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ABSTRACT

We present a generalization of the first-order formalism used to describe the dynamics of a
classical system. The generalization is then applied to the first-order action that describes General
Relativity. As a result we obtain equations that can be interpreted as describing quantum gravity in
the momentum representation.
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1 INTRODUCTION

As is well-known, Quantum Mechanics
can be formulated in the configuration (or
position) representation or in the momentum
representation.This situation emerges from the
two possible representations of the fundamental
commutators in a quantum theory. To
illustrate this, consider the simple example
of the quantization of a one-dimensional
system with a configuration variable q and a
canonically conjugate momentum variable p.
The corresponding quantum operators q̂ and p̂
must provide a representation of the fundamental
commutator

[q̂, p̂] = q̂p̂− p̂q̂ = ih (1)

where h is Planck´s constant h divided by 2π.
The usual way to represent the commutator (1)
is to choose the operators

q̂ = q p̂ = −ih d

dq
(2)

In this representation the quantum wave function
will be a function of q, that is ψ = ψ(q), and we
will be in the configuration representation.

The other possibility of representing the
commutator (1) is to choose the operators

q̂ = ih
d

dp
p̂ = p (3)

In this representation the quantum wave function
will be a function of p, that is ψ = ψ(p), and we
will be in the momentum representation.

From a naive perspective, the operators (3)
can be obtained from the operators (2) simply
by substituting the letter q by p and the letter
p by −q in equations (2). However, in a
deeper conceptual level, these two possibilities
are related to the quantum mechanical wave-
particle duality. The configuration representation
is related to the particle aspect. Because of the
De Broglie´s relation λ = h/p, the momentum
representation is related to the wave aspect.
The quantum wave-particle duality has a trace in
classical mechanics in the form of a Hamiltonian
duality. This duality interchanges position and
momentum and leaves invariant the definition of
the Poisson bracket. In this paper we will use
this classical Hamiltonian duality to perform a first

step towards the construction of a formulation of
Loop Quantum Gravity (LQG) in the momentum
representation.

At present time, a quantum theory for the
gravitational interaction, based on the canonical
quantization of General Relativity (GR) is under
development. It is called Loop Quantum Gravity.
This theory has already produced new interesting
results, such as the quantization of the area and
volume of a space-time region in terms of the
Planck length LP =

√
~G
c3

= 1, 62× 10−35m. But
with no present available way to test the theory
against experimental results, the validity of LQG
still remains an open question [1,2,3,7,8,9].

The motivation of this paper is to present an
initial development that can be used to support
the validity of LQG. This initial development is
an indication that, as Quantum Mechanics, Loop
Quantum Gravity can be equivalently formulated
in the configuration or in the momentum
representation. A moment of reflection leads
us to the conclusion that, in spite of being only
an initial development what is presented in this
paper, it has a considerable importance because
it can be used as a starting point for an entirely
new line of research in Loop Quantum Gravity.

This paper is organized as follows. In section
two we derive the two simple classical equations
that allow transitions to LQG in the configuration
and in the momentum representations. We also
present a brief discussion about the consistency
of our approach. In section three we review
the basic equations of LQG in the configuration
representation. In section four we present
the basic equations of a quantum theory that
can be interpreted as LQG in the momentum
representation. Concluding remarks appear in
section five.

2 THE FIRST-ORDER FORMAL-
ISM AND THE TRANSITION
TO QUANTUM MECHANICS

The first-order formalism is in the interface
between Lagrangian mechanics and Hamiltonian
mechanics. According to Dirac [6], a
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Hamiltonian formalism is a first approximation
to a corresponding quantum theory. Since,
as we mentioned in the introduction, quantum
mechanics can be formulated in the configuration
or in the momentum representations, following
Dirac´s idea, we need two first-order formalisms,
one for each representation of quantum
mechanics.

2.1 The First-Order Formalism
For The Configuration
Space Formulation Of
Quantum Mechanics

The first-order formalism which can be
considered as the classical limit of a configuration
space formulation of quantum mechanics is the
usual first-order formalism. It is based on the
action functional

S =

∫ t2

t1

dt[pq̇ −H(q, p)] (4)

where t is the time variable and H(q, p) is the
Hamiltonian. A dot denotes derivatives with
respect to t. Varying action (4) we find

δS =

∫ t2

t1

dt[−∂H
∂q

δq + pδq̇ + (q̇ − ∂H

∂p
)δp] (5)

Integrating by parts the second term we have∫ t2

t1

dtpδq̇ = pδq |t2t1 −
∫ t2

t1

dtṗδq

Inserting this result into the variation (5) we are
left with a variation and a surface term

δS =

∫ t2

t1

dt[−(ṗ+
∂H

∂q
)δq+(q̇− ∂H

∂p
)δp]+pδq |t2t1

The above variation of the action vanishes if
Hamilton´s equations

q̇ =
∂H

∂p
ṗ = −∂H

∂q
(6)

are satisfied. In this case the variation δS
reduces to the surface term

δS = pδq |t2t1

Now we require that δq(t1) = 0 and leave δq
arbitrary at t = t2. We therefore see that, as a

function of the final point of the trajectory, action
(4) satisfies

p =
δS

δq
(7)

As we shall see below, an equation analogous
to equation (7) plays a central role in the
formalism leading to LQG in the configuration
representation.

