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ABSTRACT 
 
Aims: The present experiment aimed to study the germinability of Malpighia emarginata D.C. seeds 
and initial growth under different levels of salinity stress. 
Study Design:  Completely randomised design. 
Place and Duration of Study: Federal Institute of Education, Science and Technology of Ceara 
(IFCE), between February and April 2018. 
Methodology: Acerola seeds of "Junko" cultivar were sown on germination paper imbibed with 
different concentrations of NaCl solutions, with osmotic potentials corresponding to 0, -0.3, -0.6; -
0.9; and -1.2 MPa. The experimental design was completely randomised, with four replicates of 50 
seeds. After sowing, the papers were rolled and stored in plastic bags, to decrease the rate of 
evapotranspiration, and they were kept at room temperature for 30 days. The following parameters 
were evaluated: initial germination percentage (IG%), final germination percentage (FG%), 
percentage of normal and abnormal seedlings, germination speed index (GSI), average germination 
time (AGT), shoot length (SL), root length (RL) and number of secondary roots (SR). 
Results: The results of analysis of variance allowed verifying significant differences (P < .001) for 
the treatments in almost all the evaluated parameters, except for shoot length (SL). The increase of 
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the salinity level inhibited germination and initial growth. The most significant reductions were at 
osmotic potentials lower than -0.6 MPa, being the development of root system more affected than 
aerial part of the seedlings. 
Conclusion: The results of the initial germination and growth test showed that the "Junko" cultivar 
of acerola can be considered moderately tolerant to salinity in germination and initial growth phases. 
 

 
Keywords: Abiotic stress; salinity; acerola; germination of seeds. 
 

1. INTRODUCTION 
 
Acerola (Malpighia emarginata D.C.), also known 
as the Antilles cherry, is native to Central 
America and it has been cultivated in tropical and 
subtropical climates [1]. This species was known 
by the synonyms of M. galbra and M. punicifolia, 
but a more recent taxonomic work determined 
the nomenclature of M. emarginata for the 
species [2]. 
 
Recognised for its high content of vitamin C, 
acerola is a natural source of excellence for               
this compound and others important            
functional compounds, such as polyphenols            
and anthocyanins, whose biological properties 
are related to beneficial health effects [3]. 
According to Oliveira et al. [4], acerola presents 
great potential in the food industry and can be 
used as a nutritional supplement, or as an 
additive to increase the nutritional value of other 
products. 
 
In Brazil, the Northeast region has excelled in the 
production of acerola, since the crop presents 
high tolerance to drought and low resistance to 
cold [5]. However, most soils in the semi-arid 
region of the Brazilian Northeast present a high 
salinity index and this salinity is potentially 
aggressive to the crop [6]. 
 
The excess salts in Brazilian Northeast region 
soils can be attributed to high temperatures, 
water deficit and low precipitation, being these 
limiting factors to the development of numerous 
plant species [7]. Thus, salinity can affect from 
germination to seed growth and production, by 
altering the osmotic balance of the plant, 
producing a physiological drought condition, and 
by exerting a toxic effect, resulting from ions 
concentration in the protoplasm [8]. 
 
The seed germination rate can be affected by a 
reduction in water uptake, which is essential for 
the initial metabolism and development of the 
embryo. Plants and seedlings may also undergo 
reduced growth and physiological disturbances 
caused by nutrient imbalance, as a function of 

high ionic concentration and inhibition of the 
absorption of other nutrients [9]. 
 
In addition to saline soils directly affect plant 
metabolism, the use of high saline water is 
becoming an alternative to global agricultural 
production, especially in regions of the country 
marked by freshwater shortage [10]. Thus, under 
such growth conditions, strategies should be 
adopted to minimise salinity impacts on soil and 
crop yield, such as the use of salt leaching or the 
consortium with salinity tolerant species [11]. 
 
Considering the nutritional and economic 
importance of acerola to Brazilian Northeast 
region and that few studies have been carried 
out to investigate the salinity effects on seed 
germination, growth and cultivation. The present 
experiment was conducted to study the 
germinability of Malpighia emarginata D.C. seeds 
and initial growth under different levels of salinity 
stress. 
 

