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Optimal Input Variables Disposition of Artificial Neural 
Networks Models for Enhancing Time Series Forecasting 
Accuracy
Hervice Roméo Fogno Fotsoa, Claude Vidal Aloyem Kazéb, 
and Germaine Djuidje Kenmoea

aLaboratory of Mechanics, Department of Physics, University of Yaoundé I, Yaoundé, Cameroon; 
bDepartment of Electrical and Power Engineering, HTTTC, University of Bamenda, Bamenda, Cameroon

ABSTRACT
Artificial Neural Networks (ANNs) models play an increasingly 
significant role in accurate time series prediction tools. 
However, an accurate time series forecasting using ANN 
requires an optimal model. Hence, great forecasting methods 
have been developed from optimized ANN models. Most of 
them focus more on input variables selection and preproces
sing, topologies selection, optimum configuration and its asso
ciated parameters regardless of their input variables disposition. 
This paper provides an investigation of the effects of input 
variables disposition on ANNs models on training and forecast
ing performances. After investigation, a new ANNs optimization 
approach is proposed, consisting of finding optimal input vari
ables disposition from the possible combinations. Therefore, 
a modified Back-Propagation neural networks training algo
rithm is presented in this paper. This proposed approach is 
applied to optimize the feed-forward and recurrent neural net
works architectures; both built using traditional techniques, and 
pursuing to forecast the wind speed. Furthermore, the proposed 
approach is tested in a collaborative optimization method with 
single-objective optimization technique. Thus, Genetic 
Algorithm Back-Propagation neural networks aim to improve 
the forecasting accuracy relative to traditional methods was 
proposed. The experiment results demonstrate the requirement 
to take into consideration the input variables disposition to 
build a more optimal ANN model. They reveal that each pro
posed model is superior to its old considered model in terms of 
forecasting accuracy and thus show that the proposed optimi
zation approach can be useful for time series forecasting accu
racy improvement.

ARTICLE HISTORY  

Introduction

In many domains of engineering (Feng, Zhou, and Dong 2019; Shahrul 
et al. 2018) climatology (Sher and Messori 2019), demography (Folorunso 
et al. 2010), Chemistry (Damir, Ricardo, and Aznarte 2019), finance (Soui 
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et al. 2019) (Wang, Huang, and Wang 2012), mechanics (Alevizakou, 
Siolas, and Pantazis 2018), energy (Kuo and Huang 2018a), and many 
more, there is the common necessity of accurate forecasting the future 
evolution of an activity through past measurements of it. Hence, several 
ideas of forecasts in order to improve the Time Series Forecasting (TSF) 
accuracy have been explored widely (Mendes Dantas and Cyrino Oliveira 
2018). Artificial Intelligent (AI), especially the Artificial Neural Networks 
(ANNs) are widely used and demonstrated to have powerful for stochastic 
systems modeling and TSF, and easy implementation and combination with 
others in a different way compared with other existing forecasting tools (Kuo 
and Huang 2018a, 2018b). An accurate TSF requires an optimal ANN model 
based. These optimal models are commonly achieved by modifying the ANN 
learning paradigm and parameters such as nodes, weights, activation func
tions, and structures (Crone and Kourentzes 2009).

Nowadays, several efforts have been made in the development and applica
tions of ANNs, mainly oriented toward the improvement of their optimiza
tion-based TSF. These existing optimization approaches are based on optimal 
parameters and minimum model structure of neural networks (Reza 
Loghmanian et al. 2012; Zongyan and Best 2015). The time-series input 
variables represent an external parameter of an ANN architecture. They are 
commonly collected at a different order of magnitude and relations with the 
target variable. Great publications have shown the adequate input variables as 
one of the most important parameters for an optimal ANN and accurate TSF 
(Crone and Kourentzes 2009). They influence the forecasting accuracy 
through the number of nodes, the length and the relation between them, 
and each of them and target (Wei, Yoshiteru, and Shouyang 2004). 
However, the optimal ANNs architectures have not been analyzed regarding 
their input variables disposition adequacy in TSF accuracy. Wei et al. (Wei, 
Yoshiteru, and Shouyang 2004) presented a general approach to determine the 
input variables of ANNs models for TSF. The proposed approach was based on 
autocorrelation criterion used to measure the degree of correlation between 
the neighboring time-series data used as input variables of feed-forward neural 
networks. Furthermore, Sovann et al. (Sovann, Nallagownden, and Baharudin 
2014) proposed a method to determine the input variables for the ANN model; 
Autocorrelation, partial autocorrelation, and cross-correlation are used to 
measure the correlated input variables with target variable to increase the 
accuracy of Multilayer Perceptron neural networks architecture based on 
electrical load demand prediction. Yaïci et al. (Yaïci et al. 2017) studied the 
effect of reduced inputs of ANNs on the predictive performance of the solar 
energy system. The results of study show that the degree of feed forward 
predicting model accuracy would gradually decrease with reduced input vari
ables number. Moreover, there is a great work proposed in the literature which 
used various types of optimization techniques and algorithm to determine the 

