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ABSTRACT 
 
The transition period in dairy cows entails three weeks around the time of calving and is considered 
a critical time for the entire lactation cycle. During that time, cows can demonstrate tremendous 
alterations of metabolic status and a dramatic change in cow`s immune system, as well as the pro-
oxidant/antioxidant status. In this review, we present contemporary perspectives of the redox status 
in dairy cattle during the transition period and its effects on health and production with special 
reference to metabolic derangements, insulin resistance, assessment of redox status and the 
potential significance of supplementing non-organic and chelating trace elements to the transition 
cows.  
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1. INTRODUCTION 
 
The transition period is a demanding phase in 
the life of dairy cows and entails three weeks 
around the time of calving and is considered a 
critical time for the entire lactation cycle [1]. 
During that time, cows can demonstrate 
tremendous alterations of the metabolic status 
and even dramatic changes in cow`s immune 
system, as well as pro-oxidant/antioxidant status 
[2]. Such alterations are occurring due to the gap 
exist between the nutrient requirements and 
supply that results from variability in nutrient 
content of feeds and the decrease of dry matter 
intake (DMI) [3]. 
 
The ability of a dairy cow to cope these 
detrimental alterations is imperative in order to 
adapt herd management because the demands 
for milk production cannot be optimized solely by 
feed intake [4]. If cows are not able to transit the 
transition period safely, they are more likely to 
develop metabolic disorders and decrease milk 
production [4,5]. These metabolic derangements 
are of utmost clinical significance as they can 
favor the development of oxidative stress (OS) 
and alter the immunity of the animals and 
potentially decrease the animal’s reproductive 
performance [1,6,7].  
 
In the present review, we described the 
implication of oxidative status on dairy cattle 
health and production during the transition period 
and discussed the metabolic derangements, 
insulin resistance (IR), and the potential 
significance of supplementing non-organic and 
organic trace elements to the transition cows to 
augment the redox status of the transition cows.  
 
1.1 Pro-Oxidants and Antioxidants and 

the Consequences of Oxidative 
Stress 

 
1.1.1 Pro-oxidants 
 

Oxidants, are substances that can reduce 
themselves or oxidize others, include two main 
categories: reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) [1]. The ROS 
are derived from molecular oxygen and 
superoxide anion by mitochondrial electron 
transport chain or from NADP oxidase; while 
RNS are derived from nitric oxide by nitric oxide 
synthase in mitochondria [8]. 
 
The most abundant free radicals in biological 
system are ROS [9]. The catabolic pathways, at 

the cellular level, has been reported to 
exaggerate the production of reactive oxygen 
metabolites (ROMs) [10]. The ROMs is a 
collective term that includes ROS, such as 
superoxide anion and hydroxyl radicals, and 
some non-radical derivatives as hydrogen 
peroxide and hypochlorous acid. The plasma 
level of ROMs is an indicator of free radical 
production [9]. The ROMs can be produced 
during the normal metabolic pathways and are 
essential for optimal cellular processes including 
proliferation, differentiation, and metabolic 
adaptations [11]. The generation of ATP in the 
mitochondria through the Krebs' cycle could 
generate the production of oxygen and H2O2 [12].  
 
The plasma malondialdehyde has been found to 
increase immediately in healthy cows during the 
peripartum period (from one week before to one 
week after) [10,13], and can be generated in 
excessive levels as a consequence of lipid 
peroxidation and is considered as a biomarker of 
OS [1]. The excessive generation of ROMs has 
been reported to cause lipid peroxidation, DNA 
damage, cell membrane and protein damage 
although oxidative damage of proteins has            
been poorly elucidated in domestic animals          
[14].   
 
Advanced Oxidation Protein Products (AOPPs) 
are novel markers of protein oxidative damage 
that has been first described in plasma of chronic 
uremic patients [15]. The authors stated that the 
AOPPs are generated by chlorinated oxidants by 
myeloperoxidase which are activated by 
neutrophils and are considered as mediators of 
pro-inflammatory responses and activate the 
immune reaction and the production of 
autoantibodies [14,16]. More information about 
the role of protein oxidation in ruminant health 
could be exaggerated by comparing the AOPPs 
with advanced glycation end products (AGE) 
which is considered an indicator of protein 
oxidation [9]. The correlation between the 
inflammatory parameter and AGE is weak and 
the induction of inflammatory activities caused by 
AOPP is more intense [9].  
 
1.1.2. Antioxidants 

 
The antioxidants are substances that have the 
ability to delay, prevent, or remove the oxidative 
damage to the potential target molecules [2]. 
They can be traditionally classified as enzymatic, 
and non-enzymatic protein antioxidants, as well 
as non-enzymatic low molecular antioxidants [1]. 
The enzymatic antioxidants, includes glutathione 
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peroxidase (GPx) and superoxide dismutase 
(SOD), representing the main form of intracellular 
antioxidant defense [1]. Plasma GPx activity can 
protect cell membrane from the oxidative 
damage by catalyzing the reduction of hydrogen 
and lipid peroxide, thereby considering an 
indicator of OS [1,9]. 
 

The SOD catalyzes the dismutation of 
superoxide to hydrogen peroxide and is 
considered to be the first defense mechanism 
against prooxidants [9]. It is also considered a 
common indicator to evaluate OS and anti-
oxidative system [17]. The SOD catalyzes the 
direct conversion of oxygen to H2O2. Both 
products participate in phosphorylation of various 
proteins that are a part of signaling networks 
including mitogen activated protein kinase 
phosphatases [12]. 
 

The non-enzymatic protein antioxidants are 
found in plasma and represent sulfhydryl (SH) 
groups of albumin which are valuable elements 
of extracellular antioxidant defense system 
against the OS [1]. The total thiol groups of 
plasma are the most chemically reactive sites 
and have a strong reducing properties and 
represent the SH groups of albumin, L-cysteine, 
and homocysteine under physiological condition 
[9].  
 
