈ Q), and F⊆ S is a set of

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

3

accepting states. In a non-deterministic automaton, it is possible to have more than one edge with the same
symbol. Thus to transit from one state to the other, the edge must be labeled with an input symbol. However,
where there is no input symbol, the edge is marked with an empty string (λ) also or the epsilon (ε) are also
used in NFA [15].

In order to determine if an input symbol is set of strings, it is possible to use a finite automaton. This is done
by selecting a particular state of the automaton as the initial or starting state. From the start state, there can
be transition without input strings meaning the transition follows an empty string (or epsilon) transition to
the next state or a symbol can be labeled by that input character. Thus the resultant automaton is
nondeterministic since the transition is uniquely determined by the current state and the input symbol. This
can be due to the fact that certain actions led to accepting whereas others do not. Thus, it suffixes to say that
the current state is indicated as the accepted state if all the input symbols are read. In this case, the input
symbol is contained in the language defined by the automaton. Therefore, nondeterministic finite automata
can formally be defined as follows:

Definition 2 (NFA): A nondeterministic finite automata (NFA) is a quintuple N = (Q, Σ, �, qo, F), where Q
is a finite set of states, Σ is of input symbols called alphabets, δ : Q × Σ → Q = a transition function, qo is
an initial or start state (q0 ∈ Q), and F⊆ S is a set of accepting states.

2.2 Deterministic finite automata (DFA)

A deterministic finite automaton (DFA) is a computational device that processes strings or input symbols of
some alphabet(s) or input strings and produces a result that is either accepted or rejected [16,17]. If the string
is accepted, it means that the string is part of a recognized language otherwise; it is not [18]. Thus if the
language is accepted, it is then defined as all strings that bring the DFA into an accepting state. As an
example, it is possible to construct a DFA that accept a language, an, where n > 2 as follows.

Definition 3 (DFA): A deterministic finite automaton (DFA), �, is a quintuple � = (Q, Σ, �, qo, F), where Q
is a finite set of states, Σ is of input symbols called alphabets, δ : Q × Σ → Q = a transition function, qo is
an initial or start state (q0 ∈ Q), and F⊆S = a set of accepting states.

DFAs are usually represented by transition diagrams with the states represented as circles starting from the
initial state to all the other states apart from the final or accepting state which is represented by double
circles. If the language is recognized, then it will end in the final or accepting state; otherwise, the language
is rejected. The states are connected by arrows indicating the direction in which the transition should
move next [19,20]. However, there are some limitations to the kind of language the DFA can recognize.
The number of input symbols and the number of states in the DFA must be finite for the DFA to be
recognized.

3 Equivalent Automata

Two automata are equivalent if both they produce identical output for each input string [21]. This way, in
can be said that two finite automata are equivalent if they both accept the same language [22,23].

Definition 4 (Equivalent automata): Let Q and Q1 be two finite-state automata with the same set of input
symbols I. Let L(Q) denote the language accepted by Q and L(Q1). We say Q is equivalent to Q1 if and only if
L(Q) ≡ L(Q1).

Definition 5 (Equivalence of finite state automata): Two automata A1 and A2 are equivalent (A1≡A2) if they
both have the same input and output symbols and produce the same output for any input string if they both
start from their respective initial states.

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

4

Definition 6 (Equivalence of states): Two finite-states automata A1 and A2 (which may or may not be the
same as A1) are equivalent (A1≡A2) if t they both have the same input and output strings and if for any input
string, automaton A1 started from state q1 produces the same output as automaton A2 which started from
state q2.

Definition 7 (Strongly connected automata): A finite-state automaton A is strongly connected if, for any two
states s1 and s2 in the state space of A, there is a finite sequence of transitions that transit A from state s1 to
state s2.

In order to determine if two automata are equivalent, output devices are usually attached to the states of a
finite automata to show if they are accepting or rejecting states. As an example, suppose there is a finite
automaton with accepting states that produces an output of 1 and rejecting states with an output 0, then such
a finite automaton can be regarded as an input/output device whose values consists of strings and output
values consists of strings of 0’s and 1’s. Therefore, a finite automaton is a machine that processes input
strings and produces outputs strings whether these output strings are accepted or not. Fig. 1 shows an
algorithm that can be used to determine if two automata are equivalent.