2. MATERIALS AND METHODS 
 
The experiment was carried out at the Federal 
Institute of Education, Science and Technology 
of Ceara (IFCE), campus Jaguaribe, Ceara 
State, Brazil, during the months of February, 
March and April of 2018. Seeds of acerola 
(Malpighia emarginata D.C.), belonging to the 
"Junko" cultivar, were supplied by EMBRAPA 
Tropical Agroindustry (Fortaleza, Ceara State, 
Brazil) and underwent a disinfestation process 
with sodium hypochlorite at a concentration of 
2.0% for 5 minutes [12]. In the next step, they 
were soaked in water at room temperature for 48 
hours, to increase the chance of germination 
[13]. 
 
Salt stress was evaluated putting seeds to 
germinate in solutions of sodium chloride (NaCl) 
and distilled water with the following osmotic 
potentials: 0, -0.3, -0.6, -0.9 and -1.2 MPa [14]. 
The level zero is equivalent to control treatment. 
The amount of NaCl to obtain the osmotic 
potentials was determined from the Van't Hoff 
equation, quoted by Taiz and Zeiger [15]. 
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Four replicates of 50 seeds were sown on 
germination test papers imbibed in sodium 
chloride (NaCl) solutions in a proportion of 2.5 
times the weight of the paper [16], according to a 
totally randomized design. After sowing, the 
papers were rolled and stored in plastic bags to 
avoid moisture loss. Seeds were kept at room 
temperature for 30 days in a 12-hour photoperiod 
induced by fluorescent lamps. This time was 
determined by preliminary tests and data from 
the authors Nassif and Cícero [17] since there 
are no records of germination tests on acerola 
seeds in the Rules of Seed Analysis [16]. The 
mean values of temperature and relative 
humidity were, respectively, 26.7°C and 74.4% 
during the day [18].  
 

The following evaluations were performed: 
 
Germination test - The seeds were evacuated 
from the 10th day after sowing, in this time the 
first germination count was performed to 
determine initial germination percentage (IG), 
considering as germination criterion the radicle 
emission [19]. New evaluations were performed 
every 4 days, to obtain germination speed index 
(GSI) and average germination time (AGT). 
Finally, at 30 days after sowing, final germination 
percentage (FG) and percentage of normal and 
abnormal seedlings were evaluated according to 
Nassif and Cícero [17]. Germination speed index 
(GSI) was estimated according to Maguire [20], 
average germination time (AGT) was obtained 
according to Laboriau and Valadares [21] and 
percentage of germination (%G) was estimated 
considering number of total germinated 
seeds/total number of seeds tested x 100, 
according to Lewandoski [22]. 

 
Morphology - Seedlings were evaluated after 30 
days of sowing on shoot length (SL), root length 
(RL) and a number of secondary roots (SR). The 

values of SL and RL were obtained through 
measurements made with a graded ruler, and SR 
was counted visually and manually [22]. 
 
Due to low germination rate in acerola [13, 17], 
1000 seeds sample was separated, and each 
seed was submitted to longitudinal cuts in the 
opposite region to the radicle emission, to verify 
the number of seeds with normal embryos, with 
abnormal embryos, and without embryos [23]. 
 
Germination data were transformed to arcsine 
before statistical analysis, when necessary. Data 
were subjected to analysis of variance and the 
treatment effects were unfolded by polynomial 
regression analysis. The best fit model of data 
and non-significant regression deviations was 
chosen. Statistical analyses were performed 
using the GENES software [24] and, as a 
measure of experimental precision, the selective 
accuracy (SA) was estimated according to 
Resende and Duarte [25]. 
 
3. RESULTS AND DISCUSSION 
 
The results of the analysis of variance (Table 1) 
show significant differences (P < .001) for the 
treatments in almost all evaluated parameters, 
except for shoot length (SL). 
 

According to Figs. 1a, 1b and 1c, percentages of 
IG, FG and NS were significantly influenced by 
salinity concentration. FG and NS data 
corresponded more adequately to the quadratic 
model (R2 = 0.98 and R2 = 0.96). It was possible 
to verify that, in the control, seeds had a 
maximum rate of initial germination, on average, 
13,5%, 12% of normal seedlings and 4% of 
abnormal seedlings, with the highest decreases 
occurring at osmotic potentials below -0.6 MPa. 
Maximum final germination was estimated at 
16.27% for an osmotic potential of -0.18. 