2.2 The First-Order Formalism
For The Momentum Space
Formulation Of Quantum
Mechanics

We now introduce a first-order formalism which
can be considered as the classical limit of
a momentum space formulation of quantum
mechanics. This formalism can be constructed
using the Hamiltonian duality transformation

q → p p→ −q (8)

which leaves invariant the formal structure of the
Hamilton´s equations (6) and the definition of the
Poisson bracket

{A,B} =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

which defines the algebraic structure in the phase
space (q, p).

Applying the duality transformation (8) to action
(4) we obtain the new action

S =

∫ t2

t1

dt[−qṗ− H̃(q, p)] (9)

Varying action (9) we have

δS =

∫ t2

t1

dt[−(ṗ+
∂H̃

∂q
)δq− ∂H̃

∂p
δp− qδṗ] (10)

Integrating by parts the last term gives

−
∫ t2

t1

dtqδṗ = −qδp |t2t1 +

∫ t2

t1

dtq̇δp

Inserting this result into the variation (10) we find
that

δS =

∫ t2

t1

dt[−(ṗ+
∂H̃

∂q
)δq+(q̇− ∂H̃

∂p
)δp]−qδp |t2t1

(11)
Now, we see that, when Hamilton´s equations

q̇ =
∂H̃

∂p
ṗ = −∂H̃

∂q
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are valid, the variation (11) reduces to the surface
term

δS = −qδp |t2t1
We now impose that δp(t1) = 0 and leave δp
arbitrary at t = t2. We now find that, as a function
of the end point, action (9) satisfies

− q =
δS

δp
(12)

Equation (12) is the central equation in this
paper. We will describe below how equation (12)
allows the construction of a formalism that can be
interpreted as describing Loop Quantum Gravity
in the momentum representation.

2.3 The Transition To Quantum
Mechanics

It is important to stress that the first-order
formalism of section 2.2 was introduced only to
be used as the classical limit of a momentum
space formulation of quantum mechanics. Since
the wave-particle duality disappears at the
classical level, the classical Hamilton equations
for the variables q and p derived from the
Hamiltonian H̃(q, p) will in general appear to be
inconsistent. However, when we turn to quantum
mechanics, the Schrödinger equation obtained
from the quantum operator corresponding to
H̃(q, p) will be consistent.

The simplest example of the above situation is
a free non-relativistic particle, described by the
Hamiltonian

H =
p2

2m
The Hamilton equations for this system are

q̇ =
∂H

∂p
=

p

m
ṗ = −∂H

∂q
= 0

These equations tell us that the free particle
moves in the position space and remains at a
fixed point in the momentum space. Quantization
of this system using the operators (2) leads to the
Schrödinger equation

−h2 ∂
2ψ(q, t)

∂q2
= ih

∂ψ(q, t)

∂t

Now, from the duality transformation (8), we
obtain the Hamiltonian

H̃ =
q2

2m

As we saw in section (2.2), the Hamilton
equations remain valid for this Hamiltonian.
These equations now give

q̇ =
∂H̃

∂p
= 0 ṗ = −∂H̃

∂q
= − q

m

which look counter-intuitive for us because the
free particle now remains at a fixed point in
the position space and moves in the momentum
space. However, the existence of this dual
situation is a consequence of the classical
Hamiltonian duality, which we interpret as a
residue of the quantum wave-particle duality.
Quantization of this system using the operators
(3) leads to the Schrödinger equation

−h2 ∂
2ψ(p, t)

∂p2
= ih

∂ψ(p, t)

∂t

which is perfectly consistent.

Obviously this illustrative example of a free non-
relativistic particle should be looked at with some
care. This is because a free particle is an
idealized physical system. All particles are
subjected to some kind of interaction due to the
fact that they are part of the universe. In the
following sections we study this same situation in
the more realistic case of General Relativity.

3 LOOP QUANTUM GRAVITY

In this section we review the basic equations that
define LQG in the configuration representation.