The high susceptibility of protein to oxidative 
damage could be attributed to the complex 
nature of proteins and the presence of a variety 
of oxidizable functional groups in amino acids 
(e.g., the sulfur group in cysteine and 
methionine) [9]. Besides, the modification of the 
biological activity of the altered protein can likely 
cause an alteration of the tertiary structure of 
protein that results from a direct oxidation of a 
specific amino acid, or as a result of cleavage of 
the protein backbone [18]. The degree of protein 
damage has been shown to depend on many 
deferent factors and direct oxidation of cysteine 
and methionine residues in proteins are 
considered major consequences of OS-induced 
changes to protein activity [9,18]. 
 
The non-enzymatic low molecular-weight 
antioxidants, including glutathione, α-tocopherol, 
β-carotene, and uric acid, are found mainly in 
plasma and in other extracellular and intracellular 
fluid [1]. The glutathione, in particular, reacts 
directly with free radicals, lipid peroxides and 
protects the cells against oxidative damage            
and act as a substrate in enzymatic reaction            
[9].  

Up to now, the endogenous regulation of 
antioxidants in dairy cattle is fully addressed 
although a few numbers of recent studies have 
suggested that these mechanisms could be the 
rationale for the controversial finding related to 
antioxidant supplementation during the transition 
period [19]. The nuclear factor E2- related factor 
2 (Nrf2) is a redox sensitive transcription factor 
that controls the transcription of the genes 
encoding various antioxidant and cytoprotective 
protein, which is transcriptional regulation of Nrf2 
dependent [20]. The ROS can activate Nrf2, 
which in turn counteract proinflammatory 
signaling pathways [1,19].  

 
During the transition time, animals are typically in 
a state of inflammatory like-condition, especially 
in the liver [1]. During this period there is a strong 
up-regulation of Nrf2 target genes with 
antioxidant properties and the unfolded protein 
response is activated in the liver of dairy cows in 
this period leading to activation of Nrf2, and 
thereby increasing expression of antioxidant 
enzymes [21]. These mechanisms prevent tissue 
damage induced by ROS production and 
inflammation. Therefore, they represent an 
important target for assuring successful 
adaptation during the periparturient period, and 
that endogenous regulation of antioxidant 
molecule might explain the effect of high 
antioxidant supplementation as high amount of 
antioxidant might impair antioxidant capacity by 
suppressing the Nrf2 due to the lower level of 
ROS resulted in decreasing the expression of 
antioxidant enzymes [1]. 

 
1.2 Oxidative Stress during the Transition 

Period and the Associated Metabolic 
Derangements 

 
The OS and its impact on dairy cattle health have 
received a particular attention from several 
researchers worldwide [9].  The oxidative 
damage depends on the stage of lactation, 
nutrition, disease, and seasonal variations [2]. It 
has also been reported that heat stress, 
depending on the climatic changes, generates 
free radicals and reduce plasma antioxidant 
activity [2,9].  

 
Heat stress that occurs during the transition 
period of dairy cows could disturb the 
homeostasis of their physiology and ultimately 
their health as well as production of inflammatory 
cytokines (such as tumor necrosis factor alpha 
(TNF-α), interleukin 1, and interleukin 6) which 
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play key role in stimulating systemic 
inflammatory responses in the body [22].  
 

The lactation stage could also play an important 
role in the OS progression [2]. As the energy 
reduced during the first weeks of parturition, the 
transition cow could likely associate with lipid and 
protein metabolic changes with a resultant 
increase fat mobilization, and generation of lipid 
peroxides and ROS [23]. 

 
On commercial farms, the estimated feed intake 
of highly producing dairy cows is not commonly 
correlated with the concentrate feeding. For 
example, high crude protein content in the ration 
of pregnant cows during the clops-up period 
could increase urea levels and is closely linked to 
the development of a nitroactive stress status 
with detrimental consequences on animal health 
[24]. The alterations of body condition scoring 
(BCS) around the time calving is also a 
determining factor for OS in transition cows; as 
cows with high BCS cows are more sensitive to 
OS and suffer greater loss of BCS after calving, 
whereas the median BCS animals had better 
milk yield performance [25]. Furthermore cows 
with high BCS are more prone to develop insulin 
resistance than are cows with medium and low 
BCS [26]. 

 
Under physiological conditions, the ROS are 
neutralized by the antioxidant system, and the 
OS occurs when excess production of ROS 
cannot be counteracted by antioxidant 
mechanism leading to oxidative damage, and a 
dysfunctional host immune and increase 
susceptibility of cows to health disorders [9]. 
Changes in the oxidative metabolism during the 
transition period could likely increase the 
incidence of diseases and might have a role in 
the progression of several reproductive disorders 
[1,16]. Hence, a coordinated shifting in nutrient 
partitioning should considered in order to cope 
the increased metabolic demands which is 
necessary for parturition and the onset of 
lactation [12]. 

 
The transition period is usually associated with 
increase the odds of production disease and the 
magnitude of such diseases on dairy cow health 
and productivity can extend far into next 
lactation, when cows fail to adapt to increasing 
demands of the transition period [1,2]. The 
hypermetabolic state that occur during the 
transition period can result in increased 
production of ROS and negatively affect the 
oxidative balance [12]. The generation of ROS 

can damage the tissues and disrupt metabolism 
and physiology and causing metabolic disorders 
and development of diseases in dairy cows [2]. 
 
If the energy requirements to the increasing milk 
yield are not met by the diet during the first few 
weeks of parturition, the cow will use its own 
energy reserve and mobilize lipid. When the 
release of non-esterified fatty acid (NEFA) is in 
limited concentration, the cow can adapt 
successfully to the negative energy balance 
(NEB) and the NEFA is metabolized fully [27]. 
Thereafter, when the concentration of NEFAs 
exceed the processing capacity of hepatocyte, 
the liver function is overwhelmed by triglyceride 
(TG) causing fatty liver and ketone bodies 
formation [8,28]. In contrast to increase plasma 
NEFA levels, the concentration of other plasma 
lipid fractions such as phospholipid and TG, 
decrease during the first week of parturition [1,8].  