APPLIED ARTIFICIAL INTELLIGENCE 793



optimal ANN models and combined models for accurate TSF improvement 
applied in many domains. Among the most prominent techniques is the 
Single-Objective optimization technique such as Evolutionary Algorithm, 
and Genetic Algorithm (Hassan and Hamada 2018; Loghmanian, Ahmad, 
and Jamaluddin 2009). Piazza et al. (Di Piazza, Di Piazza, and Vitale 2016) 
combined Genetic Algorithm (GA) and Optimal Brain Surgeon (OBS) strategy 
to determine the optimal nonlinear autoregression with exogenous input 
neural networks architecture to forecast wind speed and solar radiation. The 
optimization techniques of developed neural networks were based on optimal 
hidden neurons, biases, and weights determination. Therefore, it can be 
noticed that the optimization techniques of ANNs architectures based on 
accurate TSF presented in the literature have been limited on optimal input 
nodes, hidden nodes and weight, learning paradigm and so on, regardless of 
the input variables disposition. Unlike the traditional optimal input variables 
of an ANN determination method, the purpose of this study is to quantify the 
optimal disposition of input variables for an optimal ANN model based on 
accurate TSF.

The environmental problems, such as climate change, pollution, and global 
warming from the human activities reduce the development of sources of 
renewable energy in replacing the polluting sources as fossil fuels energy (Kuo 
and Huang 2018a, 2018b; Yaïci et al. 2017). Furthermore, the electricity 
demand and water pumping are steadily increasing as a consequence of 
world population growth throughout the world (Kuo and Huang 2018a). 
The sources of green energy such as wind energy potential are free and 
available in any part of the world, which give a great alternative in terms of 
electricity production and water pumping. As many sources of renewable 
energy, wind energy is an intermittent source of energy due to the random 
fluctuation of wind, since the generated power from a wind energy conversion 
system has an intimate relationship with the curve of wind speed. Wind speed 
could be easily influenced by obstacle and terrain (Jursa and Rohrig 2008; 
Kadhem et al. 2017; Sanchez 2006). Also, it varies from site to site and from 
height to height. Therefore, accurate wind speed forecasting is required for the 
wind energy integration (Kadhem et al. 2017; Shen, Wang, and Chen 2018). 
This will help the electrical production units decentralization and producers 
take decisions in order of energy production assessment, planning, and man
agement. The recent researches have shown that the ANN model is good at 
nonlinear modeling and TSF of the stochastic nature of wind speed (Shen, 
Wang, and Chen 2018).

This work aims at investigating the effect of Input Variables Disposition 
(IVD) of two ANNs architectures in order to determine their optimal models 
pursuing to the horizontal TSF. Feed-forward and nonlinear autoregression 
with exogenous input neural networks were developed using the optimization 
method given in the literature: the Kolmogorov’s theorem is used to determine 
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the number of hidden nodes and the autocorrelation method was used to 
select a large number of input nodes. The arrangement formula was applied to 
determine the number of models of each neural networks architecture through 
their IVD. A modified Back-Propagation neural networks (BPNN) training 
algorithm is proposed in this paper, by taking into consideration the IVD. This 
proposed optimization approach is able to be used in every method using 
ANN as an old Back-Propagation approach. Thus, it was tested in combining 
Genetic Algorithms with neural networks to the weighted update. The optimal 
IVD was provided through the better forecasting performance of the opti
mized ANN model. The paper is organized as follows: Section 2 provides 
a description of both ANNs architectures designing, optimization, and models 
construction based on TSF. The framework of effects of the IVD on neural 
networks performances investigation is given in Section 3. Section 4 presents 
the details of the proposed neural networks optimization approach. The 
results of the study of the effects of the IVD investigation and the forecasting 
results of the proposed ANNs models and comparison models are presented 
and discussed in Section 5. In Section 6, relevant conclusions are drawn based 
on the results achieved from the study case.

