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and Youki Kadobayashia

aDivision of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan; bFaculty 
of Information Science and Engineering, Kyoto Sangyo University, Kyoto, Japan

ABSTRACT
Connected and Autonomous Vehicles (CAVs) offer improved 
efficiency and convenience through innovative embedded 
devices. However, the development of these technologies has 
often neglected security measures, leading to vulnerabilities 
that can be exploited by hackers. Conceding that a CAV system 
is compromised, it can result in unsafe driving conditions and 
pose a threat to human safety. Prioritizing both security mea
sures and functional enhancements on development of CAVs is 
essential to ensure their safety and reliability and enhance con
sumer trust in the technology. CAVs use artificial intelligence to 
control their driving behavior, which can be easily influenced by 
small changes in the model that can significantly impact and 
potentially mislead the system. To address this issue, this study 
proposed a defense mechanism that uses an autoencoder and 
a compressive memory module to store normal image features 
and prevent unexpected generalization on adversarial inputs. 
The proposed solution was studied against Hijacking, Vanishing, 
Fabrication, and Mislabeling attacks using FGSM and AdvGAN 
against the Nvidia Dave-2 driving model, and was found to be 
effective, with success rates of 93:8% and 91:2% in a Whitebox 
setup, and 74:1% and 64:4% in a Blackbox setup for FGSM and 
AdvGAN, respectively. That improves the results by 24:7% in 
Whitebox setup 21:5% in Blackbox setup.
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Introduction

Connected and autonomous vehicles (CAVs) are a type of transportation that 
use a combination of connected and automated technology to either support 
or fully replace human involvement in the driving process. These vehicles are 
equipped with a range of advanced technologies, such as sensors, machine 
learning algorithms, onboard and remote processing capabilities, Global 
Positioning System (GPS), and telecommunications networks, which allow 
them to function autonomously. (Elliott, Keen, and Miao 2019)
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According to a market research report, the autonomous car market is 
expected to experience significant growth in the coming years, with 
a compound annual growth rate of 22:75% predicted between 2021 and 
2027. This growth is expected to take the value of the market from USD 
22.22 billion in 2021 to USD 75.95 billion in 2027 (MordorIntelligence  
2021). The increasing prevalence of level 2 and level 3 autonomous vehicles, 
which are capable of greater levels of autonomy, is expected to drive this 
market growth by 2030.

While the use of autonomous vehicles has the potential to bring many 
benefits, such as improved safety, reduced congestion, and lower fuel con
sumption, the safety of these systems is a major concern. One approach to 
improving the control of autonomous vehicles is the use of end-to-end learn
ing (e2e), which involves using deep learning algorithms to transform percep
tual inputs, such as images, into control decisions such as steering angles 
(Bojarski et al. 2016). Research has shown that this approach (Bojarski et al.  
2016) is effective, particularly when learning to emulate human drivers.

However, it is known that deep learning systems relying upon patterns 
within data can fall prey to adversarial interference. Adversarial interference is 
defined as a deliberate manipulation of input data resulting in erroneous or 
malicious outcomes from the machine learning model. In the context of deep 
learning, adversarial examples can be devised to deceive the model, leading to 
misclassification of images for instance. This vulnerability stems from the 
sensitivity of deep learning systems to slight alterations in input data that 
can significantly impact the output of the model. Furthermore, the intricacies 
of deep learning models, with their non-linear complexity, present challenges 
in detecting and mitigating adversarial interference. Hence, deep learning 
systems are at risk to various attack types,

However, it is important to note that deep learning systems can be vulner
able to adversarial interference in their inputs, which can potentially compro
mise the safety of the autonomous driving system.

In addition to the safety concerns related to the use of autonomous vehicles, 
there are also a number of other challenges that need to be addressed in order 
to fully realize the potential of these systems. These challenges include reg
ulatory and legal issues, the need for infrastructure and communication 
systems to support autonomous driving, and the need to address privacy 
and security concerns related to the collection and use of data by autonomous 
vehicles. Despite these challenges, it is clear that connected and autonomous 
vehicles have the potential to transform the transportation industry and bring 
significant benefits to society.