 
Following parturition, the concentration of 
palmate and stearate fatty chain within the 
plasma NEFA fractions are increase significantly 
and decrease the concentration of omega-3 long 
chain polyunsaturated fatty acid, these 
alternations in plasma fatty acid profiles 
encompass cellular membrane of blood cells 
including erythrocyte and peripheral blood 
mononuclear cells [8]. The content of saturated 
fatty acid such as palmitic acid and stearic acid is 
increased in the phospholipids and cholesterol 
esters fractions around the time parturitions, 
likewise omega-6 poly saturated fatty acids is 
increased in the cholesterol ester fractions      
[29,30]. 
 

The mobilization of lipids makes NEFA an 
alternative source of energy that is readily 
available to cells in different tissue. NEFAs are 
internalized by leukocyte and endothelial cells by 
free diffusion or by protein receptor mediation 
[1,8]. As being internalized in the cytoplasm, 
NEFAs can take different metabolic pathways in 
cellular organelles such as the endoplasmic 
reticulum, when used as an energy substrate, 
cell specific fatty acid acyl CoAs is formed by 
acyl-CoA synthetase in the leukocyte thereby 
facilitating the utilization of NEFAs with acyl-CoA 
binding protein [1,8]. The accumulation of NEFA 
has been reported to enhance the production of 
ROS during the β-oxidation [1]. High NEFA 
concentration and ROS production are 
characteristics of metabolic stress and risk factor 
for several diseases such as mastitis, retained 
fetal membrane, ketosis and fatty liver and 
abomasal displacement [31]. 
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1.3 The Relationship between Oxidative 
Stress and Insulin Sensitivity 

 
During the transition period, blood glucose is 
almost taken up by the udder for the synthesis of 
lactose, and therefore, a dysregulation in insulin 
response can be potentially develop in order to 
prioritize the use of glucose by the mammary 
gland which takes place insulin independently 
[32]. A transient state of IR is occurring in dairy 
cattle during the transition period which 
guarantees glucose supply to the fetus and to the 
udder by minimizing glucose uptake by 
peripheral insulin responsive tissues such as 
skeletal muscles and adipose tissue [26]. 
However IR can be exacerbated (because of the 
high milk production) which cause lipolysis of 
adipose tissue and accumulation of NEFA with 
subsequent greater IR, which is associated with 
several ailments such as fatty liver and a state of 
OS [7,11].  
 
There has been an association between 
oxidative status and insulin sensitivity                        
variables in dairy cattle around the time of 
calving [33]. The onset increase of milk synthesis 
and secretion are often accompanied by increase 
energy and oxygen requirement [34]. The 
increased oxygen demand augments the 
production of ROS [35], exacerbate inflammatory 
response and reduce insulin sensitivity                 
[11,36].   
 
1.4 The Relationship between the 

Immune-Inflammatory Reaction and 
Oxidative Stress 

 
Physiological stress that occurs during the 
transition period can likely impact the 
effectiveness of the immune system making the 
lactating cow more vulnerable to infectious 
diseases such as mastitis and metritis, with a 
subsequent impairment of reproductive 
performance [37]. The development of OS is 
thought to be a significant factor that leads to 
dysfunctional inflammatory responses around the 
time of calving [38]. The intense lipid mobilization 
could increase the expression of TNF-α and 
exacerbate the production of acute phase 
proteins and the inflammatory response [11,36]. 
The resulting inflammatory mediators act locally 
on the vascular endothelium to increase blood 
flow and facilitate the migration of leukocyte from 
the blood to site of infections, and release the 
acute phase protein from the liver, which 
increase the heart rate and body temperature 

and decrease the feed intake [39]. The 
dysregulation of the inflammatory status is also a 
contributing factor to the metabolic disturbances 
of dairy cows [1,40].  
 
In general, the dysfunctional inflammation 
resulting from ROS overproduction can activate 
the redox-sensitive transcription factors (NFκB) 
which increase the expression of pro 
inflammatory mediators (TNFα, IL-6 etc..) 
inducing tissue damage, decrease milk 
production, greater disease incidence and poor 
fertility, and metabolic stress [1]. It has been 
recently suggested that ROS could provoke the 
signaling activity of nuclear factor kappa B E2-
related factor, which promotes inflammation and 
allows an adequate initiation of anti-oxidative 
defenses [11]. Taken together, the magnitude of 
acute systemic inflammation during the transition 
period include adipose tissue mobilization, 
breakdown of liver glycogen, and liver TG 
accumulation, impairment insulin sensitivity, and 
a direct stimulation of lipolysis and all of these 
condition are associated with ketosis and fatty 
liver [38]. Hence, the elevation of blood NEFA 
concentrations could impact the inflammatory 
response of transition cows and used as energy 
substrate at the peripheral tissue [1]. 
 

1.5 Impact of Oxidative Stress on Milk 
Constituents 

 

The milk composition varies according to the 
health status of the cow, stage of lactation, 
feeding, and the genetic factors because several 
countries is using different breeds and                          
feeding regimens and have had variable calving 
patterns and breeding practices [41]. Due to the 
fact that a close correlation exists between the 
oxidative status and mastitis in cows, a 
superiority of oxidizing processes can indicate a 
subclinical inflammation of the mammary gland, 
depending on the extent of inflammation one 
may observe a reduction in milk yield and 
unfavorable changes in the milk composition 
[42]. 
 

