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Abstract 
In our recent article [1], we discussed the universal geometric characteristics 
of the envelope of family of trajectories of projectiles projected with the same 
speeds and different velocities in a vertical plane under the sole influence of 
gravity; our current investigation is its natural extension. As shown in [1] 
even for the simplest case where gravity is the only acting external agent lite-
rature overlooked reveling the characteristics of the envelope such as its 
arc-length, the surface area of the enclosed surface and etc. Calculation lead-
ing to these has carried out mostly longhand [1]. The current extended ver-
sion embodies a realistic scenario where the projectiles in addition to gravity 
encounter linear velocity-dependent media resistance. In order to fulfil objec-
tives similar to [1], we develop two distinct strategies obtaining the analytic 
equation for the envelope. On one hand, we solve the equations of motion 
applying traditional longhand approach. On the other hand, we adopt a 
Computer Algebra System (CAS), e.g. Mathematica [2] [3]. Having these 
outputs at hand, via mixed-mode calculation—some longhand and some via 
CAS—we explore its global geometric characteristics such as its arc-length, 
the surface area of the enclosure. Because of the calculation complexities we 
could not have achieved our set goals. 
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1. Introduction, Motivations and Goals 

We consider a point-like massive object of mass m projected with initial velocity 

0v  with respect to horizon in a vertical plane. Assuming the projectile in addition 
to gravity encounters linear velocity-dependent resistive force, we depict the quan-
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tities of interest in Figure 1. The projectile is a point-like, effects such as size, spin, 
buoyant force and Magnus effect all are suppressed. These are considered in [4]. 
The focus and objective of our work are to bypass these details and obtain informa-
tion about the envelope of a family of trajectories under aforementioned circums-
tance. Impact of these effects on the trajectories and formulation of the associated 
envelope is forthcoming. 

We adopt Newtonian mechanics strategy to analyze the problem. According-
ly, the net force that is composed of the forces acting on the projectile of mass m 
is subject to net m=F a . Here net resistivem= +F g F . It is our intention to consider 
a scenario where the resistive force is a linear velocity-dependent entity. There-
fore, resistive mn=F v ; where n is an index with dimension T−1, its value adjusts 
the strength of the resistive force. In the Discussion and Conclusion Sections, we 
made comments concerning scenarios where depending on the need and the in-
terest, other velocity-dependent models may be considered.  

2. Trajectory Equation; Traditional Longhand Calculation 

Because the projectile traverses a 2D curve we project the master dynamic equa-
tion, netF  along the coordinate axes. Along the x-axis this gives, 

d
d

,x xv nv
t

= −                             (1) 

Integrating Equation (1) with initial condition, ( ) [ ]0 00 cosx xv t v v θ= ≡ =  
yields,  

( ) 0 e ,nt
x xv t v −=                            (2) 

Replacing ( )d dxv t x t=  in Equation (2), and solving the corresponding 
ODE with initial condition, ( )0 0x t = = , we arrive at, 

( ) ( )0
1 1 e .nt

xx t v
n

−= −                         (3) 

Similarly, projection of the master dynamic equation along the y-axis gives, 

d ,
d y yv g nv

t
= − −                           (4) 

 

 
Figure 1. At an arbitrary instant on a vertical plane velocity v , gravity pull, mg  and 
media resistance force, nmv  are shown. 
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Integration Equation (4) and applying the corresponding initial condition, 
( ) [ ]0 00 siny yv t v v θ= ≡ = , gives 

( ) ( )0
1 e ,nt

y yv t g g nv
n

− = − + +                     (5) 

Similar to previous steps we replace ( )d dyv t y t=  in Equation (5). Solving 
the corresponding ODE with initial condition, ( )0 0y t = = , yields 

( ) ( )( )0
1 1 1 e .nt

yy t gt g nv
n n

− = − + + −  
               (6) 

Equations (3) and (6) are explicit time-dependent coordinate of the projectile. 
Since the objective is to formulate time-independent trajectory equation, utiliz-
ing Equation (3) first we write, 01nt

xE n x v− = −  and then solve the latter for 
( ) ( )01 ln 1 xt n n x v= − − . Substituting the last two expressions in Equation (6) 

gives the time-independent equation for the trajectory, 

( ) [ ] 2
0 0

tan ln 1 ,
x x

g g xy x x n
nv vn

θ
   

= + + −   
   

            (7) 

One of the objectives of our investigation is to focus on the geometric charac-
teristics of the problem on hand. Therefore, without to lose the generality we set 
the values of the initial speed and the gravity acceleration to unity, i.e. v0 = g = 1. 
This modifies Equation (7), 

( ) [ ] [ ] [ ]2

1 1tan ln 1 .
cos cos

ny x x x
n n

θ
θ θ

   
= + + −      
   

         (8) 

Equation (8) is a parametric, θ-dependent geometric function. It is a 
non-linear function of n. It is an exact equation; no approximation is used de-
riving it. In reality the value of n is small. Large values of n hamper the projec-
tile’s movement; small values of n are preferred making the scenario practically 
interesting. In the next subsection we made comments on n-dependency of Eq-
uation (8). For time being in Figure 2 we have shown two plots of Equation (8) 
for two values of n; n = 0.001, and 0.1. 
 