There have been various strategies proposed for defending against adver
sarial examples, which are inputs specifically designed to cause a machine 
learning model to make mistakes. These strategies can be broadly classified 
into two categories. The first category involves improving the machine 
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learning model or training set through techniques such as modifying the 
network architecture, altering the model’s loss function, and increasing the 
size of the training dataset. These approaches aim to increase the model’s 
resistance to adversarial attacks (Papernot et al. 2016; Tramèr et al. 2017 by 
making it more robust to slight variations in the input data. Particularly, 
modifying the network architecture can involve adding more layers or neu
rons to the model, which can increase its capacity to learn and better handle 
adversarial examples. Modifying the loss function can involve adding regular
ization terms to the optimization objective, which can help the model general
ize better to unseen data. Increasing the size of the training dataset can also 
help the model generalize better and become more resistant to adversarial 
attacks, as it has more examples to learn from. However, one of the key 
limitations of this approach is that the model must be retrained in order to 
incorporate these changes, which means that it cannot defend against 
unknown threats.

The second category of defensive strategies involves adjusting adversarial 
inputs to make them more similar to clean inputs, rather than modifying the 
model or training process. This can involve using techniques such as input 
preprocessing, which involves applying transformations to the input data 
before it is fed into the model. In particular, adding noise (Goodfellow, 
Shlens, and Szegedy 2014a) to the input data or applying image processing 
techniques such as blurring can help make adversarial examples less effective. 
Another approach is to use adversarial training, which involves generating 
adversarial examples during the training process and adding them to the 
training dataset. This helps the model learn to be more resistant to adversarial 
attacks. One of the advantages of this approach is that the model does not need 
to be retrained (Guo et al. 2017), as it has already learned to handle adversarial 
examples during training. However, it is important to note that these defensive 
strategies may not be effective against all types of adversarial examples (Song 
et al. 2017; Zhou, Liang, and Chen 2020), and further research is needed to 
improve their effectiveness.

One potential reason for the effectiveness of Generative Adversarial 
Networks (GAN) in reconstructing adversarial samples is the strong general
ization abilities of neural networks. There are several factors that may con
tribute to this, including overfitting, the structural similarities between 
adversarial and normal samples, and the lack of a clear boundary between 
the two. The inclusion of unlabeled adversarial samples in the training data 
can further exacerbate this issue, as autoencoders are designed to minimize 
reconstruction error for all samples, including adversarial ones.

In this study, we assess the performance of various defense approaches that 
are commonly used, such as auto-encoder (Wang et al. 2014), block switching 
(Pang et al. 2020), adversarial training (Goodfellow, Shlens, and Szegedy  
2014b), defensive distillation (Papernot et al. 2016), and feature squeezing 
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(Liu, Daniel Wang, and Song 2015). However, the diversity of generative 
models can result in reconstructed images that differ from the original inputs, 
and the high representation capacity of Convolutional Neural Networks 
(CNN) allows for the reconstruction of adversarial perturbations. These fac
tors can make the aforementioned defense mechanisms complex and prone to 
failure. To address these limitations and defend against unknown threats, we 
do not train the model using adversarial examples. Instead, we propose 
a system that cleans adversarial inputs and makes them more similar to the 
original inputs captured by the CAV’s camera. We also introduce a memory 
module to store the original data features. The requirement for enhanced 
representation learning models for sequential and structured data has inspired 
the development of memory. Autoencoders, as a type of learning technique, 
aim to learn compact representations of the input data. However, conventional 
autoencoders lack the ability to store information about the input data, thus 
rendering the task of learning representations for sequential and structured 
data challenging.

The major contribution of this paper is addressed as follows:

● We proposed a defense mechanism to the adversarial attack in an autono
mous driving model, which purifies the adversarial samples into clean 
samples.

● In this study we use a memory module to improve the model’s ability to 
capture and maintain the features of the input examples.

● Our proposed method achieves a reasonable performance compared to 
the most common defense approaches.

Background and Related Work

Pomerleau’s pioneering work on the Autonomous Land Vehicle in a Neural 
Network (ALVINN) technology in 1989 (Pomerleau 1988) was a major mile
stone in the development of autonomous vehicles. Pomerleau’s research 
demonstrated that a fully trained neural network could be used to successfully 
guide a car on public highways, using sensor data and machine learning 
algorithms to make driving decisions. This work laid the foundation for the 
development of later autonomous vehicle technologies, such as DAVE-2 
(Bojarski et al. 2016). DAVE-2 is a further development of the ALVINN 
technology that was inspired by Pomerleau’s work. One of the key differences 
between ALVINN and DAVE-2 is the increased availability of data and 
computing power that has become available over the past 25 years. These 
advancements have allowed for the development of more complex and sophis
ticated autonomous vehicle systems that can handle a wider range of driving 
scenarios. DAVE-2 is distinguished by its ability to use these advances in 
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technology to perform autonomous driving tasks more effectively and reliably 
than earlier systems.