The oxidation processes occurring in milk, along 
with its low nutritive value could likely provoke a 
negative impact on organoleptic parameters 
principally taste, and might cause inactivation of 
many biologically active ingredients contained in 
it [43]. The same authors have mentioned that 
there are a negative correlation between the 
somatic cell count, milk yield and lactose and a 
positive correlation with fat and protein 
percentage, however, the elevated protein 
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concentration has been reported to be 
unfavorable because the amount of milk whey 
proteins rather than casein increased, making 
milk unfit for dairy production. On the other hand, 
elevated both somatic cells and bacteria in milk 
(accompanies the inflammation of the mammary 
gland) could have role in the assessment of milk 
quality [42]. 

 
The frequent milking of cows could also increase 
in the number of epithelium cells in the milk due 
to the local stimulation of the proliferation of cells 
and reduction of their destruction in the process 
of apoptosis. Likewise, the increased production 
of milk can increase the  demand for energy, 
which in turn generates ROS [42].  Nevertheless, 
the high quality of milk is related to its content 
from antioxidants, owing to prolonging milk 
lifetime via reducing its oxidation [44]. 

 
1.6 Assessment of the Redox Status in 

Dairy Cows during the Transition 
Period 

 
The role of OS in ruminant medicine has 
received a growing interests and great efforts to 
develop reliable methods for quantifying novel 
markers of OS [9]. In that context, it has been 
shown that the free radical analytical system 
technology is offering a quick, simple, precise 
and reliable method to assess oxidative status in 
dairy cattle [45]. The OS is still lacking the 
reference values of OS biomarkers which 
prevent the identification of individual cows that 
are liable to OS [9]. Among the factors that could 
likely cause difficulty in implementing reference 
values for antioxidants are (1) some degrees of 
ROS are essential for maintaining physiological 
process, (2) great influence of the diet, 
environmental temperature, milk yield, or BCS, 
although animals under identical housing and 
feeding show a great individual variation with 
regard to adaptation from pregnancy to onset of 
lactation [46]. 

 
The ROS are quantified using the d-ROM test as 
well as the total serum antioxidant capacity with 
the OXY- Adsorbent test, However, OS index 
(OSi) can be calculated as ROS/SAC [11]. The 
concentration of ROMs is relatively stable from 1 
month -prior to- and after calving in healthy cows, 
except for a significant drop three days around 
the time of calving. The ROMs kit has been 
developed to assess oxidant levels in plasma 
and other biological fluids [10]. The ROMs test 
has been validated using spin resonances, which 

is considered the gold standard for measuring 
total oxidative status [9]. 
MDA is generated as a consequences of lipid 
peroxidation and is considered a biomarker of 
OS while, the AOPPs are considered markers of 
protein oxidation [9]. MDA is estimated by 
thiobarbutric acid reactive substance (TBARS), 
the most commonly encountered substance in 
veterinary medicine (by spectrophotometer) 
which give a red pigment but generally not 
specific because TBARS detect a wide range of 
lipid peroxidation products and not specific for 
MDA [1]. Using high pressure liquid 
chromatography or ELISA are highly specific and 
perhaps more accurate for detecting lipid 
peroxide compared to spectrophotometric 
procedure [1,9,39]. Alongside the measurable 
OS markers, several indicators of antioxidative 
markers could be estimated such as GPx and 
SOD, albumin, L-cysteine, and homocysteine, 
glutathione, α-tocopherol, and uric acid 
[1,11,14,16,17].  
  
For more clarity, we tabulated a reference value 
of wide range of measurable variables during the 
transition period (Tables 1-6). 
 

1.7 Implication of Antioxidant 
Supplementation during the 
Transition Period 

 

Both trace elements and vitamins play a pivotal 
role in the health and production of dairy cows. 
Mineral matters like selenium(SE), zinc (Zn), 
copper (Cu), and cobalt (Co) have an important 
role in health, fertility, lactation and immune 
functions [47]. It has shown that vitamins and 
trace minerals are involved in the antioxidant 
defense system and deficiency of any of these 
elements could depress the immunity in 
transition cows [48]. Supplementing dairy cattle 
with trace minerals and vitamins has been 
reported to minimize stress and optimize animal 
production [49].  
 
1.7.1 Selenium 
 
SE is an important trace element and its 
deficiency is associated with poor growth, health 
and fertility in dairy animals [50]. It is a 
component of at least 25 different 
selenoproteins; in these proteins sulfur is 
replaced with SE allowing proteins to donate 
hydrogen and take apart of reduction reactions 
[51]. Selenoproteins include GPx and thioredoxin 
reductase which are important components of 
antioxidant and immune system to destroy 
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hydrogen peroxides and also lipid 
hydroperoxides [48,51,52]. SE is an essential 
micronutrient for ruminants, and has been 
demonstrated to be effective in counteracting OS 
and the severity of several ailments of dairy 
cattle, through direct antioxidant effect or via 
enhancing the immune function [53]. Similar to 
other essential micronutrients, it has been 
suggested that SE is needed for maintaining 
growth, pregnancy and lactation of dairy cow 
[53]. It is also essential for an optimum immune 
response through the key role regulation and 
antioxidant function [54].  The deficiency of SE 
deficiency is a more common clinical entity that is 
observed in adult transition dairy cattle and has 
been reported to be a significant risk factor for 
the development of mastitis, retained fetal 
membranes, and metritis [55]. Therefore, a 
prepartum supplementation of SE can reduce the 
incidence of retained placenta in dairy fed diet 
low in selenium [56]. 
 

1.7.2 Zinc  
 

Zn is a component of antioxidant system "Cu-Zn 
SOD" and is needed to induce the synthesis of 
metallothionin, a metal binding protein, which 
may scavenge hydroxide radicals. Alongside its 
antioxidant efficacy, Zn can affect the immunity 
through its vital role in cell replication and 
proliferation [51], which hunts superoxide, one of 
the components of ROS in the immune cells [37]. 
Zinc plays a main role in the immune system and 
has a significant role in the repair and 
maintenance of the uterine covering following 
parturition [50]. 
 