Related Forecasting Methodology

Neural Networks and TSF

The TSF is a process which consists of estimating the future value of an activity 
over time (Alevizakou, Siolas, and Pantazis 2018). To handle TSF, broad 
methods have been developed. These methods can be broadly classified into 
physical, statistical, and hybrid (Jursa and Rohrig 2008; Kadhem et al. 2017). 
Physical method aims by physical consideration, in other words, this method 
uses the mathematical population modeling, while the statistical method 
process works by finding the relationship between the measured populations. 
A hybrid method combines two different methods in order to obtain a globally 
optimal forecasting performance (Zhang et al. 2017). In recent years, the 
statistical methods based on ANNs are catching researcher’s attention. 
Nowadays, ANNs are the most TSF tools used in different fields due to their 
higher forecasting performance, capacity, flexibility, and robustness (Gogas, 
Papadimitriou, and Agrapetidou 2018; Kuo and Huang 2018b).

ANN is an information processing structure inspired by human nervous 
systems (Kuo and Huang 2018b). It consists of networks of many simple units, 
neurons, operating in parallel which the commonly used have three layers, one 
input layer, one or more hidden layers, and one output layer (Kuo and Huang 
2018a; Yaïci et al. 2017). An ANN learns from given sample examples, by 
constructing the relationship between input and target variables (Cervone 
et al. 2017). This process helps to update the synaptic weights of the 
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connections between nodes. As the learning processes, the ANNs can differ 
through their structures, also called architectures (State, Uyo, and Offiong 
2016). The widely ANNs architectures used in TSF can be classified into static 
and dynamic neural networks.

Static Neural Networks
The Feedforward Neural Networks (FFNN) also called static neural networks 
allow information to travel only from input to output. There is no feedback 
and memory. FFNN tend to be a straightforward network that associates 
inputs with outputs. The Multilayer Perceptron’s with FFNN architecture is 
more used in many different types of applications (Kuo and Huang 2018a). Its 
greatest strength is in non-linear solutions to ill-defined problems (Crone and 
Kourentzes 2009). Figure 1 illustrates the architecture of an FFNN with one 
hidden layer, yellow, intended to the TSF.

From Figure 1, the input layer, black, is made of N nodes, 
½x1ðtÞ; x2ðtÞ;…; xNðtÞ�, constituting the number of past data used as input 
variables of ANN, hidden layer has M nodes, yellow, and output layer have 
only one node, purple constructing the forecasting variable. t represents the 
sample time steps. The output of the hidden layer is calculated as follows: 

hiðtÞ ¼ f
PN

k
wk;i:xkðtÞ � bi

� �

; k ¼ 1; 2;…;N; i ¼ 1; 2;…;M (1) 

where hiðtÞ is the output of the node of the hidden layer at a time step t, wk;i is 
the connection parameter, synaptic weight, between the k node of the input 
layer and the i node of the hidden layer, bi is bias of the i node of the hidden 

Figure 1. FFNN architecture intended to the TSF.
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layer and f is the activation function used in each node of the hidden layer. The 
evaluation of the forecasting variable at the output layer is expressed as follows: 

yðtÞ ¼ g
XM

i
wi;y:hiðtÞ � by

 !

; i ¼ 1; 2;…;M (2) 

where yðtÞ is the forecasting variable at a time step t at the output layer, wi;y is 
the synaptic weight which connects the i node of the hidden layer and the 
alone node of the output layer, by and g are the bias and activation function, 
respectively, of the output node.

Then, the forecasting variable from the developed FFNN is finally 
designed as 

yðtÞ ¼ g
XM

i
wi;y:f

XN

k
wk;i:xkðtÞ � bi

 !

� by

" #

(3) 

where the optimal N and M are set in subsection 2.2, in response to the FFNN 
structure optimization.

Dynamic Neural Networks
Contrary to the previous FFNN structure, the second ANN architecture, 
Feedback neural networks also called Recurrent Neural Networks (RNN), or 
dynamic neural networks have signals traveling in both directions by introdu
cing loops in the network (State, Uyo, and Offiong 2016). Consequently, an 
internal state of the RNN is created displaying a dynamic temporal behavior. 
The dynamic driven RNN called Nonlinear Autoregressive with exogenous 
inputs Neural Networks (NARX NN) is well suited to learn nonlinear dynamic 
systems or time-series relationships (Di Piazza, Di Piazza, and Vitale 2016). 
A NARX NN is a RNN with global feedback coming only from the output 
layer rather than by the hidden states. It consists of an FFNN which takes as 
inputs a window of past independent (exogenous inputs) and past outputs 
(endogenous inputs), and determines the current output (Zongyan and Best 
2015). So, only the output of NARX NN is fed back to the FFNN. NARX NN 
architecture exists in open-loop and closed-loop (Di Piazza, Di Piazza, and 
Vitale 2016). Figure 2 presents the NARX NN architectures aimed to the TSF.