Adversarial attacks are a type of malicious attack on machine learning 
models that involve introducing small, imperceptible perturbations to the 
input data in order to mislead the model into making incorrect predictions. 
These perturbations are known as adversarial examples, and they can cause the 
model to classify the original input as a different class than it would normally 
predict (Goodfellow, Shlens, and Szegedy 2014a). Adversarial attacks can be 
classified as Whitebox (Huang et al. 2017) or Blackbox (Papernot et al. 2017) 
attacks based on the knowledge required to execute the attack.

Whitebox attacks require extensive knowledge of the target model, includ
ing the training data, neural network architecture, parameters, hyperpara
meters, and the ability to obtain the model’s gradients and prediction 
outputs. This type of attack involves a direct, unrestricted access to the 
model, allowing the attacker to fully understand its internal workings and 
design the most effective adversarial examples. In contrast, Blackbox attacks 
only involve querying the model with arbitrary input data and receiving 
a predicted result. The attacker does not have access to the model’s internal 
details, and can only observe the model’s input-output behavior. This makes 
Blackbox attacks more challenging, as the attacker must find a way to generate 
adversarial examples without full knowledge of the model’s workings.

One way that attackers can perform Blackbox attacks is by creating 
a substitute model based on the input and output data of the target model. 
The substitute model is designed to mimic the behavior of the target model as 
closely as possible, using the same type of machine learning algorithms and 
input features. The attacker can then execute Whitebox attacks on the sub
stitute model in order to generate adversarial examples that are effective 
against the target model. This approach is known as transferability of adver
sarial examples, and it refers to the ability to use adversarial examples created 
for the substitute model to successfully attack the target Blackbox model.

In this study, we investigate different type of adversarial attacks. In 
Hijacking Adversarial Attack the attacker modifies the actual trajectory of 
the model. This type of attack involves manipulating the model’s output in 
a way that causes it to take a different action than it would normally take. For 
example, in case of an autonomous vehicle, an adversarial attack could be used 
to cause the vehicle to turn left instead of right, or to brake unexpectedly 
Figure 1. Hijacking Adversarial Attacks can be particularly dangerous, as they 
can have significant consequences for the safety of the model’s users and the 
surrounding environment. Therefore, it is important for machine learning 
models to be robust against this type of attack in order to ensure their safety 
and reliability.

Vanishing Adversarial Attacks are designed to cause an object detection 
system to fail to recognize an object in an image or video by adding small 
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perturbations to the object that are undetectable to the human eye. These 
perturbations can take the form of noise or other distortions added to the 
image or video, and they can be generated using algorithms that search for the 
minimum amount of perturbation needed to cause the object detection system 
to fail.

Fabrication Adversarial Attacks are similar to Vanishing attacks, but they 
involve adding fake objects to an image or video rather than modifying 
existing objects. These fake objects can be designed to be indistinguishable 
from real objects to the human eye, but they can cause object detection systems 
to fail by confusing them with the real objects within image or video.

Mislabeling Adversarial Attacks are also similar to Vanishing attacks, but 
they involve changing the label or classification of an object in an image or 
video rather than causing the object to disappear entirely. For example, an 

Figure 1. Change of trajectory in after FGSM and AdvGAN attack in both whitebox and blackbox 
setup. The green line shows the actual trajectory.
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attacker could use a Mislabeling attack to cause a object detection system to 
label a car as a bicycle, or a pedestrian as a tree.