1.7.3 Copper 
 

Copper plays an important role in the immune 
system [50], and is a component of the 
antioxidant system "Cu-Zn SOD [37] and 
ceruloplasmin which is responsible for 
dismutation of superoxide radicals to hydrogen 
peroxide in the cytosol [48]. Cu is also involved in 
the metabolism of vitamin A&E [54] where the 
significance of these vitamins has been 
increased in heifers supplemented with mineral 
mixture containing Cu compared with non-
supplemented group.  
 
1.7.4 Cobalt 
 
There has been limited published data about the 
systemic and tissue biological effect of 
supplementing Co during the transition period in 

dairy cows, although some researchers have 
observed that organic Co supplementation 
produces moderate alterations in glucose and 
fatty acids values and has beneficial effect on OS 
and inflammation [57]. The liver contains the 
highest concentration of Co within tissues and is 
considered the main storage site of this element. 
Some researchers have investigated the effect of 
supplemental dietary Co on milk production of 
cows [58]. The authors have found that the 
multiparous cows fed a diet with 1.26 mg of 
Co/kg of DM had greater milk and 3.5% FCM 
yields than multiparous cows fed diets with 0.37 
or 0.68 mg of Co/kg of DM; however, no effect of 
dietary Co on milk yield was observed in 
primiparous cows. Limited research has 
determined the effect of Co source in dairy cattle 
diets on lactation performance and metabolism 
[52]. 

  
1.7.5 Manganese 

 
As what has seen for Zn and Cu, Mn plays an 
important role in removing superoxide radicals 
produced by active immune cells [59] and is 
considered as a key mitochondrial element as 
Mn-dependent SOD protecting fragile 
mitochondrial membranes from attack of free 
radicals [60]. Although Mn is an essential 
component of a wide range of enzyme involving 
immune, and antioxidant protection and 
carbohydrate and lipid metabolism, there have 
been few studies that specially assessed the 
effect of immune function and metabolism in 
dairy cows [54]. In an earlier study, it has been 
found that Mn can increase antibody titers and 
other nonspecific resistance factors in dairy cattle 
[51].  
 
1.7.6 Chromium (Cr) 

 
The primary role of Cr appears to relate to its 
ability to enhance the action of insulin, and is 
essential for normal carbohydrate, lipid, and 
protein metabolism [61]. It has been 
demonstrated that Cr can affect energy 
metabolism through modulating tissue responses 
to insulin. The demand for Cr is typically 
increased during nutritional, metabolic, and 
physical stress [62]. The trophic effect of                       
Cr is to enhance communication between insulin 
and its receptors located on the cell membrane 
of insulin sensitive tissues by increasing 
membrane fluidity and rate of insulin 
internalization [52,63].  
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Table 1. Levels of cited pro-oxidant variables and redox status in dairy cattle during the transition period 
 

       Variables 

 
 

Status/period 

ROS 

(carr U) 

SAC  

(μmol HClO/mL) 

OSi MDA 

(nmol/ml) 

AOPP 

(ng/ml) 

References 

Close up - - - 31.87 - [74] 
Early lactation - - - 33.17 - 

Restricted production 142 2219 0.064 - -  
[10] High production 134 2400 0.054 - - 

Early lactation 122.1 - - - 43.8 [16] 

Periparturient 0.79   - - 2.29±0.37 - [17] 

3w before - - - 0.57 ±0.0 8 -  

[23] 1w before - - - 0.54 ±0.13 - 

1w after - - - 0.76 ± 0.21 - 

3 w after - - - 0.45 ± 0.16 - 

-30d to-16 d 140.6 528 0.28 - -  

[11] -15d to-3d 123.5 526 0.24 - - 

3d to15d 142.6 510 0.30 - - 

16d to30 d 168.3 479 0.38 - - 

-21d - - - 3.21 ± 0.29 -  

 

 

[2] 

-14d - - - 3.19 ± 0.12 - 

-7d - - - 3.31 ± 0.09 - 

0d - - - 3.69 ± 0.28 - 

7d - - - 3.54 ± 0.21 - 

14d - - - 3.4 ± 0.13 - 
21d - - - 3.3 ± 0.17 - 

-6 d 148 159 0.93 - -  
[40] 0 d 194 187 1.03 - - 

1 d 196 180 1.08 - - 
2 d 120 144 0.83 - - 

6 d 172 174 0.99 - - 

12d 175 135 1.3 - - 

Pre calving 
a 

- - - 8.75 ±2.37 -  

 

 

Calving
 a 

- - - 9.13 ±1.19 - 

Post calving 
a 

- - - 8.59 ±1.97 - 
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       Variables 

 

 

Status/period 

ROS 

(carr U) 

SAC  

(μmol HClO/mL) 

OSi MDA 

(nmol/ml) 

AOPP 

(ng/ml) 

References 

Pre calving 
b
  - - - 8.84 ±1.49 - [25] 

Calving b - - - 9.48 ±1.16 - 

Post calving 
b 

- - - 6.93±1.96 - 

Pre calving c  - - - 9.05±1.28 - 

Calving
 c 

- - - 9.54±2.1 - 

Post calving c - - - 6.69±1.52 - 

Pre calving 
d
  - - - 12.64±1.81 - 

Calving d - - - 17.17±2.42 - 

Post calving 
d 

- - - 10.03±1.23 - 
BCS low 134 - - 7.40 -  

[26] BCS medium 140 - - 6.60 - 
BCS high 127 - - 7.13 - 

** ROS: Reactive oxygen capacity, SAC: serum antioxidant capacity, OSi: OS index, MDA: Malondialdehyde; AOPPs: Advanced oxidation protein products, a, b, c, and d: indicted the BCS degree 3.25, 
3.75, 4.25, and 5 respectively, BCS: body condition score 
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Table 2. Levels of cited antioxidants in dairy cattle during the transition period 

 
                Variables 
 
Period/status 

 
GPx 
(mu/ml) 