Algorithm 1: Algorithm for Two Equivalent Automata

Input: Two different deterministic finite automata (DFA)

Output: Two automata that are equivalent

begin
 for automata A determine the:

 0-equivalence classes;

 1-equivalent classes;

 2-equivalent classes ;

 construct the automata

 end // end for

 begin
 for automata A1 determine the:

 0-equivalence classes;

 1-equivalent classes ;

 2-equivalent classes;

 construct the automata

 end; //end for
 if transition diagrams A and A1 are identical then

 automata A ≡ A1

 if A is equivalent to A1 then
 A ≡ A1

 endif; // end if

 endif; //end if

end.

Fig. 1. Determiningr two equivalent automata

4 Examples of Equivalent Automata

In this section, we solve some problems and show by proving that the set of automata in consideration are
equivalent or not. We also supported our claims with reason why such automata are considered equivalent.

Theorem 1: Prove that the two automata in A and A1 in Fig. 2 are equivalent.

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

5

A A1

Fig. 2. Two automata A and A1

Proof

In order to show that the two automata are equivalent, we first consider automaton A in Fig. 2.

For automaton A: the 0-equivalence classes are determined by first identifying the accepting and rejecting
state. In the case of automaton A, the states that are accepting and rejecting are:

 q0 and q1 are accepting states

 q2 and q3 are not accepting states

We grouped the accepting states as a set and the non-accepting states as a set. That is, {q0, q1} and {q2, q3}
respectively. Next, we consider the 1-equivalence classes.

The 1-equivalence classes are as follows:

Since, N(q0, 1) = but N(q1, 1) = q3, then we choose {q0], {q1}, and {q2, q3} as 1-equivalent. Thus the pair of
states below shows whether they are 0 or 1-euqivalence or both q0 and q1 are not 1-equivalent

 q1 is not 0-equivalent

 q2 and q3 are 1-equivalent

The 2-equivalence classes are as follows:

Since q2 and q3 are 1-equivalent, therefore, we choose states {q0], {q1}, and {q2, q3}. From the foregoing, it
can be seen that the set of 1-equivalent classes are the same as the set of 2-equivalent classes. Based on the
*-equivalent classes, it follows that the *-equivalent classes are:

{q0], {q1}, and {q2, q3}

0

q2

1

Start

q3

q1 q0

1

1

0
0

1

0

0

q1
1

1

Start

q
1
3

q1
2 q1

0

0

1

0

0,1
1

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

6

which state that if A is a finite-state automaton, then for some integer i ≥ 0, the set of i-equivalent classes
are of states A equals the set of (i + 1)-equivalent classes of states of A, and for all such i these are both
equal to the set of *-equivalent classes of states of A.

From the automaton A1: Based on similar reasons given for automaton A, we determine the 0-equivalent
classes.

The 0-equivalence classes are:

{q1
0, q

1
2, q

1
3} and {q1

1}

The 1-equivalence classes are:

{q1
0, q

1
3}, {q1

2}, and {q1
1}

The 2-equivalence classes are:

Since q2 and q3 are 1-equivalent, therefore, we choose states {q1
0], q

1
1, {q1

2, q
1
3}

Therefore, it can be seen that the set of 1-equivalent classes are the same as the set of 2-equivalent classes.
Based on the *-equivalent classes, it follows that the *-equivalent classes are:

{q1
0, q

1
3}, {q1

2}, and {q1
1}

Based on the proof above, it can be seen that the two automata A and A1, are equivalent. Finally, the
resulting equivalent automata for automata A and A1 in Fig. 3 are:

�� �1

Fig. 3. Finite automata with minimized states equivalent to A and A1

These two automata are equivalent except that the position of state q1 and q2 changes.

Theorem 2: Prove that the two automata B and B1 in Fig. 4 are equivalent.