 

Figure 2. The solid and the dashed curves are the plots of Equation (8). The solid curve 
with n = 0.001 is the non-resistive trajectory. The dashed curve is with n = 0.1. The initial 
projectile angle for both is set at θ = 45°. 
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According to shown figure as one intuitively would have anticipated the im-
pact of the n is more pronounced beyond the pick point. 

Aforementioned procedure is so-called longhand traditional. Utilizing po-
werful CAS such as Mathematica one may bypass the shown steps short cutting 
the procedural steps obtaining the same graphic output. Here is what is needed. 
We write {x(t), y(t)} = {Equation (3), Equation (6)}, and run a one-line com-
mand. 

Code 1 

[ ]( )

[ ]( )( )

{ } { } { }{ }

{ }

1 0cos 1 e ,

1 1 0sin 1 e / .

/ . , ,0,1.5 , 0,1. , 0,0.3 ,
4

, ,0.001,0.1,0.05

nt

nt

Show Table ParametricPlot v
n

gt g v n values
n n

t PlotRange

PlotStyle Black n

θ

θ

πθ

−

−

   −   
 − + + −  

 

→ →


→ 

 

 

The output is identical to Figure 2, we avoid displaying. 

2.1. Trajectory Equation; Computer Algebra System, Mathematica 

Similar to objectives outlines in Section 2.1 utilizing a CAS, specifically Mathe-
matica here we show a short code capable of generating the parametric master 
Equation (8). The code includes a command, DSolve that symbolically solves 
two ODEs describing the equations of motions. 

Code 2 

[ ] [ ] [ ]{ }
[ ] [ ] [ ]{ }

{ }
{ } [ ]
{ } [ ]

0 0, ' 0 0cos ;

0 0, ' 0 0sin ;

0 1, 1 ;

0, / . , , / / ;

0, / . , , / / ;

initialx x x v

initialy y y v

values v g

solx DSolve eqx initialx values x t t Simplify

soly DSolve eqy initialy values y t t FullSimplify

θ

θ

= == ==

= == ==

= → →

 = == 
 = == 

 

[ ] [ ]{ }
[ ] [ ]{ }

( )
( )

2

2

/ . , / . ;

/ . ,

/. }], ] / / ;

1,1, 2 1,2 / / / / / ;

1,1, 2 1,2 /

Flatten x t solx y t soly

Flatten x x t solx y y t
xyEq Eliminate

soly t FullSimplify

xyEq xyEq n FullSimplify Apart

xyEq xyEq n

  
  == == =  
  

+

− +

   

   

 

Interested readers are encouraged to run the code and compare the output vs. 
Equation (8). 

2.2. Trajectory Equation; Computer Algebra System, Mathematica 

As we shown in previous two sections, irrespective of the chosen methodology, 
the final exact trajectory equation is given by Equation (8). Also as commented 
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the n-value controls the media strength. A moderately small n-values provide a 
practical media allowing the projectile traverses on a trajectory. Contrary to a 
large n-value that shortens the trajectory’s lifetime mocking its physical features. 
For reasons cited we consider small n-values. Mathematically specking this al-
lows expanding the log term of Equation (8). Expanding the log function to 
second order, O(n2) revives the classic trajectory equation [5]. 

[ ] [ ]( ) [ ]

[ ] { }2

2 _, _ tan
0cos

log 1 , ,0, 2
0cos

/ / / /

gy x x
nv

g nNormal Series x x
vn

FullSimplify Apart

θ θ
θ

θ

 
=  + 
  

   
+ −           

  (9) 

[ ] [ ]
22

2

Sec
tan

2 0
gx

x
v

θ
θ− + ,                          (10) 

And expanding the log piece to the third order, O(n3) replaces Equation (8) 
with, 

[ ] [ ]( ) [ ]

[ ] { }2

3 _, _ tan
0cos

log 1 , ,0,3
0cos

/ /

gy x x
nv

g nNormal Series x x
vn

FullSimplify

θ θ
θ

θ

 
=  + 
  

   
+ −           

  (11) 

[ ]( ) [ ] [ ]
32

3

2 3 0cos Sec
tan

6 0
gx nx v

x
v

θ θ
θ

+
− +              (12) 

Plots of Equation (8) and (11) for an index value of n = 0.1 shows indistin-
guishable trajectories. With this observation instead of applying Equation (8) we 
utilize its equivalent, i.e. linearized n-dependent format, Equation (12) to devel-
oping the envelope equation. 