 
Table 1. Analysis of variance for initial germination percentage (IG%), final germination 
percentage (FG%), normal seedlings percentage (NS%), germination speed index (GSI), 

average germination time, (AGT), shoot length (SL), root length (RL) and number secondary 
roots (SR) of acerola (cultivar Junko) submitted to different osmotic potentials 

 
IG% FG% NS% GSI AGT SL RL SR 
MS trait 0,0585 0,0461 0,0862 0,0039 0,0043 1,223 5,627 55,563 
MS error 0,0021 0,0021 0,0011 0,00013 0,00028 0,387 0,744 4,776 
F 27,84** 24,15** 77.76** 28,26** 15,366** 3,16

NS
 7,56** 11,63** 

SA 0,982 0,979 0,994 0,98 0,967 0,827 0,931 0,956 
** - significant at a probability level of 0.01% by the F test, 

NS
 - not significant by the F test, MS = mean square, 

SA - Selective Accuracy 
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In osmotic potential -0.9 MPa, the reduction of 
these parameters was higher than 50% and, in 
the lowest osmotic potential tested, -1.2 MPa, 
final germination and normal seedlings reached 
only 1% (Fig. 1a, b and c). From the regression 
equation obtained for initial germination, it is 
estimated that at an osmotic potential of -0.88, 
the germination rate is zero. 

The low percentage of germinated seeds in the 
absence of saline stress can be perfectly 
explained, since acerola seeds naturally                   
present low germination rates, being common 
the occurrence of non-viable seeds due to 
factors such as malformation, degeneration                  
of the embryo sac and absence of fertilisation 
[23]. 
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(e) 

 
Fig. 1. Initial germination - IG (1a), final germination- FG (1b), normal seedlings NS (1c), 

germination speed index – GSI (1d) and average germination time- AGT (1e) submitted to 
different osmotic potentials 

 
A possible explanation for the results in saline 
treatments is high NaCl levels. Salinity reduces 
the availability of water that seeds need to imbibe 
and causes the entry of toxic ions, which makes 
it difficult to absorb K

+
, a cofactor of innumerable 

enzymes involved in photosynthesis and 
respiration, fundamental processes in providing 
the necessary energy for germination [15]. 
 
Other authors also reported low germination 
rates in acerola seeds, such as Ribeiro et al. 
[26], who presented values ranging from 12% to 
18%, depending on the substrate used. Paiva, 
Alves and Barros [27] identified 13.9% 
germination in commercial cultivation, while 
Azerêdo et al. [13] obtained values between 15% 
and 21%, in evaluations on imbibition time of 
seeds. Considering only normal seedlings, Nassif 
and Cícero [17] observed germination rates 
between 6 and 18%, according to the cultivar 
used. 

Azerêdo et al. [19] obtained higher rates of FG% 
in acerola seeds, with values ranging from 17% 
to 54%, depending on the substrate and 
temperature used. However, the authors 
selected only seeds with morphologically normal 
embryos for the experiment, increasing the 
chances of germination. 
 
Analyses carried out using a longitudinal cut 
made in 1000 seeds of the Junko cultivar allowed 
to identify 46.6% of seeds with morphologically 
normal embryos, 44.5% of seeds with 
morphologically abnormal embryos, and 8.9% of 
seeds without embryos. Considering only                    
normal embryos, it is suggested that the 
germination rate obtained in this work would 
increase to about 34.3%. Nassif and Cícero [17] 
reported similar results when evaluating             
different acerola cultivars by x-ray, identifying 
between 30% and 40% of morphologically viable 
embryos. 

y = 0.7935 + 0.614**x  
R² = 0.9673

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-1.2 -0.9 -0.6 -0.3 0.0

G
er

m
in

at
io

n
 S

p
e

ed
 In

d
ex

Osmotic Potential

y = 11.944 - 4.4577**x
R² = 0.797

0

5

10

15

20

-1.2 -0.9 -0.6 -0.3 0.0A
ve

ra
ge

 G
er

m
in

at
io

n
 T

im
e

Osmotic Potential



 
 
 
 

Silva et al.; JEAI, 28(3): 1-10, 2018; Article no.JEAI.44814 
 
 

 
6 
 

When the three parameters (IG%, FG% and 
NS%) were compared, initial germination data 
(Fig. 1a) were the most affected by the osmotic 
potential reduction. It was observed that IG was 
higher in the control treatment and reduced 
gradually in the other concentrations, showing no 
germination in osmotic potentials lower than -0.6 
MPa. This result is expected because 
germination speed is the first variable to be 
affected by the reduction of water availability 
[28]. Furthermore, seeds that germinate quickly 
are more likely to survive the field, and therefore 
IG% parameter is also important for determining 
vigour index [29]. 
 