0

0, 1

Start

[q3]

[q1]
[q0]

1

1

0

Start

[q
1

3]

[q1
2] [q1

0]

0

1

0

0, 1

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

7

B B!

Fig. 4. Two automata B and B1

Proof

We first consider automaton B.

For automaton B: the 0-equivalence classes are:

First, we identify the accepting and non-accepting state.

 q0 and q1 are accepting states
 q2 and q3 are not accepting states

We then group the accepting states as a set and the non-accepting states are a set.

Next, we consider the 1-equivalence classes

The 1-equivalence classes are as follows:

Since N(q0, 1) = but N(q1, 1) = q3{q0], {s1}, and {q2, q3}, then q0 and q1 are not 1-equivalent; q1 is not 0-
equivalent; and q2 and q3 are 1-equivalent

The 2-equivalence classes are as follows:

Also, since q2 and q3 are 1-equivalent; {q0], {q1}, and {q2, q3}

From the foregoing, it can be seen that the set of 1-equivalence classes are the same as the set of 2-
equivalence classes. Based on the *-equivalence classes, it follows that the *-equivalence classes are:

{q0}, {q1}, and {q2, q3}

1 Star
t

1

q1

1 0

0

0

0

1

1

q3

q0

0

q
1
0 q1

1

q1
2 S

1
3 0

1

1

1

0
 0

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

8

which state that if A is a finite-state automaton, then for some integer i ≥ 0, the set of i-equivalence classes
are of states A equals the set of (i + 1)-equivalent classes of states of X, and for all such i these are both
equal to the set of *-equivalent classes of states of A.

Automaton B1: Based on similar reasons given for automaton B, we determine the 0-equivalence classes.

The 0-equivalence classes are:

{q1
0, q

1
2, q

1
3} and {q1

1}

The 1-equivalence classes are:

{q1
0, q

1
3}, {q1

2}, and {q1
1}

The 2-equivalence classes are the same just as in automaton B, which makes them the same as *-equivalence
classes. Therefore, the *-equivalence classes are:

{q1
0, q

1
3}, {q1

2}, and {q1
1}

Based on the proof above, it can be seen from Fig. 5 (�� and �1) that automata B and B1, are equivalent.

�� �1

Fig. 5. Finite automata with minimized states equivalent to B and B1

Also, these two automata are equivalent except for the position of states q1 and q2.

5 Conclusion

Often times, two automata that are equivalent could be an NFA that is converted to DFA or a DFA that is
minimized into an equivalent DFA. A nondeterministic finite automaton can be converted to a deterministic
finite automaton having fewer states when compared with the original NFA. The two finite-state automata
are equivalent if they have the same power and can therefore be used to compute the same regular
expression. In this paper, we develop an algorithm that can be used to simulate two equivalent finite state
automata. Two finite-state automata are said to be equivalent if they produce identical output for each input
string. The concept of finite automaton has been in existence for decades. It is very useful when developing
compilers in programming languages and programming in general. It captures all possible states and

0

Start

1

0

1

[q0]

[q2]

[q1]
0

Start

1

0

1

[q
1
0]

[q1
1]

[q1
2]

0

0

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

9

transitions that a machine can take while reading a sequence of input strings or symbols. Examples of the use
of the algorithm are provided and their Results show that they are equivalent in all respects.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Zhang J, Qian Z. The equivalent conversion between regular grammar and finite automata. Journal of

Software Engineering and Applications. 2013;6:33-37.

[2] Pandey H, Singh VK, Pandey A. A new NFA reduction algorithm for state minimization problem.
Int’l Journal of Applied Information System (IJAIS). 2015;8(3):27-30.

[3] Aho AV, Sethi H, Ullman JD. Compilers: Principles, techniques and tools. Addison-Wesley Publisher

Co., Reading, Massachusetts; 1988.

[4] Freund Y, Kearns M, Ron M, Rubinfeld R, Schapire RE, Sellie L. Efficient learning of typical finite
automata from random walks. 25th ACM Symposium on Theory of Computing. 1997;315-324.

[5] Ogheneovo EE. An alternative algorithm for simulating finite-state automata. The Journal of Digital

Innovations & Contemporary Research in Science and Engineering. 2016;4(4):71-82.

