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Abstract 
 

In this study, the multiple knapsack problems (MKP) with uncertainty model is introduced. The 
uncertainty represents the capacities of the knapsack. A possibility degree of interval number is used to 
convert the uncertain capacities to deterministic capacities. Some basic stability notions in parametric 
multiple knapsack are defined. These notions are the set of feasible parameters, the solvability set and the 
stability set of the first kind. A numerical example (case study) is introduced to present the suggested 
approach. 
 

 
Keywords: Knapsack problem; interval number; stability; integer programming. 
 

1 Introduction 
 
Knapsack problem is considered as a typical problem in combinatorial optimisation with many real-life 
applications. For this reason, there are many versions of this problem. For all versions, there is a set of n 
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items where 0 j n  each item has a weight jw   and a profit jp . The objective is to select some of the 

items to be included in a collection so that the total value is maximized and the total weight must not 
exceed a given capacity. Knapsack problem is NP-complete problem, so it is easy to be qualified, but 
difficult to be achieved in the case of a large scale.  
 
The MKP is one of the most known versions of knapsack problem. We get MKP when the items should be 
chosen from different classes and several knapsack should be filled. MKP is used in many scheduling and 
loading problems in operations research. 
 
The studying of the knapsack problem is back to 1879 [1]. In 1980 Gallo et al. [2] introduced the quadratic 
knapsack problem (QKP) for first time. Recently the QKP with multiple constraints was studied by Wang et 
al. [3]. Multiple choice knapsack problem is solved by Dyer et al. [4] using a branch and bound algorithm. 
Fujimoto and Yamada [5] introduced an exact algorithm for the knapsack sharing problem. For a class of 
knapsack problems with binary weights, Greedy algorithms are used by Gorski et al. [6]. Also, McLay and 
Jacobson [7] introduced Algorithms for the bounded set-up knapsack problem.  Zhang [8] introduce a 
Comparative study of several intelligent algorithms for KP. Exact Solution Algorithms for Multi-
dimensional Multiple choice Knapsack Problems was presented by Farhad et al. [9]. One level reformulation 
of the bilevel Knapsack problem using dynamic programming was introduced by Brotcorne et al. [10]. Qiu, 
and Kern [11] Presented Improved approximation algorithms for a bilevel knapsack problem.   
 
For the above literature, the knapsack problems were studied in a deterministic environment, since the 
weights and the values have positive crisp values. However, in the real world the data for the problems are 
not certain so it is suitable to employ uncertain models and methods to study the KP. Researchers like 
Schilling [12] used probability theory to represent the KP. Two growth models for multiclass stochastic 
knapsack problem are presented by Lee and Oh [13]. Beier and Vocking [14] proposed random knapsack in 
expected polynomial time. Kosuch and Lisser [15] presented stochastic knapsack problems as two-stage. In 
2017 Yann et al. [16] introduce a knapsack of unknown capacity. 
 
Also fuzzy theory has important contribution by many researchers to deal with KP. A fuzzy  multiple choice 
knapsack problem was presented by Okada and Gen [17]. Abboud et al. [18] presented an approach that 
treating the multiobjective multidimensional 0-1 knapsack problem under fuzziness. Kasperski, and Kulej 
[19] proposed the 0-1 knapsack problem with fuzzy data. For MKP Martello and Toth [20] introduce branch 
and bound algorithm for 0-1 multiple knapsack problem. Also, Abass [21] presented stability of multiple 
knapsack problems under fuzziness. 
 
Interval programming is one of the famous methods to model the uncertainty. For interval programming, the 
bounds of the uncertain coefficients are only required. Inuiguchi and Kume [22] introduced Goal 
Programming Problems with interval coefficients. A satisfactory solution for interval number linear 
programming was presented by Liu and Da [23]. Olivera and Antunes [24] surveyed all the methodological 
aspects of interval programming studied in the past. Jiang et al. [25] introduced a method to solve nonlinear 
interval number programming by using the interval programming. 
 
The organization of this paper is as follows: the formulation of 0-1 MKP with interval capacities is 
introduced in section 2. The treatment procedure for interval 0-1 MKP is described in section 3.  Also in the 
same section, a qualitative analysis of some basic stability notions is presented. Section 4 is devoted to 
determining the stability set of first kind. A numerical example (case study) is introduced in section 5. 
Finally, the conclusions are presented in section 6. 
 

2 Problem Formulation 
 
For MKP, we have a set of items n, should be filled in m knapsack of interval capacities ,  1,...,ic i m . 

Each item has a weight jw  and a value jp , where 0 j n  .  
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First we will define the following necessary notations: 
 
Parameters 
 

,L R
i i ic c c     is interval capacities, 1,...,i m . 

n  : number of items j , 1,...,j n . 

m  : number of knapsack i  

jp  : profit of each item j . 

jw  : weight of each item j . 