Adversarial training is a widely-used method for increasing the 
robustness of machine learning models. However, it can be resource- 
intensive due to the need to generate a large number of adversarial 
examples, and it may not be effective at protecting against unknown 
adversarial threats. Researchers have found that various types of image 
manipulation, such as adding noise (Shixiang and Rigazio 2014), scaling 
(Guo et al. 2017), JPEG compression (Buckman et al. 2018), and more, 
can undermine the effectiveness of adversarial attacks. One commonly 
used technique to counter adversarial perturbations is image denoising, 
such as using an Auto-Encoder to clean up adversarial examples before 
feeding them into a target model (Jalal et al. 2017). Another approach is 
to use generative networks like Defense-GAN (Samangouei, Kabkab, and 
Chellappa 2018) or PixelDefend (Song et al. 2017) to transform adver
sarial samples into clean ones. However, this requires solving an opti
mization problem, which can be computationally difficult and 
vulnerable to advanced attack methods. Defense-GAN uses latent encod
ing to generate clean samples directly, but this can result in a loss of 
model accuracy as the classifier is unable to effectively identify the 
purified samples. Our solution relies on a memory module containing 
clean features to help the model reconstruct clean images using the 
input image as a prior. We use the discriminator of generative network 

Figure 2. The network architecture of defense model used in this study.
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to assist with this process and adjust the weight of the reconstruction 
loss based on the dataset, ensuring that clean input images result in 
matched output images.

Memory models are a type of artificial neural network that are 
designed to be able to store and retrieve information over a long period 
of time. They are typically used in deep learning systems to enable the 
model to learn from sequential data, such as natural language texts or 
time series data. Memory models are able to store information in 
a”memory” and then use this information to make predictions or deci
sions based on new inputs. One of the most common types of memory 
models is the long short-term memory (LSTM) model, which was 
introduced by Hochreiter and Schmidhuber in 1997 (Hochreiter and 
Schmidhuber 1997). LSTMs are a type of recurrent neural network 
(RNN) (Jain and Medsker 1999) that are able to learn from long 
sequences of data by using a”memory cell” to store information over 
a long period of time. They are often used for tasks such as natural 
language processing and machine translation. Another type of memory 
model is the gated recurrent unit (GRU), which was introduced as 
a simpler alternative to LSTMs (Chung et al. 2014)). GRUs are also 
a type of RNN, but they use a simpler structure and fewer parameters 
than LSTMs, which makes them faster to train and easier to optimize.

In addition to being used in traditional deep learning tasks, memory models 
have also been used in contrastive representation learning (Kaiming et al.  
2020; Zhirong et al. 2018). In this context, memory models are used to store 
historical representations of data, which can then be used to learn more robust 
and generalizable representations.

Memory models have been used in previous research to improve general
ization on samples and prevent unexpected results (Gong et al. 2019; Park, 
Noh, and Ham 2020). However, these approaches are not specifically designed 
to handle adversarial samples and do not address all of the major challenges in 
defending against adversarial attacks.

Adversarial defense in deep neural networks presents several critical 
issues that must be addressed in order to ensure the robustness of the 
model. Firstly, the model must be able to withstand a diverse array of 
perturbations, thus maintaining its stability and reliability. Secondly, it 
is essential to maintain a high level of accuracy, even in the presence of 
adversarial samples, in order to preserve the validity of the model’s 
outputs. Lastly, it is imperative to have the capability of detecting and 
responding to adversarial attacks in real time, so as to prevent any 
potential harm or negative consequences.

e2193461-984 K. H. SHIBLY ET AL.



Methodology

Dataset

In this experiment, the researchers generated adversarial instances using the 
Udacity dataset (Udacity 2017). Adversarial instances are examples of images 
or videos that have been specifically designed to trick machine learning models 
into making incorrect decisions. In the context of this experiment, the adver
sarial instances were likely designed to cause the autonomous driving model to 
make incorrect decisions about the objects in the road photos, such as mis
identifying a pedestrian as a tree or a car as a bicycle. Udacity dataset consists 
of real-world road photos taken by a vehicle’s front camera, which Udacity has 
divided into a training set with 33,805 frames and a test set with 5614 frames. 
The purpose of generating adversarial instances in this experiment was likely 
to test the robustness of the autonomous driving model to adversarial attacks, 
and to identify any vulnerabilities that could be exploited by attackers. By 
testing the model with adversarial instances, the researchers were able to gain 
a better understanding of the model’s ability to handle such attacks and to 
identify any areas where the model might be improved.

Attack Scenarios – Hijacking Adversarial Attacks

Adversarial attacks on the autonomous driving model were evaluated using an 
adversarial threshold, which is a tolerable error range that defines the max
imum allowed difference between the original prediction of the model and the 
prediction of an adversarial example. If the difference between the original 
prediction and the prediction of an adversarial example is greater than the 
adversarial threshold, the attack is considered successful. Figure 1 shows the 
results of a hijacking attack, which is a specific type of adversarial attack that 
involves causing a machine learning model to make incorrect predictions by 
manipulating the input data.