Data obtained in GSI and AGT (Figs. 1d and 1e) 
corroborate this effect, being possible to verify 
that reduction of osmotic potential provided a 
delay in seeds germination. For both factors, the 
greatest changes occurred in osmotic potentials 
lower than -0.6 MPa, indicating it is necessary a 
long time for the seeds to be able to initiate 
germination in higher saline concentrations.  
 
Gurgel et al. [30] observed similar effects in 
acerola, noting that germination speed was 
significantly affected as electrical conductivity 
increased. However, the highest electrical 
conductivity evaluated by the authors was 
equivalent to osmotic potential -0.5 MPa. 
Compared to the results of this study, it is 
possible to determine that acerola can tolerate 
higher osmotic stress, considering the present 
work obtained more expressive reductions above 
the stress level evaluated by these authors. 
 
Osmotic stress is responsible for affecting GSI 
and AGT once it inhibits water assimilation [31]. 
Plants usually absorb water under conditions 
where the root tissue soaking forces are higher 
than water retention forces in the substrate. In 
saline substrates, water retention forces are 
higher, causing osmotic stress and physiological 
drought [32]. 
 
Several authors have observed significant 
changes in GSI and AGT of other fruit species 
submitted to salt stress, such as Souza et al. [28] 
who evaluated jatropha (Jatropha curcas L.) 
seeds. They identified greater changes for both 
parameters from electrical conductivity 
equivalent to osmotic potential - 0.6 MPa. 
Already, Pinheiro et al. [14] observed higher 
tolerance in pigeon pea (Cajanus cajan) seeds, 
since GSI showed strong reductions only in 
osmotic potentials lower than -0.9 MPa. Souza, 
Bezerra and Farias [33] found that cashew seeds 

presented a linear increase for GSI, with 4.4% for 
each unit increase in electrical conductivity, 
corroborating with results obtained in this work. 
 
In relation to morphological data obtained 
through seedling measurements, although there 
was a linear tendency to reduce shoot length 
with increasing salt concentrations (Fig. 2a), it 
was not possible to observe significant 
statistically decreases (Table 1). Non-
significance of salinity effect on SL differs from 
results obtained by Oliveira et al. [1], who state 
that aerial part is one of the most affected by salt 
stress since the reduction of the leaf area is a 
mechanism of tolerance that plants use to reduce 
transpiration surface. 
 
However, in other crops, no significant changes 
were observed in shoot development, such as in 
cashew (Anacardium occidentale) seedlings [28] 
and sunflower (Helianthus annuus) [34], which 
may have occurred as a result of multiple factors, 
such as: type of cultivar, phenological stage, 
types of salts, intensity and duration of salt 
stress, cultural and irrigation management, and 
soil and climatic conditions [35]. 
 
In relation to acerola seedling root length (RL) 
(Fig. 2b), it was possible to observe higher 
averages in the control treatment and in osmotic 
potential -0.3MPa. The highest decreases began 
to occur from osmotic potential -0.6 MPa and the 
lowest root length was obtained in osmotic 
potential -0.9MPa, with this stress a mean value 
of 1.41cm was observed. However, treatment 
with higher salinity (-1.2 MPa), this value was 
higher, 2.05 cm, although there was no 
significant difference in the mean value observed 
in osmotic potential -0.9 MPa. 
 
Souza et al. [28] reported similar salinity effects 
in ascertaining that length of jatropha (Jatropha 
curcas L.) roots. They also noted that roots were 
more affected by electrical conductivity 6 dS.m-1, 
which is equivalent to -0.6 MPa. According to 
Gordin et al. [36] the root is one of the plant 
structures most affected by salt stress, due to 
ionic imbalance and toxicity, resulting from 
excess salts and low water potential. 
 