3. The Envelope 

From this point on we set n = 0.1 and perform the rest of the calculation utiliz-
ing this value only. To generate the analytic equation for the envelope as out-
lined in [1] we follow the standard procedure. One needs to set the slope of the 
trajectory equation, i.e. Equation (12) w/parameter, θ, zero, then eliminate the 
parameter, θ between the trajectory Equation (12) and the latter. This is the cor-
rect recipe however it is tedious and cumbersome. As we shown in detail [1] by 
introducing a variable such as ξ = tan[θ] the procedure simplifies. Applying the 
n-dependent linearized format of the trajectory, i.e. Equation (12), we write,  

( )3 22 2
3 2

1 3 01 2
6 0 1

vx gx nx
v

ξ ξ
ξ

 
 − + +
 + 

             (13) 

We calculate its slope and set it zero, and search its roots,  
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Code 3 

[ ] { }
[ ]

, , ,1 ;

0 0, ;

slope D eq x

sol Solve slope

ξ ξ ξ

ξ ξ ξ

 =  
= ==

 

Solution of this equation is, ξ = ξ(x). After substituting the latter in Equation 
(12) we arrive at the envelope equation. As one may imagine the final expression 
is complicated and long. We avoid cluttering the manuscript by not showing its 
explicit output. Interested readers may run the given code to reveal the explicit 
envelope equation. Here is the needed line, 

Code 4 

[ ], / . 0 4 / . / . 0.1;eq x sol values nξ ξ →   

To hone at our objective, we show its corresponding curve, see Figure 3.  
By comparing the solid and the dashed black curves one may deduce a few 

facts. The dashed black curve is what we reported earlier [1]. Nonetheless, we 
plot this curve utilizing our new n-dependent envelope equation, Equation (12). 
It is gratifying to observe that this is identical to [1] noting the fact that [1] is 
based on calculation for a non-resistive media. As anticipated the dashed curve 
has a higher height than the solid one. This is because the former is for 
non-resistive media where the solid is for a resistive media. Other interesting 
information such as the values of maximum heights, maximum abscissa and etc. 
directly may be read off the graph. More on this on following subsection. 

3.1. Corollary Calculations 

Having the equation of the envelope on hand guided by [1] one may purse simi-
lar calculation conducive to some universal information about the envelope. For 
instance, for a chosen n-value e.g. n = 0.001 and 0.1 applying Mathematica [3] 
we search for roots of (Equation of envelope) = 0. As pointed previously the 
envelope equation is quite lengthy and complicated. By the same token the latter 
equation is complicated as well. We avoid displaying it, nonetheless we report its 
numeric value. For two different values of n-index applying Mathematica [3] we 
arrive at MaxAbscissas: 0.999059 for n = 0.001, 0.920814 for n = 0.1. These high 
precision numeric values match the read offs of Figure 3. 

3.2. Arc-Length of the Envelope 

The arc-length of the envelope in principle easily can be calculated. This is sub-

ject to ( )max
2

0

d2 1 d
d

abscissax
y x x

x
 = +   ∫

, here abscissax  is the maximum value of  

the abscissa; previous section includes the value. As it was pointed for a com-
prehensive understanding, we focus on one specific case, n = 0.1. Bear in mind 
also that we have formulated the entire analysis symbolically as a function n. 
Meaning, we may produce the on 

20.99548 0.06049 0.46388fitx x x= + +              (14) 
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Figure 3. The solid black curve is the envelope of a family of trajectories with resistive 
index of n = 0.1. The dashed black curve is the non-resistive envelope for n = 0.001. The 
blue parabolas are the family of projectiles projected with the same initial speeds and 
various velocities, the green curves are the family with same speeds as the blue ones. 
 
going computation for any desired n. In practice evaluation of the arc-length, ℓ, 
because of complicated expression for y(x) is CPU expensive; my laptop with a 
quad processor runs forever! To go around this issue utilizing y(x) first we form 
its symbolic slope, y'(x), then we tabulate paired data points, ( ){ }2, 1x y x′+ for 
a handful of x's. These pairs are shown with dots in Figure 4. Then by applying 
Mathematica Fit command we fit the data with a second order polynomial. The 
outcome of the proposed process is depicted in Figure 4 as well. As shown the 
fitted function is “perfect.” Concluding that it is much efficient to replace the in-
tegrand with the fitted function. 