NARX NN is designed as a class of discrete-time nonlinear systems and can 
be expressed mathematically as follows (Di Piazza, Di Piazza, and Vitale 2016): 

yðtÞ ¼ Γ yðtÞ; x1ðtÞ; x2ðtÞ; …xNðtÞ½ �

¼ Γ yðt � 1Þ; yðt � 2Þ;…; yðt � uyÞ;
�

x1ðtÞ; x1ðt
� 1Þ…;1ðt � ux1Þ; x2ðtÞ; x2ðt � 1Þ…; x2ðt
� ux2Þ; …; xNðtÞ; xNðt � 1Þ;…; xNðt � uxNÞ� (4) 
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where yðtÞ is the current output, endogenous input, and x1ðtÞ, x2ðtÞ, . . ., xNðtÞ
are the exogenous inputs at a time step t, D is the time delay line, Γ is an 
unknown mapping nonlinear function, and uy � 1, ux1 ¼ ux2 ¼ … ¼ uxN are 
the inputs and output memory orders.

Neural Networks Models Optimization

Whatever ANN architecture, choosing an appropriate parameter is crucial to 
build an efficient forecasting model. In order to estimate the optimal FFNN and 
NARX NN architectures developed in the previous subsection 2.1 based on IVD 
investigation tested on more wind speed forecasting accuracy in this paper, the 
optimization methods presented in the literature by various authors were applied 
in each parameter of the networks. The method of autocorrelation was used to 
select the optimal input variables of neural networks. Therefore, the Spearman’s 
rank correlation method was applied to determine the relation between past 
variables (see Table 1) (Upadhyay, Choudhary, and Tripathi 2011). After correla
tion determination, a maximum of four weather variables were chosen to be used 
as input variables of both neural networks, Since Yaïci et al. (Yaïci et al. 2017) 
provide that the forecasting performance of ANNs increases as the number of 
input nodes increases. Therefore, the past-selected input variables are air tem
perature (Ta), atmospheric pressure (Pa), relative humidity (RH), and the past 
wind speed (Ws) is the target of both ANNs. Also, the time step variation (T) is 

Figure 2. NARX NN architecture based on TSF: open-loop (a) and closed-loop (b).
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used as the input variable of both ANNs architectures. Wei et al. (Wei, Yoshiteru, 
and Shouyang 2004) shown that the forecasting accuracy decreases as the training 
and forecasting data size increases. This criterion of ANNs optimization is not 
considered in this work. Therefore, a large size of the past data was recorded for 3 
months with 10 minute intervals, 10573 datasets in the west region of Cameroon. 
The used variables for the present work and the results of the coefficient of 
correlation between them, obtained numerically are presented in Table 1.

Table 1 gives the values of the correlation coefficients between the output 
variable and each input variable as well as between the input variables them
selves. Thus, we can see from Table 1 that there are smaller relations between 
the input variables and the target variable.

According to the Kolmogorov’s theorem applied to determine the optimal 
number of hidden nodes of both ANNs architectures, for the three-layer 
neural networks as developed in this work, the number of hidden neurons is 
recommended as M ¼ 2N þ 1 (Peng, Liu, and Yang 2013). Therefore, each 
developed ANN architecture had nine hidden nodes, M ¼ 9.

Neural Networks Models Building

We have chosen four variables to use as input variables of optimized static and 
dynamic neural networks architectures, aimed to better the accurate TSF. To 
study the influence of the IVD of each developed ANN on the training and 
TSF performances, we had used the mathematical formula of arrangement to 
determine the number of possible disposition of the chosen input variables. 
Thus, the way input variables were disposed defines the neural networks 
model. It can be expressed by Equation (5): 

Mo ¼ N! (5) 

where Mo is the possible number of ANNs models. Therefore, using the four 
chosen input variables, each of the developed ANNs structures had 24 models, 
Mo ¼ 25 which were trained and tested to forecast one day-ahead of wind speed.