 
Variables 
 

1              if item  is assigned to knabsack    

0             otherwise
ij

j i
x


 


  

 

2.1 Optimization model 
 
The MKP with interval capacities is as follows:  
 

1 1

max
m n

j ij
i j

p x
 
                                                                                                                            (1) 

 
subject to 
 

1

, ,       1,...,
n

L R
j ij i i

j

w x c c i m


                                                                                          (2) 

 

1

1,        1,...,
m

ij
i

x j n


                                                                                                              (3) 

 

 0,1 ,          1,..., ,  1,...,ijx i m j n                                                                                   (4) 

 
Definition: The possibility degree of interval capacity represents the certain degree that interval capacity is 

larger than total weight. So for interval capacity ,L R
i i ic c c    and total weight

1

n

j
j

w



, the possibility degree 

can be defined as follows:  

1

1

1

1

1

0                  

  

1                 

n
R

j i
j

n
R
i j n

j L R
i j iR L

ji i

n
L

j i
j

n

i j
j

c w

w c

c w

c w c
c c

w c

P





 
  
 
 
 
















  



















 



 
 
 

Abass and Abdallah; JAMCS, 29(5): 1-11, 2018; Article no.JAMCS.44942 
 
 
 

4 
 
 

So 

1

in

i j
j

c w

P 
 
 
 
 
 






 is the possibility degree of the ith constraint where 0 1i  , 1, 2,...,i m  is a 

predetermined possibility degree level. 
 

3 The Treatment Procedure for the Interval 0-1 MKP 
 
We can apply the possibility degree on interval capacity constraints as follow:    
 

1

n

i j ij

j

i
c w x

P 








 

where 
 

0 1        1,...,i i m    

 
According to the definition, we have:  
 

1
     1,...,

n
R
i j ij

j

iR L
i i

c w x

i m
c c





 



 

0 1i   

So the deterministic form of 0-1 MKP will take the following form:  
 

1 1

max
m n

j ij
i j

p x
 
                                                                                                                            (5) 

subject to 
 

1
     1,...,

n
R
i j ij

j

iR L
i i

c w x

i m
c c





 



                                                                                            (6) 

 

1

1,        1,...,
m

ij
i

x j n


                                                                                                              (7) 

 

0 1i                                                                                                                                          (8) 

 

 0,1 ,          1,..., ,  1,...,ijx i m j n                                                                                   (9)    
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a point  ijx 
 which satisfies set of constraints (6)-(9) is said to be optimal solution of problem (5)-(9), if 

and only if there does not exist another  ijx  which satisfy set of constraints (6)-(9) such that 

*

1 1 1 1

m n m n

j ij j ij
i j i j

p x p x
   

    

3.1 Qualitative analysis of some basic stability notions 
 

In this section a parametric influence on possibility degree level i  is presented. 

Let , 1,...,i i m   are assumed to be parameters rather than constants. The decision space of the problem 

(5)-(9) can be defined as follows: 
 

        ( 1), which satisfy the set of constraints 6 9m n
ij iG x c R    . 

 

We introduce the definitions of some basic stability notions for the problem (5)-(9) are given in the 
following. These notions are the set of feasible parameters, the solvability set and the stability set of the first 
kind [26, 27]. 
 

3.2 The set of feasible parameters 
 
The set of feasible parameters of problem (5)-(9) which is denoted by A is defined by: 
 

    .IU R G        

 

3.3 The solvability set 
 
The solvability set of problem (5)-(9) which is denoted by V, is defined by: 
 

      problem 5 9 has optimal solutionsV U   . 

3.4 The stability set of first kind  
 

Suppose that V   with a corresponding optimal solution ijx 
for problem (5)-(9) together with optimal 

parameters ic 
. The stability set of the first kind of problem (5)-(9) that is denoted by  ijS x 

 is defined by: 

 

   
   

, 1, 2 , ..., , 1, 2 , ...,  is  op tim al so lu tion  o f p rob lem  

5 9 w ith  th e co rresp on ding  op tim al p aram eters  c

ij

ij

i

x i m j n
S x V







   
  

  

. 