Integrating Equation (14) over the given limits yields the arc-length of the 
envelope. 

0.920814

0.001
d 1.06204fitx x= =∫                  (15) 

If we could extend the envelope into the second quadrant the arc-length 
would be twice as long; 2.124. The arc-length of non-resistive media as reported 
[1], is [ ]2 arcsinh 1 2.29+ = , the former falls short by 7.2%. According to Fig-
ure 3 this is what one would have anticipated. Meaning, the trajectory of the 
projectile in the resistive media indexing n = 0.1 has a shorter abscissa and is 
lower in height vs. the one for non-resistive media; therefore, its associated 
arc-length should be shorter as well. As in more than one occasion we pointed 
out our calculation may be repeated for any desired n-value. 

3.3. Surface Area of the Enclosed Surface by the Envelope 

The surface area of the enclosed surface is subject to ( )max

0
dabscissax

s y x x= ∫ . As in 
the previous case substituting y(x) i.e. the equation the envelope directly in this 
equation makes the computation CPU expensive. Therefore, we follow the same 
successful technical procedure of the previous subsection. First utilizing equa-
tion of the envelope, we generate a set of data pairs, ( ){ },x y x ; these are de-
picted with dots in Figure 5. Then we fit the data with an appropriate poly-
nomial function. This is shown with the solid curve in the same Figure. Then we  
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Figure 4. Dots are the paired coordinates, ( ){ }2, 1x y x′+ . The solid curve is the fitted, 

fitx, function. 
 

 

Figure 5. Dots are the paired coordinates of the envelope, ( ){ },x y x . The solid curve is 

the fitted x-dependent 2nd order quadratic function. 
 
swap the envelope equation with the fitted polynomial. Equation (15) is the fit-
ted function. 

20.4703 0.0072 0.5615fitxy x x= + −               (16) 

Integrating the fitted function, fitxy, yields the surface area enclosed with the 
envelope. 

0.92

0.001
d 0.28953s fitxy x= =∫                   (17) 

By doubling its value, we get 0.579. This is 1.5% less than the reported value in 
[1]. One look at the plotted envelops in Figure 3 justifies the shortcoming. De-
scriptively speaking we may use the same reasons outlined in the arc-length 
computation subsection. 

4. Conclusions and Discussions 

In this investigating research article, we pushed the boundaries of our previous 
work [1] and publications related to the envelope of projectiles in resistive veloc-
ity-dependent media. Although the concept of the envelope for a family of tra-

https://doi.org/10.4236/***.2020.*****
https://doi.org/10.4236/***.2020.*****
https://doi.org/10.4236/***.2020.*****


H. Sarafian 
 

 

DOI: 10.4236/ajcm.2020.103024 439 American Journal of Computational Mathematics 
 

jectories for projectiles thrown in a vertical plane under the sole action of gravity 
is familiar, even for such a familiar scenario we report its unknown fresh cha-
racteristics [1]. Hence, it is almost inevitable not to extend the analysis for prac-
tical situations where in addition to gravity the projectile encounters veloci-
ty-dependent resistive media, e.g. movement of microscale bacteria in a viscose 
media falls in this category.  

We introduced two distinct calculational methodologies. For the sake of es-
tablishing the basis, first, we produce a set of familiar information, e.g. Equa-
tions (3), (6). Then utilizing CAS, specifically Mathematica [3] symbolically we 
generated the same information and beyond, Equation (8). Utilizing the latter 
approach, we were able to solve symbolically complicated, some with output as 
lengthy as a page, equations identifying the velocity-dependent envelope en-
compassing a family of associated trajectories. As we pointed out in the Abstract 
without CAS we could not have solved this segment of the project. This is a fresh 
unreported contribution. Having the equation of the envelope on hand inspired 
and guided by [1] we explored its geometric global characteristics such as its 
arc-length and surface area. In doing so because of the CPU expensive computa-
tion we introduced a numeric approach fulfilling our goal. The introduced me-
thod may be used for similar scenarios. 

The author acknowledges despite thorough web-based search ended up empty 
handed identifying published article(s) addressing the envelope of trajectories in 
velocity-dependent viscose media.  

For interested readers we are suggesting two exercises: computation of the 
surface area of the revolution of the envelope about its vertical axis, i.e. the sur-
face area of the paraboloid, and its associated volume. Our article embodies suf-
ficient coding information that guided with the computed results [1] these can 
easily be completed.  

For non-microscale objects such as baseball, velocity-dependent resistive 
forces customarily are formulated as speed-squared forces [4]. As an investigat-
ing project based on information provided in our articles [1] [4], one might be 
interested in pursuing similar analysis. Interested readers on graphics applica-
tions of Mathematica will find [6] resourceful.  
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