Table 1. Relations between the actual variables.
Ws Ta Pa RH T

Ws 1 0.3119 0.0432 −0.4859 −0.2631
Ta 1 0.2198 −0.5864 0.0175
Pa 1 −0.0761 0.0702
RH 1 −0.0457
T 1
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Forecasting Accuracy Evaluation

In order to investigate the performances of forecasting models, three errors 
criterion were taken into consideration. The Root Mean Square Error (RMSE), 
expressed as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

XT

t¼1
yðtÞm � yðtÞp
� �2

v
u
u
t (6) 

was used to measure the efficiency of the developed prediction tools in 
projecting future individual values. A smaller and more positive RMSE indi
cates a considerable convergence of the forecasted values and the real values. 
The Mean Absolute Error (MAE) is used to measure the long-term model 
forecasting, is defined as: 

MAE ¼
1
T

XT

t¼1
yðtÞm � yðtÞp
� ��
�
�

�
�
� (7) 

The Mean Absolute Percentage Error (MAPE) was used to establish the 
forecasting accuracy. It indicates in percentage the accuracy in fitting time 
series values in statistics in a particular trend. It is defined by the following 
equation: 

MAPE ¼
1
T

XT

t¼1

yðtÞm � yðtÞp
yðtÞm

�
�
�
�

�
�
�
�� 100 (8) 

where yðtÞm and yðtÞp are the real and forecasted values, respectively, at the 
time step t, and T is the number of time step.

Effects of the IVD on Neural Networks Performances Investigation

Figure 3 indicates the steps followed to evaluate the influence of the IVD on 
both neural networks structures performances. All the developed ANNs mod
els used the same common parameters. The tangent hyperbolic sigmoid and 
linear functions are used as activation functions of each hidden node and 
output node, respectively. The Lavenberg marquardt back-propagation algo
rithm is used to train the neural networks models following the error detection 
method. The NARX NN models were trained using its open-loop architecture 
and the multi-step forecasting was carried out with its closed-loop architec
ture. Several delays have been tried and the better results from NARX NN 
models had been achieved with four delays per variable, D = 4. Before the 
training process of neural networks models, the data sets are brought within 
the same order of magnitude. Thus, every data have been normalized between 
0 and 1.
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Proposed Neural Networks Optimization Approach

Algorithm: Proposed neural networks based forecasting approach
Objective:
Minimize the forecasting errors through the optimal input
variables of neural network disposition
Inputs:
X–Input variable
Xtr – Training input variable
Xs – Validation input variable
Xt – Testing input variable
Outputs:
Y – Forecasting variable
Ytr – Training target variable
Ys – Validation target variable
Parameters:
N – Number of input variables

(Continued)

Figure 3. Flowchart of effects of input variables disposition of neural networks investigation.

APPLIED ARTIFICIAL INTELLIGENCE 801



Algorithm: Proposed neural networks based forecasting approach
Objective:
Minimize the forecasting errors through the optimal input
variables of neural network disposition
Inputs:
X–Input variable
Xtr – Training input variable
Xs – Validation input variable
Xt – Testing input variable
Outputs:
Y – Forecasting variable
Ytr – Training target variable
Ys – Validation target variable
Parameters:
N – Number of input variables
Esmin – Minimum validation neural network performances
Tmax – Maximum retraining iteration
1. X ¼ ½x1; x2;…; xN�

2. Set target into Ytr and Ys
3. for i ¼ 1 to N! do
4. Xi ¼ permuteðXiÞ

5. Set Xi into Xtr, Xs and Xt
6. Set neural network architecture and parameters
7. for j = 1 to Tmax do
8. Randomly initialize neural network weights and biases
9. Train neural network model
10. Sj

i ¼ Simulateðneural n etworkÞ
11. Esj

i ¼ errorsðSj
i; YsÞ

12. if Esj
i < Esmin then

13. break
14. end if
15. end for
16. for k = 1 to length(Xt) do
17. Ok

i ¼ predictðneural n etwork; Xtrk
i Þ

18. end for
19. Efi ¼ errorsðOk

i ; YfÞ
20. if Efi < Efi� 1 then
21. Ef ¼ Efi
22. Y ¼ Ok

i
23. else
24. Ef ¼ Efi� 1
25. Y ¼ Ok� 1

i
26. end if
27. end for
28. return Ef
29. return Y

The goal of the proposed approach is to find the optimal IVD for a more 
optimal neural network solution. The neural networks are trained with mod
ified Back-Propagation (BP) algorithm by introducing the IVD consideration. 
The traditional BP algorithm is used to update the neural networks weights 
with a random initial IVD. The IVD is permuted and the neural network is 
retrained to obtain an optimal solution. Figure 4 draws the flowchart of the 
proposed modified BPNN training algorithm. As shown in this Figure 4, the 
proposed modified BPNN have three main stages: Stage (I) is the traditional 
BPNN training algorithm constituted by a feed-forward pass, which consists to 
take an input variable to express the corresponding output through the 
synaptic weights, and a feedback pass which aims to update the neural network 
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weights. At the end of this training process, the neural network is validated in 
the stage (II) by simulating its ability to generalize the desired output. This 
stage (II) allows to avoid the overlearning or overfitting, and to find the 
optimal model. Stage (III) is the added feedback pass, which allows to retrain 

Figure 4. Flowchart of proposed BPNN with optimal IVD searching.
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the neural network (back to stage (I)) for each IVD until the better solution is 
obtained.