 
SOD 
(U/ml) 

 
Vitamin E 
(nmol/ml) 

 
References 

per parturient - 70.11 ± 7.86 - [17] 
3w before 67.3 ± 5.7 510.3 ± 67.8 29.7±7.5  

[23] 1w before 71.4 ± 6.2 546.3 ± 85 25.3±11.2 
1w after 69.7 ± 4.1 592.2 ± 67.1 24.5±5.6 
3 w after 74.8 ± 4.8 624 ± 86 29.5±11.8 
-21d 31.6 ± 0.3 - -  

 
[2] 

-14d 31.9 ± 0.8 - - 
-7d 27 ± 1.1 - - 
0d 17 ± 1.12 - - 
7d 18.5 ± 0.4 - - 
14d 19.8 ± 1.6 - - 
21d 21 ± 0.21 - - 
Pre calving 

a 
- 177.40±27.52 -  

 
 
 
 
[25] 

Calving
 a 

- 191.46±32.91 - 
Post calving 

a 
- 183.98±24.94 - 

Pre calving 
b
  - 171.08±22.67 - 

Calving 
b 

- 177.01±23.70 - 
Post calving 

b 
- 125.09±19.07 - 

Pre calving c  - 180.14±18.03 - 
Calving c - 192.71±25.65 - 
Post calving c - 131.74±20.74 - 
Pre calving d  - 256.79±25.84 - 
Calving d - 348.58±23.43 - 
Post calving d - 216.57±26.10 - 
BCS low 16.3 62.2  [26] 
BCS medium 15.9 65.0  
BCS high 16.9 62.9  

** SOD: Superoxide dismutase; GPX: glutathione peroxidase, a, b, c, and d: indicted the BCS degree 3.25, 3.75, 4.25, and 5 respectively; BCS: body condition score 
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Table 3. Levels of cited metabolic variables in dairy cattle during the transition Period 
 

        Variable 
 
 
Period/ status 
 

 
NEFA 
(mmol/L) 

 
Glucose 
(mmol/L) 

 
Insulin 
(µlU/mL) 

 
BHBA 
(mmol/L) 

 
References 

Pre parturient 0.29 3.21 13.7 - [64] 
Post parturient 0.6 2.74 9.8 0.8 
-21d 

calving
 0.47 3.99 - - [75] 

7 d 
calving

 1.9 3.44 - - 
Close up 0.39 4.12 - - [74] 
Early lactation 0.53 3.93 - - 
Restricted production 0.88 3.31 - - [10] 
High production 0.65 3.64 - - 
1w before

 calving
 0.79± 0.07 3.57 ± 0.15 5.63± 0.38 - [65] 

2w after
 calving

 0.61±0.05 3.19 ± 0.09 3.67± 1.42 - 
4w after 

calving
 0.54±0.05 3.05 ± 0.05 7.31± 1.05 - 

Early lactation 0.30±0.28 3.33 ± 0.49 - 0.82 ± 0.33 [76] 
Early lactation 0.63 2.79 - - [16] 
-7d 0.78 2.5 11.34 - [77] 
At calving 0.79 2.82 8.4 - 
21d 0.79 2.57 6.1 - 
Per parturient 0.51±0.15 3.30 ± 0.16 14.01±2.01 0.62±0.11 [16] 
Pre parturient 0.21 3.51 5.6 0.42 [62] 
Post parturient 0.68 3.12 2.9 0.66 
Day1

calving
 0.55 3.79 4.5 0.8  

[78] Day7
calving

 0.4 3.39 6 0.9 
Day14

calving
 0.44 3.50 4 1 

Day 21
calving

 0.4 3.39 7 0.9 
lactating cows 0.176 3.50 - - [79] 
Healthyst1 0.74 3.60 - 0.86  

[80] Ketoticst1 0.69 3.60 - 1.2 
Healthyst2 0.59 3.21 - 9.3 
Ketoticst2 0.88 3.11 - 9.2 
-30d to-16 d 0.38 3.35 8.4 0.55  

[11] -15d to-3d 0.35 3.37 7.2 0.58 
3d to15d 0.52 3.13 5.2 0.54 
16d to30 d 0.35 2.83 5.8 0.63 
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        Variable 
 
 
Period/ status 
 

 
NEFA 
(mmol/L) 

 
Glucose 
(mmol/L) 

 
Insulin 
(µlU/mL) 

 
BHBA 
(mmol/L) 

 
References 

3w before - - - 0.44 ± 0.23  
[81] 1w before - - - 0.44 ± 0.33 

1w after - - - 0.79 ± 0.50 
3 w after - - - 0.63 ± 0.91 
-30 d 0.119 ± 0.01 3.55 ± 0.07 - 0.072 ± 0.02  

[73] -15d 0.123 ± 0.02 3.38 ± 0.06 - 0.271 ± 0.02 
-7 d 0.169 ± 0.03 3.28 ± 0.71 - 0.309 ± 0.04 
At calving 0.463 ± 0.06 2.94 ± 0.06 - 0.573 ± 0.06 
Postpartum

 Day1
  0.461 ± 0.06 2.74 ± 0.05 - 0.578 ± 0.03 

Postpartum
 Day2

 
 

0.447 ± 0.06 2.71 ± 0.04 - 0.573 ± 0.06 

-6 d 0.15 - - 0.68  
[40] 0 d 0.24 - - 0.48 

1 d 0.59 - - 0.67 
2 d 0.33 - - 0.72 
6 d 0.22 - - 0.51 
12d 0.18 - - 0.56 
Pre calving 

a 
0.143±0.031 - - 0.322±0.05  

 
 
[25] 