Gurgel et al. [30] analysed the dry mass of 
acerola seedlings roots submitted to different 
levels of salinity in irrigation water during 50 and 
90 days after germination and found that roots 
were less affected at 90 days. Comparing the 
decreases in dry mass at the highest water 
salinity level 5.5 dS m-1 (equivalent to -0.55 
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MPa), at 50 and 90 days after germination, the 
results were 89.80% and 79.57% from de 
control, respectively. Thus, the roots were kept 
more time under influence of salt stress and, 
therefore, exposed to a longer period of salinity, 
were less affected. These results differ from 

those observed for root length in this study, 
which, despite presenting a higher mean in the 
osmotic potential -1.2MPa, in relation to the 
potential -0.9, this difference was not significant 
(Fig. 2). 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
(a) 

 

 

 
 
 
 
 
 
 
 
 
 
 
(b) 

 

 

 
 
 
 
 
 
 
 
 
 
 
(c) 

 
Fig. 2. Shoot length (2a), root length (2b) and a number of secondary roots (2c) of acerola 

(cultivar Junko) seedlings submitted to different osmotic potentials 

y = 3.034 + 1.1108*x 
R² = 0.8872

0

0.5

1

1.5

2

2.5

3

3.5

-1.2 -0.9 -0.6 -0.3 0.0

Sh
o

o
t 

Le
n

gt
h

Osmotic Potential

y = 4.258 + 12.2949*x  
R² = 0.8042

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

-1.2 -0.9 -0.6 -0.3 0.0

R
o

o
t 

Le
n

gt
h

Osmotic Potential

y =9.0825 - 37.313**x - 90.539**x² -47.079**x3

R² = 1

0
2

4
6
8

10
12
14

16

-1.2 -0.9 -0.6 -0.3 0.0

N
u

m
b

e
r 

o
f 

se
co

n
d

ar
y 

ro
o

ts

Osmotic Potential



 
 
 
 

Silva et al.; JEAI, 28(3): 1-10, 2018; Article no.JEAI.44814 
 
 

 
8 
 

Regarding a number of secondary roots (SR), 
data corresponded to the third order polynomial 
model (Fig. 2c), being the only model with 
deviations equal to zero (R² = 1). The highest 
number of secondary roots was 13.49, the 
estimated value for roots grown on osmotic 
potential -0.26 MPa. There were no statistically 
significant differences between the control 
treatment and treatment with osmotic potential -
0.6MPa. The lowest number of secondary roots 
was estimated in 2.90, in osmotic potential -1.02 
MPa, this mean is like that presented in osmotic 
potential -1.2MPa. 

 
Similar results were observed by Cruz et al.               
[24], who found that length of the main root of 
lemon "clove" (Citrus limonia Osbeck) was 
affected by salt stress, in addition, the 
appearance of secondary roots was also 
inhibited. According to Daniel et al. [37], in cotton 
(Gossypium hirsutum L.), the root was the most 
compromised structure by the increase in saline 
concentrations that, besides reducing the size of 
the roots, also affected its morphology, causing a 
reduction in a number of secondary and tertiary 
roots.  

 
In general, vegetables have several mechanisms 
that allow them to survive and develop in the 
environments in which they live,                         
responding to environmental changes with direct 
in their physiological and morphological aspects. 
In this sense, the most affected aspects by salt 
stress in the "Junko" cultivar were IG%, FG%, 
GSI and RL, whose reductions were more 
significant as osmotic potential reduced. These 
results agree with those obtained by Gurgel et al.   
(2007) in a grafting experiment with acerola 
cultivars BV1 and BV7, they also verified that 
root system was more affected by salt stress 
than aerial part. 

 
According to the United States Salinity 
Laboratory [38], the value established to classify 
soils as saline is 4 dS m-1, corresponding to the 
osmotic potential -0.4 MPa. However, the 
Terminology Committee of the American Society 
and Soil Science recommended increasing the 
limit to -0.2 MPa, which represents a 
considerable change in osmotic potential of soil 
water [39]. Thus, the cultivar Junko of acerola 
showed a moderate resistance to salinity in 
germination and initial growth phases, since the 
most significant reductions occurred in saline 
concentrations with osmotic potentials lower than 
-0.6 MPa. 

4. CONCLUSION 
 
Germination and initial growth of the “Junko” 
acerola cultivar are affected as salt stress 
intensifies, with more significant effects on 
salinity levels with osmotic potential lower than -
0.6 MPa. In this work, root system was more 
affected by saline stress than aerial part of the 
seedlings in early stages of development. Finally, 
initial germination and growth test results showed 
that the "Junko" acerola cultivar can be 
considered moderately tolerant to salinity in 
germination and initial growth phases. 
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