The modified BPNN was proposed for improving TSF accuracy for 1 day 
ahead wind speed. The detail of the modified BPNN based on TSF is presented 
in Algorithm. As in the training process, the retraining process is controlled 
through the validation performances, es, and the number of retraining itera
tion, Tmax >Mo.

The proposed modified BPNN are able to be used in combining model as 
the traditional BPNN. Then, this proposed optimization approach was eval
uated in combining Genetic Algorithm (GA) and neural networks. Here, the 
GA was used to find the optimal weights of neural networks in the feedback 
pass of the stage (I). This for different possible IVD until an optimal solution is 
obtained. Figure 5 indicates the whole process of BPNN optimization by GA 
and IVD consideration.

Experimental Results and Discussion

IVD and Neural Networks Performances

After both neural networks architectures setting and models are constructed in 
order to investigate the influence of IVD on forecasting accuracy, the sought of 
best training and forecasting performance of each model is required. Thus, 
there are 10 simulations each of them with 10430 datasets. Three months were 
used in the training process and tested to forecast the short-term wind speed. 
The better performances of these simulations are considered for each of the 
developed neural networks models. Table 2 lists the different IVD, training, 
TrPerform, and forecasting performances of each of the models for FFNN and 
NARX NN architecture, respectively.

According to the results presented in Table 2, all the models of both ANNs 
structures have different performances. In other words, the training and 
forecasting performances are varying according to the ANNs models. The 
difference between the minimum and maximum value of a performance 
criterion is evaluated in percentage using Equation (9). For the FFNN archi
tecture, the training performance, TrPerform, varies from 0.0772 to 0.0819, 
5.73%; the forecasting errors RMSE, MAE, and MAPE vary from 1.2934 to 
1.9017, 31.98%, from 1.0183 to 1.6215, 37.20% and from 18.4749 to 20.9336, 
11.74%, respectively. For the NARX NN architecture, the training perfor
mance, TrPerform, varies from 0.0289 to 0.0297, 2.69%; the forecasting errors 
RMSE, MAE, and MAPE vary from 1.0106 to 1.4272, 29.19%, from 0.8227 to 
1.074, 23.39%, and from 14.1664 to 18.6297, 23.95%, respectively. These 
significant differences between each better and worse performance criterion 
indicate the high influence of the input variables disposition upon training and 
forecasting performances of neural networks models. Meanwhile, among both 
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neural networks, the FFNN structure has the more significant difference 
between the performance criteria. Therefore, we can conclude that the 

Figure 5. Proposed BPNN optimization by GA and IVD consideration.
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feedforward neural network is more sensible to IVD than recurrent neural 
networks. Figure 6 indicates the training and forecasting performances versus 
models of FFNN structure. Also, Figure 7 shows the training and forecasting 
performances versus models of NARX structure.

The fluctuations of performances of both developed ANNs architectures 
according to their models can be clearly observed in Figures 6–7. They clarify 
the influence of IVD upon static and dynamic neural networks models. Thus, 
the optimal IVD is required to build the optimal neural networks model based 
on more accurate TSF.

According to Table 2 and Figures 6–7, the first four most accurate forecast
ing models of the FFNN and NARX NN structure are the models 5, 20, 13, 23 
and 12, 17, 15, 23, respectively. According to Wei, Yoshiteru, and Shouyang 
2004 (Feng, Zhou, and Dong 2019), the input variables of an ANN need to 
have the high strength correlation between each of them and the target 
variable, but should not be correlated. According to the results presented in 
Tables 1 and 2, this is confirmed by the models 5 and 13 of the FFNN 
structure, but not for any NARX NN models. Therefore, based on the above 
experiments, it can be concluded that: (i) NARX NN structure obtains the 
most accurate results than FFNN structure. (ii) The way that the input 

Figure 6. Training, (a), and forecasting, RMSE = (b), MAE = (c), MAPE (%) = (e), performances of 
FFNN models.
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variables disposition influence the neural networks performance is different 
according to their architectures. (iii) There is a tiny possibility of having an 
optimal FFNN model by arranging its input variables in such a way as to avoid 
the strength correlation between two neighboring input variables.