Calving
 a 

0.87 ±0.102 - - 0.35±0.034 
Post calving 

a 
0.151±0.03 - - 0.37±0.05 

Pre calving 
b
  0.14 ±0.03 - - 0.35 ±0.064 

Calving 
b 

0.77 ±0.16 - - 0.32 ±0.052 
Post calving 

b 
0.9 ±0.15 - - 0.34±0.047 

Pre calving 
c
  1.53±0.35 - - 0.41 ±0.06 

Calving
 c 

0.83±0.13 - - 0.35±0.06 
Post calving 

c 
0.89±0.124 - - 0.39±0.84 

Pre calving d  1.7±0.45 - - 0.57±0.068 
Calving d 1.37±0.14 - - 0.55±0.089 
Post calving d 1.6 ±0.15 - - 0.56 ±0.066 
BCS low 119 3.19 1.97 0.56  

[26] BCS medium 116 3.22 2.05 0.62 
BCS high 134 3.27 2.41 0.57 

** NEFA: Non stratified fatty acid; BHBA: Beta hydroxy butyric acid; st:  study number, a, b, c, and d: indicted the BCS degree 3.25, 3.75, 4.25, and 5 respectively; BCS: body condition score 
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Table 4. Levels of cited immune-inflammatory variables in dairy cattle during the transition period 
 

      Variable 
 
 
 
Period/ status 
 

 
SAA 
(µmg/L) 

 
Haptoglobin 
(µmg/L) 

 
IgG 
(mg/mL) 

 
References 

Early lactation - 27 - [16] 
Pre parturient - 6.9 - [60] 
Post parturient - 9.7 - 
21d before

 calving
 - - 9.4 [82] 

2d before 
calving

 - - 3.1 
15d after 

calving
 - - 10.8 

30d after 
calving

 - - 10.3 
Healthy

st1
 17.2 13.9 -  

[80] Ketotic
st1

 72.7 84.1 - 
Healthy

st2
 58.1 4.7 - 

Ketotic
st2

 101.5 17.6 - 
-30d to-16 d 39.1 21 -  

[11] -15d to-3d 52.1 39 - 
3d to15d 78.2 51 - 
16d to30 d 66.4 66 - 
-30 d - - 31.13 ± 0.84  

[73] -15d - - 32.67 ± 1.50 
-7 d - - 31.57 ± 1.00 
At calving - - 28.42 ± 1.13 
Postpartum

 Day1
  - - 24.33 ± 1.05 

Postpartum Day2 
 

- - 22.72 ± 1.47 

-6 d - 5 -  
[40] 0 d - 6 - 

1 d - 6 - 
2 d - 7 - 
6 d - 4 - 
12d - 32 - 

**SAA: serum amyloid A; IgG: immunoglobulin G; st:  study number 
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Table 5. Levels of cited hepato-renal and protein variables in dairy cattle during the transition period 
 

        Variables 
 
 
Period/status 

 
AST 
(U/L) 

 
GGT 
(U/L) 

 
Creatinine 
(µmo/L) 

 
Albumin 
(g/dL) 

 
Globulin 
(g/L) 

 
TSP 
(g/L) 

 
References 
 

Close up 29.08 - 122.9 42 30.1 72.1 [74] 
Early lactation 34.31 - 107.8 42.7 34.5 77.2 
Early lactation 
 

126.5±43.2  - 28 ±3.7 52± 9 80.7± 8 [76] 

Per parturient 
 

93 ± 13 20.7±0.42 - 34 ± 2.2 41 ± 6 77 ± 5 [17] 

-30 d 76.4 ± 1.37 22.86 ± 1.0 - - - -  
[73] -15d 80.7 ± 1.40 24.42 ± 0.9 - - - - 

-7 d 79.9 ± 1.11 22.7 ± 0.94 - - - - 
At calving 85.47 ± 0.9 26.2 ± 0.62 - - - - 
Postpartum

 Day1
  86.5 ± 0.76 24.8 ± 0.76 - - - - 

Postpartum
 Day2

 
 

84.5 ± 0.74 25.4 ± 0.68 - - - - 

-6 d - - - 35 - -  
[40] 0 d - - - 34.9 - - 

1 d - - - 35.6 - - 
2 d - - - 35.2 - - 
6 d - - - 34.3 - - 
12d - - - 32.5 - - 
BCS low 67.6 26.5 - 30.9 - - [26] 
BCS medium 62.9 30.1 - 31.5 - - 
BCS high 68.0 30.4 - 32.3 - - 

** AST: aspartate amino transferase; GGT: gamma glutamyl transferase; TSP: total serum protein 
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Table 6. Levels of cited hematological variables in dairy cattle during the transition period 
 
Variables 
 
periods 

RBC 
(x1012/L) 

Hb 
(g/L) 

PCV 
(L/L) 

MCV 
(fL) 

MCH 
(pg) 

MCHC 
(g/L) 

PLT  
(x109/L) 

WBC 
(x109/L) 

Lymphocytes 
(x109/ L) 

Eosinophil  
(x109/ L) 

Monocytes 
(x109/L) 

Neutrophils  
(x109/ L) 

References  

Pre partum 5.5 - - - - - - 7.27 4.1 - 0.94 3.05 [83] 
Post-partum 5.1 - - - - - - 5.84 3.2 - 0.18 2.37 
Pre calving 6.49 111 0.31 43.8 16.02 364.2 - 13.80 5.30 0.99 0.14 7.30 [84] 
0-21 fresh 
cow 

5.02 79 0.21 41.6 15.46 371.6 - 11.68 5.84 0.76 0.06 5.02 

Pre partum 5.36 81.1 0.28 - - - 286.354 13.46 8.92 1.52 7.2 - [85] 
-30 d - - - - - - - 6.1 ± 