 

4 Determination of the Stability Set of First Kind 
 

The Lagrange function of problem (5)-(9) can be written as follows: 
 

     
1 1 1 1

1 1
m n n m

R L R
j ij i j i j i i i i j i j ij ij i j i j

i j j i

L p x w x c c c x x x    
   

   
             

  
   

 

 

The Kuhn-Tucker necessary optimality conditions corresponding to the problem (5)-(9) will take the 
following form: 
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0  ,   1, . . . , ,  1, . . . ,
i j

L
i m j n

x


  

  
 

1
     1,...,

n
R
i j ij

j

iR L
i i

c w x

i m
c c





 



                                             

1

1,        1,...,
m

ij
i

x j n


                                                               

 

 0,1 ,          1,..., ,  1,...,ijx i m j n       

 

 
1

0
n

R L R
i j ij i i i i

j

w x c c c 


 
    

 
        

 

1

1 0
m

j ij
i

x


 
  

 
          

 

  0ij ijx       

 

 1 0ij ijx  
 

 

, , , 0,      ,i j ij ij i j          

 
Where , ,  and i j ij ij     are the Lagrange multipliers and all the relations of the above system are evaluated 

at the optimal solution ijx 
.  According to whether any of the variables , ,  and i j ij ij     are zero or positive, 

then the stability set of the first kind  ijS x   can be determined.  

 

5 Numerical Example (Case Study) 
 
To demonstrate the solution method for the MKP with interval capacities we consider the following case 
study. In a wharf of an Egyptian port for one day, the number of items n = 15 and the number of knapsack m 
= 10.  The following table contains the values of 
 

1 - Profit of each item j
jp . 

2 - Weight of each item j
jw . 

3 - Interval capacities 
ic     

 

where   1,..., ,  1,...,i m j n   
 

Table 1. 
 

jp  
jw  

ic  

3 5 [1,3] 
5 7 [2,4] 
2 4 [5,7] 
7 9 [3,5] 
4 6 [6,8] 
6 8 [4,6] 
3 5 [10,12] 
4 6 [9,11] 
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5 7 [8,10] 
1 2 [7,9] 
6 8  
8 10 
4 6 
2 4 
3 5 

Let 0.5  1,...,10i i     then we get the deterministic form of MKP for this example as following: 

 

11 12 13 14 15 16 17 18 19 1(10) 1(11) 1(12) 1(13) 1(14) 1(15)

21 22 23 24 25 26 27 28 29 2(10) 2(11) 2(12) 2(13) 2(14) 2(15)

31 32 3

3 5 2 7 4 6 3 4 5 6 8 4 2 3

3 5 2 7 4 6 3 4 5 6 8 4 2 3

3 5 2

max

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x

              

              

  3 34 35 36 37 38 39 3(10) 3(11) 3(12) 3(13) 3(14) 3(15)

41 42 43 44 45 46 47 48 49 4(10) 4(11) 4(12) 4(13) 4(14) 4(15)

51 52 53 54 55 56

7 4 6 3 4 5 6 8 4 2 3

3 5 2 7 4 6 3 4 5 6 8 4 2 3

3 5 2 7 4 6

x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x

            

              

     57 58 59 5(10) 5(11) 5(12) 5(13) 5(14) 5(15)

61 62 63 64 65 66 67 68 69 6(10) 6(11) 6(12) 6(13) 6(14) 6(15)

71 72 73 74 75 76 77 78 79

3 4 5 6 8 4 2 3

3 5 2 7 4 6 3 4 5 6 8 4 2 3

3 5 2 7 4 6 3 4 5

x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x

         

              

         7(10) 7(11) 7(12) 7(13) 7(14) 7(15)

81 82 83 84 85 86 87 88 89 8(10) 8(11) 8(12) 8(13) 8(14) 8(15)

91 92 93 94 95 96 97 98 99 9(10) 9(11)

6 8 4 2 3

3 5 2 7 4 6 3 4 5 6 8 4 2 3

3 5 2 7 4 6 3 4 5 6 8

x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x

     

              

           9(12) 9(13) 9(14) 9(15)

(10)1 (10)2 (10)3 (10)4 (10)5 (10)6 (10)7 (10)8 (10)9 10(10) 10(11) 10(12) 10(13)

10(14) 10(15)

4 2 3

3 5 2 7 4 6 3 4 5 6 8 4

2 3

x x x x

x x x x x x x x x x x x x

x x

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 

            
    

 

 
Subject to 
 

11 12 13 14 15 16 17 18 19 1(10) 1(11)

1(12) 1(13) 1(14) 1(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 2

x x x x x x x x x x x

x x x x

          

   
 

 

21 22 23 24 25 26 27 28 29 2(10) 2(11)

2(12) 2(13) 2(14) 2(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 3

x x x x x x x x x x x

x x x x

          

   
 

 

31 32 33 34 35 36 37 38 39 3(10) 3(11)

3(12) 3(13) 3(14) 3(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 6

x x x x x x x x x x x

x x x x

          

   
 

 

41 42 43 44 45 46 47 48 49 4(10) 4(11)

4(12) 4(13) 4(14) 4(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 4

x x x x x x x x x x x

x x x x

          

   
 

 

51 52 53 54 55 56 57 58 59 5(10) 5(11)