Also, we can see a real similarity in the variations of graphs 6(b), 6(c), and 6 
(e). This similarity is more considerable between graphs 7(g), 7(i), and 7(j). 
These similarities confirm the stability of the match of IVD with forecasting 
performances of the neural networks models. But these similarities are smaller 
between the training graph, 6(a), and the forecasting graphs, 6(b), 6(c), and 6 
(e). Event between 7(f) and 6(g), 6(i), and 6(j). Thus, these lack of concor
dance between the training performances and those of forecasting reflect the 
fact that some IVD are subject to overlearning or overfitting, e.g., models 12 
and 18 of NARX NN and model 7 of FFNN. To further illustrate this, Table 3 
gives the coefficients of correlation between the performances criteria from the 
two ANNs architectures.

The most remarkable observation in these results from Table 3 is the smaller 
relations between training and forecasting errors criteria. They also argue that 
there are strong relations between the forecasting errors from NARX NN 
models than FFNN. Therefore, we can conclude that the forecasting 

Figure 7. Training, (f), and forecasting, RMSE = (g), MAE = (i), MAPE (%) = (j), performances of 
NARX NN models.
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performance of NARX NN is less sensitive than that of FFNN to overlearning 
or overfitting that some IVD may cause.

Proposed Forecasting Models Evaluation

This section describes the experiments conducted to examine the performance 
of the proposed neural networks optimization approach, which was based on 
IVD pursing to enhance TSF accuracy. The proposed forecasting models in 
this work were then based on this proposed optimization approach. Therefore, 
the FFNN, NARX NN, and GABPNN models were proposed. The proposed 
GAPBNN model is based on the model proposed by Rahman et al. (Mijanur 
Rahman and Akter Setu 2015). To perform the evaluation of the forecasting 
ability of these proposed models, an another commonly used neural network 
forecasting model is used as the benchmark model, i.e., Adaptive Neuro-Fuzzy 
Inference System (ANFIS)(Cervone et al. 2017). Table 4 shows the experi
mental parameters of developed forecasting models.

To ensure that the final results are reliable and independent of the initial 
random weight and bias values of the proposed models, each developed model 
is repeated 10 times. It had been shown in the previous subsection 5.1 that the 
IVD influence the training and forecasting performance of neural networks. 
Therefore, we will take the better forecasting models of FFNN and NARX NN 
from Table 2 as comparison models of the proposed models, i.e., models 20 

Table 3. Relations between the performance criteria.
ANN TrPrform RMSE MAE MAPE ANN

TrPrform −0.0651 −0.0317 0.0276 NARX NN
RMSE 0.0073 0.9860 0.798
MAE 0.1369 0.9526 0.8450

FFNN MAPE −0.3116 0.222 0.3989

Table 4. Forecasting models parameter settings.
Models Parameters Values

FFNN maximum iterations 1000
validation check 500
maximum retraining iterations 100
layers 02

NARX NN maximum iterations 1000
validation check 500
maximum retraining iterations 100
delay 04
layers 02

ANFIS number of membership functions 02
number of membership Gaussian
maximum epochs 1000
layers 02

GA maximum generations 2000
fitness limit 10� 5

convergence tolerance 10� 10
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and 17, respectively. Equation (9) is used to describe the improvement per
centage of the proposed models over the comparison models, it is defined as, 

PError ¼
Error2 � Error1

Error2

� �

� 100 (9) 

where Error represents each statistical error defined in Equations (6)–(8), 
subscript 1 indicates a proposed model, and the subscript 2 gives 
a comparison model. When a PError> 0, the proposed forecasting model is 
better than the comparison model and vice versa. The closer PError to 0, the 
smaller the difference between the two evaluation errors. The forecasting 
performance results of the proposed models and the comparing models of 
the study case are presented in Table 5.

According to Table 5 the GABPNN model forecasts well than the ANFIS 
model. Meanwhile, the proposed NARX NN model performs well the TSF 
than the proposed FFNN and GABPNN models, while ANFIS is the worse 
one. In Figure 8 the results of forecasting performances from the different 
proposed and comparing models are drawn. Table 6 gives the performances of 
forecasting improvement of the proposed models over the comparison 
models.