In 1986 Ashtekar [4,5] introduced a new set of
variables to describe General Relativity. In this
new set of variables GR can be described by the
first-order action ( for details on this construction
see ref. [1] )

S =
1

8πiG

∫
d4x(Ea

i Ȧ
i
a − λiDaE

a
i

− λaF i
abE

b
i − λF ij

abE
a
i E

b
j ) (13)

where
DaV

i = ∂aV
i + εijkA

j
aV

k

is the covariant derivative on the tangent space
T (Σ) of a compact three-dimensional manifold Σ
without boundaries.

F i
ab = ∂aA

i
b − ∂bAi

a + εijkA
j
aA

k
b
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is the curvature of Σ and F ij
ab = εijk F

k
ab. The

variables λi, λa and λ are Lagrange multipliers
without dynamics.

Indices i, j, ... = 1, 2, 3 are internal SU(2) indices
and a, b = 1, 2, 3 are space indices. Comparing
action (13) with action (4) we see that

a) the configuration variable is Ai
a(~x)

b) the canonical momentum is Ea
i (~x)

c) the total [6] Hamiltonian density is given
by HT = λiDaE

a
i + λaF i

abE
b
i + λF ij

abE
a
i E

b
j

Varying action (13) in relation to the variables λi,
λa and λ we obtain the first-class [6] constraints

DaE
a
i = 0 (14)

F i
abE

b
i = 0 (15)

F ij
abE

a
i E

b
j = 0 (16)

Equation (14) is the requirement of invariance of
the theory under internal SU(2) transformations.
Equation (15) is the requirement of invariance
of the theory under space diffeomorphisms.
Equation (16) is the canonical Hamiltonian.
Equations (14), (15) and (16) together are
equivalent to the Einstein equations in vacuum
[1].

Now, using the analog of equation (7), that is

Ea
i =

δS

δAi
a

we can make a transition to the Hamilton-Jacobi
formalism as an intermediate step to the quantum
theory. Equations (14), (15) and (16) then
become [1]

Da
δS

δAi
a

= 0 (17)

F i
ab
δS

δAi
b

= 0 (18)

F ij
ab

δS

δAi
a

δS

δAj
b

= 0 (19)

The transition to LQG in the configuration space
is then obtained by substituting the classical
action S by the wave functional Ψ(A) in
equations (17), (18) and (19). The final result is

Da
δ

δAi
a

Ψ(A) = 0 (20)

F i
ab

δ

δAi
b

Ψ(A) = 0 (21)

F ij
ab

δ

δAi
a

δ

δAj
b

Ψ(A) = 0 (22)

Equations (20), (21) and (22) are the basic
quantum equations of LQG [1].

4 THE HAMILTONIAN DUALITY
AND GENERAL RELATIVITY

In the context of GR, described by the first-
order action (13), the Hamiltonian duality
transformation assumes the form

Ai
a → Ea

i Ea
i → −Ai

a (23)

Under this transformation, the first-order action
(13) becomes

S =
1

8πiG

∫
d4x(−Ai

aĖ
a
i − λi∇a (24)

Ai
a − λbR

ab
i A

i
a −Rab

ij A
i
aA

j
b) (24)

The covariant derivative∇a is now defined on the
cotangent space T ∗(Σ) and is given by

∇aV i = ∂aV i + εijkEa
j V

k

and the curvature Rab
i in momentum space is

given by

Rab
i = ∂aEb

i − ∂bEa
i + εjki E

a
jE

b
k

with Rab
ij = εijkR

ab
k . Action (24) is completely

new and, as far as we know, has never appeared
before in the literature. It describes a previously
unknown dual version of the first-order action (13)
that describes GR. Consequently it is impossible
to compare action (24) with other pre-existing
actions that describe GR, such as the ADM action
[10], the Palatini action (for details see ref [9])
or the Host action [11], unless we construct the
corresponding dual versions of these actions, as
we did in this paper for action (13). Action (24)
is new and unique. However, care must be taken
when dealing with action (24). Following Dirac´s
original idea mentioned above, we should not
interpret action (24) as describing a real classical
physical system. As will become clear in the next
section, action (24) should be interpreted as a
formal action describing the classical limit of a
real quantum physical system.

To conclude this section we mention that we
are not inclined to expect that there might be
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advantages in using action (24) instead of action
(13), or the contrary. Since these two actions
are related by the classical Hamiltonian duality
transformation, which in this paper is interpreted
as the classical residue of the quantum wave-
particle duality, these two actions should be
considered as complementary actions. By this
we mean for example that one action may be
used to investigate features that are difficult to
investigate using the other and vice-versa.