5(12) 5(13) 5(14) 5(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 7

x x x x x x x x x x x

x x x x

          

   
 

 

61 62 63 64 65 66 67 68 69 6(10) 6(11)

6(12) 6(13) 6(14) 6(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 5

x x x x x x x x x x x

x x x x

          

   
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71 72 73 74 75 76 77 78 79 7(10) 7(11)

7(12) 7(13) 7(14) 7(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 11

x x x x x x x x x x x

x x x x

          

   
 

 

81 82 83 84 85 86 87 88 89 8(10) 8(11)

8(12) 8(13) 8(14) 8(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 10

x x x x x x x x x x x

x x x x

          

   
  

91 92 93 94 95 96 97 98 99 9(10) 9(11)

9(12) 9(13) 9(14) 9(15)

5 7 4 9 6 8 5 6 7 2 8

10 6 4 5 9

x x x x x x x x x x x

x x x x

          

   
  

 

(10)1 32 (10)3 (10)4 (10)5 (10)6 (10)7 (10)8 (10)9

(10)(10) (10)(11) (10)(12) (10)(13) (10)(14) (10)(15)

5 7 4 9 6 8 5 6 7

2 8 10 6 4 5 8

x x x x x x x x x

x x x x x x

        

     
 

 

11 21 31 41 51 61 71 81 91 (10)1 1x x x x x x x x x x             

 

12 22 32 42 52 62 72 82 92 (10)2 1x x x x x x x x x x         
 

 

13 23 33 43 53 63 73 83 93 (10)3 1x x x x x x x x x x         
 

 

14 24 34 44 54 64 74 84 94 (10)4 1x x x x x x x x x x            

 

15 25 35 45 55 65 75 85 95 (10)5 1x x x x x x x x x x            

 

16 26 36 46 56 66 76 86 96 (10)6 1x x x x x x x x x x            

 

17 27 37 47 57 67 77 87 97 (10)7 1x x x x x x x x x x         
 

 

18 28 38 48 58 68 78 88 98 (10)8 1x x x x x x x x x x         
 

 

19 29 39 49 59 69 79 89 99 (10)9 1x x x x x x x x x x            

 

1(10) 2(10) 3(10) 4(10) 5(10) 6(10) 7(10) 8(10) 9(10) (10)(10) 1x x x x x x x x x x            

     

1(11) 2(11) 3(11) 4(11) 5(11) 6(11) 7(11) 8(11) 9(11) (10)(11) 1x x x x x x x x x x         
 

 

1(12) 2(12) 3(12) 4(12) 5(12) 6(12) 7(12) 8(12) 9(12) (10)(12) 1x x x x x x x x x x         
 

 

1(13) 2(13) 3(13) 4(13) 5(13) 6(13) 7(13) 8(13) 9(13) (10)(13) 1x x x x x x x x x x         
 

 

1(14) 2(14) 3(14) 4(14) 5(14) 6(14) 7(14) 8(14) 9(14) (10)(14) 1x x x x x x x x x x         
 

 

1(15) 2(15) 3(15) 4(15) 5(15) 6(15) 7(15) 8(15) 9(15) (10)(15) 1x x x x x x x x x x         
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 0,1 ,          1,...,10,  1,...,15ijx i j    

 
By solving the above problem the optimal solution of the above problem can be obtained: 

* * * * * * * * *
1(10) 35 4(14) 61 72 73 8(12) 94 (10)6 1x x x x x x x x x          and all other variables = 0. 

 
and objective function value = 43. 
These results means that only items 1, 2, 3, 4, 5, 6, 10, 12 and 14 are assigned to knabsacks 6, 7, 7, 9, 3, 10, 
1, 8 and 4 respectively with maximum total value is 43.    
 
For the parametric study, the set of feasible parameters, solvability set and the stability set of the first kind 
are calculated as follows: 
 
Set of feasible parameters: 
 

  1 2 3 4 5 6 7 8 9 10 1 10, , , , , , , , , 0 ,..., 1 .U R                

 

Solvability set: 
 

  1 2 3 4 5 6 7 8 9 10 1 10, , , , , , , , , 0 ,..., 1 .V U                

Stability set of the first kind: 
                   

 
 1 2 3 4 5 6 7 8 9 10

*

1 6 7 8 9 10 2 3 4 5

, , , , , , , , ,

, 1, ...,10, 1, ...15 1
, ,  0 , , , 1

2

ij

V

S x i j

         

         

 
 

    
       

 

. 

6 Conclusion 
 
In this paper, multiple knapsack problems with interval capacities were solved. The concept of stability for 
MKP with interval capacities is discussed. Some basic stability notions are introduced. The stability set of 
the first kind for our problem is already determinedu. The solution for the nonlinear knapsack problem with 
interval capacities would be future topics. 
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