By observing Table 6, we can see that the proposed FFNN model leads to 
more accurate forecasting performance than the old FFNN model with 
a considerable difference, by up to 10% for every performance criteria. This 
shows the effectiveness of proposed FFNN model to perform TSF. Meanwhile, 
the proposed NARX NN model is being neutralized with the old model, but it 
obtains the most accurate results among all developed models. It is important 
to note that this comparison NAX NN model is built with optimal IVD as 
shown in subsection 5.1. Thus, the proposed NAX NN model can always work 
as a good forecasting model than the old model which is generally built with 
random IVD. The results presented in Table 6 show that the combining 
proposed model, GABPNN is the most accurate model than its old compar
ison model. The sensitivity of the GABPNN to the arrangement of input 
variables is clarified in Figure 9, which presents the fluctuation of best fitness 
values according to the neural networks models.

The research results of the proposed strategy to improve the multi-step TSF 
performance of ANNs show that the tested models for 24 hours-head wind 
speed forecasting have the following features: (1) Each proposed model always 

Table 5. Forecasting performance evaluation of different models.
Models RMSE MAE MAPE(%)

ANFIS 1.3456 1.0814 19.6528
GABPNN 1.2115 1.0231 18.3718
Proposed NARX NN 1.0289 0.8037 14.2817
Proposed FFNN 1.1617 0.9009 15.8855
Proposed GABPNN 1.2753 0.9901 16.5621
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achieves more accurate value than old one. This shows the effectiveness of the 
proposed neural networks optimization approach to improve the multi-step 
head TSF accuracy. (2) Among all the proposed models, FFNN model is the 
most improved one with the highest improvement percentage values, by up to 
10%. Thus, IVD is very important for static neural networks forecasting 
performances improvement than dynamic neural networks. (3) By using the 
worse neural networks models of Table 2 as comparison models, we will see 
that the difference between them and the proposed models will be more 
considerable.

Figure 8. Bar chart showing the forecasting errors from the proposed and comparison models.

Table 6. Improvement percentages of the proposed models.
Models FFNN NARX NN GABPNN ANFIS

RMSE Proposed NARX NN 21.62% 0.940% 15.07% 23.53%
Proposed FFNN 11.50% −11.84% 4.110% 13.66%
Proposed GABPNN 2.85% −16.91% −5.260% 5.220%

MAE Proposed NARX NN 24.58% 2.220% 21.44% 25.67%
Proposed FFNN 15.46% −9.590% 11.94% 16.69%
Proposed GABPNN 7.090% −20.45% 3.220% 8.440%

MAPE Proposed NARX NN 23.12% −0.800% 22.26% 27.32%
Proposed FFNN 14.48% −12.13% 13.53% 19.16%
Proposed GABPNN 10.84% −22.77% 9.850% 15.72%
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The presented experiments confirm the competitive forecasting perfor
mance of the proposed neural networks models and therefore, show that it 
will be important to take into consideration the IVD for the optimization of 
neural networks models. But it was complex to test step-by-step every possible 
IVD of neural networks aimed to find the optimal one. Thus, the key advan
tages of the proposed neural networks training and optimization approach are:

- It is possible to test all the possible IVD and the search of the optimal 
disposition is included in the neural networks training algorithm. Thus, the 
approach does not require any predisposition of the input variables and 
relations between them analysis stage.

- The complexity of the approach in terms of computation and speed is 
much less than step-by-step method used to find the optimal IVD, which 
facilitates the real-time application of the proposed neural networks optimiza
tion approach.

- The forecasting performance is better than that obtained by using other 
methods to search the optimal IVD such as step-by-step finding and non- 
correlated input variable methods.

- Possibility to be combined with other techniques to build the hybrid TSF 
models.

Figure 9. Best fitness values of GA along with neural networks models.
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Conclusion

This paper introduces a new framework based on input variables disposition to 
construct optimal neural networks for more accurate time series forecasting. The 
investigation carries out on feed-forward and nonlinear autoregression with 
exogenous neural networks structures to forecast 24 hours ahead wind speed 
has shown that their training and forecasting performances change according to 
their input variables disposition. Meanwhile, the input variables disposition do 
not change the computational time of neural networks models. Thus, the optimal 
forecasting requires an optimal input variables disposition of ANN based. A new 
ANN training approach has been proposed; introducing the optimal input vari
ables disposition into Back-Propagation algorithm. This proposed approach has 
been applied to develop the neural networks forecasting models including com
bining model using generic algorithm. The numerical results of the study case 
reveal the effectiveness of the proposed approach and neural networks models to 
improve accuracy of multi-step head time series forecasting, in which every 
proposed model improves the performance of its old model. Moreover, this 
proposed optimization approach could be also used together with the multi- 
objective algorithms for more time series forecasting models stability and errors 
minimizing such as bat algorithm, evolutionary algorithm, and firefly algorithm.
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