0.2 
2.53 ± 0.2 - 0.35 ± 0.02 2.8 ± 0.1  

 
[73] -15d - - - - - - - 6.1 ± 

0.2 
2.6 ± 0.1 - 0.36 ± 0.02 2.8± 0.1 

-7 d - - - - - - - 7.2 ± 
0.3 

3.2 ± 0.2 - 0.39 ± 0.02 3.2 ± 0.13 

At calving - - - - - - - 8.7 ± 
0.3 

3.8 ± 0.2 - 0.47 ± 0.03 4.1 ± 0.2 

Postpartum
 

d1
  

- - - - - - - 8.8 ± 
0.4 

3.8 ± 0.2 - 0.49 ± 0.04 4.03 ± 0.2 

Postpartum
 

d2
 

- - - - - - - 9.4 ± 
0.3 

4.2 ± 0.16 - 0.48 ± 0.04 4.4 ± 0.2 

-6 d - - - - - - - 10.0 4.85 0.07 0.27 4.79  
[40] 0 d - - - - - - - 9.46 4.68 0.06 0.25 4.43 

1 d - - - - - - - 8.29 4.13 0.07 0.17 3.88 
2 d - - - - - - - 8.39 4.07 0.14 0.19 3.94 
6 d - - - - - - - 9.27 4.37 0.17 0.23 4.48 
12d - - - - - - - 8.69 4.08 0.24 0.19 4.13 
BCS low 6.30 91.8 0.30 48.5 14.4 - 453 - - - - - [26] 
BCS medium 6.36 91.4 0.31 49.2 14.6 - 447 - - - - - 
BCS high 6.44 95.2 0.31 48.5 14.6 - 463 - - - - - 
**RBCs: red blood cells; PLT: platelets; Hb: hemoglobin; PCV: packed cell volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; WBCs: white blood 

cells, d1, d2: day1 and 2
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Supplementation of Cr might decrease lipolysis 
in the transition cows, from pregnancy to 
lactation, hence improving feed intake and milk 
yield [64]. Although some researchers have 
stated that Cr supplementation could increase 
the milk yield [63,65,66], other experiments 
stated that Cr supplementation did not affect the 
milk yield during the transition period [62,64]. In 
fact, Cr is believed to increase insulin action in 
insulin-sensitive tissues (i.e., adipose and 
muscles), resulting in increased farm animal 
production through the improvement of feed 
intake, growth rate, reproductive parameters and 
immune functions [67]. 
 
Several studies that have been conducted during 
the transition period and early lactation have 
demonstrated that cows supplemented with Cr 
have increased milk yield and improved energy 
metabolism, as measured by lower circulating 
concentrations of NEFA or β-hydroxyl butyric 
acid (BHBA), and had effect on nutritional 
metabolism [66]. Several studies have suggested 
that Cr supplementation may also have 
immunomodulatory effects in cattle [62]. 

 
1.7.7 Chelated nutrients  

 
Chelation refers to a bond formed between a 
metal ion (mineral) and ligand (protein and amino 
acid) as a mineral complex to be beneficial in 
dairy cattle, and present in the rumen stable form 
[68]. The trace minerals such as Cu, Mn, Zn 
have supplemented as inorganic form such as 
sulfate salts as it is associated with sulfate or 
oxide in a dry form, but dissociate from sulfate 
when hydrated in the digestive tract which 
interact with the components of digesta to form 
insoluble and indigestible compound that pass to 
the feces [69]. The same authors added that the 
organic forms, as metal amino acid chelates, 
metal complexes, methionine hydroxyl analog, 
metal proteinate and metal propionates, have 
been developed to increase the intestinal 
absorption and mineral bioavailability. 

 
It has been hypothesized that bound to organic 
compound as Zn methionine is more available for 
absorption than inorganic form [68]. Zn 
proteinate might also enhance resistance to 
mammary infections by increasing the keratin 
synthesis in teat canal [48]. In an earlier study, 
supplementing cows with 360 mg Zn, 200 mg 
Mn, 125 mg Cu as amino acid complexes and 12 
mg cobalt from Co glucoheptonate) could 
increase milk production, and improve milk 
constituent (such as milk energy, fat, crude 

protein yield, milk solids), and reduce mastitis 
cases [70]. In another study, it has shown that 
dietary supplementation of dairy cows with 
organic Zn, Cu and SE has led to decrease the 
number of new and total cases of subclinical 
mastitis when compared with cows that received 
inorganic sources [71].  
 
In a recent study, it has shown that the post-
partum supplementation of dairy cows by 
bioavailable Zn, Mn, Cu and Co glucoheptonate 
could improve polymorphonuclear cell function, 
elicit a greater capacity to control invading 
pathogen, improve liver function, and productive 
performance [72]. On the other side, the 
periparturient supplementation of dairy cows with 
chelated Cr did not affect the mammary gland 
health status but supplementation of Cr 
picolinate during the last 9 weeks of pregnancy 
has found to reduce the incidence of retained 
placenta in dairy cows [48]. Chromium chelated 
with propionate has led to increase feed intake 
before increasing milk yield [64].  The pre partum 
Cr methionine supplementation could help cows 
to enter earlier during the next lactation and can 
complete lactation with optimal DMI [73]. 
However, the prepartum supplementation of 
rumen protected choline to cattle with subclinical 
ketosis during the transition period has elicited a 
great effect on some energy metabolites 
including BHBA, triglyceride, and very low-
density lipoprotein with minimal effect on insulin 
sensitivity. On the other side, supplementing 
rumen protected niacin exhibited a marked effect 
on serum cortisol and potentiated insulin 
sensitivity with minimal effect on BHBA 
concentration [86].    
 

2. CONCLUSION 
 
Oxidative stress is occurring in hypermetabolic 
dairy cattle during the transition time due to 
increase in ROS and/or impairment of antioxidant 
capacity. Accurate assessment of ROS is difficult 
due to their bewildering variety, low serum 
concentrations, high reactivity, and the extremely 
short half-life of ROS. The AOPPs are likely 
considered novels alternative marker of OS 
because it is stable and easy to detect. Despite 
being controversial, supplementing a transition 
dairy cow with organic trace elements is quite 
interesting that warrant an extensive 
investigation.  
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