[6] Geffert V, Guillon B, Pighizzini G. Two-way automata: Making choices only at the Endmakers. In

Dediu, A. H. and Martin-Vide, C. (Ed.): LATA, Lecture Notes in Computer Science 7183, Springer.
2012;264-276.
DOI: 10.1007/978-3-642-28332-1.23

[7] Pandey H, Singh VK, Pandey A. A new NFA reduction algorithm for state minimization problem.

Int’l Journal of Applied Information System (IJAIS). 2015;8(3):27-30.

[8] Rastogi D, Singh R. Technique to remove indistinguishable state with unreachable state and dead

state from deterministic finite automata. Int’l Journal f Computer Application. 2014;94(1):35-39.

[9] Hopcroft JE, Ullman JD. Introduction to automata theory, languages and computation. Addison-

Wesley, Readings, Massachusetts, USA; 1979.

[10] Mera F, Pighizzini G. Complimenting unary nondeterministic automata (2004). Theoretical Computer

Science. 2004;330:349-360.

[11] Hozler M, Kutrib M. Descriptional and computational complexity of finite automata –A survey

(2011). Information and Computation. 2011;209:456-470.

[12] Rivest RL, Schapire RE. Diversity-based inference of finite automata. Journal of the ACM.

1994;41(3):555-589.

[13] Jirásková G. Note on minimal finite automata. In Gigall, J. and Kolman, P. (Eds.): MFCS 2001,

LNCS 2136, Springer-Verlag, Berlin, Heidelberg. 2001;421-431.

[14] Pighizzini G. Two-way finite automata: Old and recent results. In E. Formenti (Ed.): AUTOMATA

and JAC 2012 Conferences, EPTCS. 2012;90:3-20.
DOI: 10.4204/EPTCS.90.1

Ogheneovo; JAMCS, 29(5): 1-10, 2018; Article no.JAMCS.37848

10

[15] Plump D, Suri R, Singh A. Minimizing finite automata with graph programs. Electronic
Communications of the EASST. 2011;39:1-15.

[16] Gruber H, Holzer M. From finite automata to regular expression and back – A summary on

descriptional complexity. In Esik, Z. and Fulop, Z. (Eds.): Automata and Formal Languages. 2014
(AFL 2014), EPTCS. 2014;151:25-48.
DOI: 10.4204/EPTCS.1512

[17] Jirásková G, Palmovsky M. In processing of CEUR’13. 2013;1003:94-100.

[18] Almeida M, Moreira N, Reis R. Testing the equivalence of regular langages. In Dassow, J. Pighizzini,

G. and Truthe, B. (Eds.): 11th Int’l Workshop on Descriptional Complexity of Formal Systems
(DCFs’09), EPTCS. 2009;3:47-57.
DOI: 10.4204/EPTCS.3.4

[19] Axdsen HB, Holzer M, Kutrib M. Springer Int’l Publishing, Switzerland. In Han, Y.-S., Salomaa, K.

(Eds.): CIAA 2016, LNCS 9705. 2016;15-26.
DOI: 10.1007/97S-3-319-40946-7_2

[20] Brüggemann-Klein A. Regular expressions into finite automata. Theoretical Computer Science. 1993;

120:197-213.

[21] Tewari A, Srivastava U, Gupta P. Parallel DFA Minimization Algorithm. In Sahni et al. (Eds.) HiPC

2002, LNCS 2552. Springer-Verlag, Berlin Heidelberg. 2002;34-40.

[22] Vázquez de Parge M, Gercía P, López D. A polynomial double reversal minimization algorithm for

deterministic finite automata. Theoretical Computer Science. 2013;487:17-22.

[23] Wieczorek W. Induction of non-deterministic finite automata on supercomputers. In Heinz, J. de la

Higuera, C. and Oates, T. JMLR: In Proceedings of the 11th ICGI International Workshop and
Conference. 2012;2:237-242.

__
© 2018 Ogheneovo; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://www.sciencedomain.org/review-history/27526