In the next section we describe how action (24)
can lead us to a new quantum theory for the
gravitational interaction. We interpret this new
quantum theory as Loop Quantum Gravity in the
momentum representation.

5 LOOP QUANTUM GRAVITY
IN THE MOMENTUM
REPRESENTATION

The equations of motion for the variables λi,
λa and λ that follow from action (24) give the
constraints

∇aAi
a = 0 (25)

Rab
i A

i
b = 0 (26)

Rab
ij A

i
aA

j
b = 0 (27)

The next step towards the quantum theory is
to use the general equation (12) we derived in
section two. In the present case equation (12)
becomes

Ai
a = − δS

δEa
i

(28)

Substituting equation (28) into equations (25),
(26) and (27) we obtain the Hamilton-Jacobi
equations

∇a δS

δEa
i

= 0 (29)

Rab
i
δS

δEb
i

= 0 (30)

Rab
ij
δS

δEa
i

δS

δEb
j

= 0 (31)

Finally, the transition to the quantum theory is
completed by substituting the classical action
S by the wave functional Ψ(E) in momentum
space. This gives

∇a δ

δEa
i

Ψ(E) = 0 (32)

Rab
i

δ

δEb
i

Ψ(E) = 0 (33)

Rab
ij

δ

δEa
i

δ

δEb
j

Ψ(E) = 0 (34)

We interpret equations (32), (33) and (34) as
the basic quantum equations of Loop Quantum
Gravity in the momentum representation.

The basic quantum equations of LQG in the
configuration representation, equations (20),
(21) and (22) are now related to the basic
quantum equations of LQG in the momentum
representation, equations (32), (33) and (34) via
the quantum wave-particle duality. This quantum
duality interchanges the operator

Êa
i = −ih δ

δAi
a

with the operator

Âi
a = ih

δ

δEa
i

and interchanges the quantum wave functional
Ψ(A) with the quantum wave functional Ψ(E),
leaving invariant the commutator between the the
operators Âi

a and Êa
i . Therefore we should not

expect that there might be advantages in using
LQG in the momentum representation instead of
using LQG in the configuration representation,
or vice-versa. From our point of view these two
representations of Loop Quantum Gravity should
be considered as complementary descriptions of
the quantum mechanics of the gravitational field.

6 RESULTS AND DISCUSSION

In this paper, motivated by Dirac´s idea that a
Hamiltonian formalism is a first approximation to
a corresponding quantum theory, we presented
a generalization of the first-order formalism used
to describe the dynamics of a classical system.
This generalization is based on the Hamiltonian
duality, which interchanges the configuration
and the momentum variables of phase space.
The Hamiltonian duality leaves invariant the
formal structure of the Poisson bracket, which
defines the algebraic structure of phase space.
It also leaves invariant the formal structure of
Hamilton´s equations. As we saw in this paper,
the generalization of the first-order formalism
we presented also leaves Hamilton´s equations
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invariant. Our generalization was then used
to derive a new equation (equation (12)) that
allows a possible extension of the Hamilton-
Jacobi formalism.

After a review of the basic equations that define
Loop Quantum Gravity, the results described
above were applied to the first-order action that
describes General Relativity. For simplicity we
considered only the case of a compact manifold.
This eliminates the discussion of boundary terms.
A new dual action, which should be interpreted
as a formal action describing the classical limit
of quantum General Relativity in the momentum
representation, was then obtained.

As an intermediate step towards the quantum
theory we used our new equation (12) to
construct the Hamilton-Jacobi formalism for
the dual action (24). Finally, using standard
quantization techniques, we obtained quantum
equations that can be interpreted as defining
Loop Quantum Gravity in the momentum
representation. These final quantum equations
justify the interpretation of action (24) as
describing the classical limit of quantum General
Relativity in the momentum representation, in
agreement with Dirac´s original idea mentioned
above.

7 CONCLUSION

The conclusion of this paper is that the quantum
theory for the gravitational interaction, based on
the canonical quantization of General Relativity,
can be formulated in the configuration or in the
momentum representation. We think that this
conclusion gives further support for the validity
of Loop Quantum Gravity. In addition, this
conclusion opens a new line of research in LQG.
This new line of research is already well defined.
It should start with a search for a possible
geometrical meaning for the dual action (24)
using the tools of differential geometry. A second
step should be the use of the Poisson bracket
in the (Ai

a, E
a
i ) phase space to investigate the

algebra defined by constraints (32), (33) and (34).
After this one should try to elucidate the particular
quantum dynamic features of the momentum

representation and how these quantum dynamic
features are related to the presently known
ones in the configuration representation. A
reasonable conjecture is that all these quantum
dynamic features will be related via some type of
gravitational wave-particle duality.
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