It can be inferred from the information presented in Figure 1 that it depicts 
the ground truth, or the accurate prediction made by the model. Meanwhile, 
Figure 1 seemingly depict the outcome of a hijacking attack, as evidenced by 
the incorrect predictions made by the model. This suggests that the hijacking 
attack was successful in altering the model’s performance and inducing it to 
produce erroneous results.

Adversarial attacks on autonomous driving models can be broadly classified 
into two categories based on their perturbation generation mechanism: Fast 
Gradient Sign Method (FGSM) and generative model-based approaches. This 
study involved implementing two adversarial attack methods: the Fast Gradient 
Sign Method (FGSM) and AdvGAN (Goodfellow, Shlens, and Szegedy 2014a). 
The loss gradient is a measure of how sensitive the model is to changes in the 
input data, and adding the sign of the loss gradient to the original image causes 
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the model to make incorrect predictions. FGSM is a fast and effective method for 
generating adversarial examples, but it has a number of limitations, including 
the fact that it is prone to being detected by defense mechanisms.

AdvGAN is a state-of-the-art generative model-based attack that uses 
a Generative Adversarial Network (GAN) to generate adversarial examples. 
GANs are a type of machine learning model that consists of two networks: 
a generator network and a discriminator network. The generator network is 
trained to generate synthetic data that is similar to the real data, while the 
discriminator network is trained to distinguish between real and synthetic 
data. By training a GAN to generate adversarial examples, it is possible to 
create synthetic data that is indistinguishable from real data to the human eye 
but causes the model to make incorrect predictions. AdvGAN is typically more 
robust and harder to detect than FGSM, but it is also more computationally 
expensive and can take longer to generate adversarial examples.

Fast Gradient Sign Method On original frames, this approach simply adds 
the sign of the loss gradient to each pixel. To provide a more potent adversarial 
scenario, we applied the targeted FGSM numerous times.

Attack Scenarios – Vanishing, Fabrication, and Mislabeling

Objectness Gradient Adversarial attacks (Chow et al. 2020) are a type of attack 
that target object detection networks in order to alter their objectness seman
tics, such as causing objects to disappear, generating false objects, or incor
rectly labeling objects. These attacks introduce small perturbations that are 
almost imperceptible to the human eye, but can cause the object detection 
network to behave incorrectly. These attacks are highly efficient, as they can 
create a single perturbation that is effective at deceiving the victim detector 
when applied to any input and can be launched as”black-box” attacks, mean
ing that the attacker does not need to have access to the internal workings of 
the network and can use the attack with minimal online attack cost through 
adversarial transferability. This makes these attacks particularly dangerous for 
object detection in real-time edge applications.

Deep object detection networks are a type of machine learning model that 
are designed to recognize and classify objects in images or video frames by 
using bounding box techniques. These networks typically have a similar 
structure and accept similar types of inputs and outputs, regardless of the 
specific object detection algorithm that is being used. These attacks can be 
applied to any object detection algorithm without any limitations, making 
them a potential threat to a wide range of object detection systems. It is 
important for organizations using object detection systems to be aware of 
the potential for the attacks and to take steps to protect against them, in order 
to ensure the reliability and accuracy of their systems.
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An adversarial example denoted as x0, is created by making small, 
often imperceptible changes, or perturbations, to a benign input x that 
is input to the victim detector. The goal of this process is to trick the 
victim detector into making random (untargeted) or targeted (targeted) 
mistakes in its detections. The creation of the adversarial example can 
be represented mathematically as follows: x0 ¼ xþ p, where p is 
a distance metric that measures the changes made to the input, such 
as the percentage of pixels changed ðL0normÞ, the Euclidean distance 
ðL2normÞ, or the maximum change to any pixel ðL1normÞ. O� represents 
the target detections for targeted attacks or any incorrect detections for 
untargeted attacks. 

min k x0 � xkp s:t:Ôðx0Þ ¼ O�; Ôðx0Þ�ÔðxÞ (1) 

In the attack, a module is used to generate a perturbation, or small change, 
that is added to an input (such as an image or video frame) in order to deceive 
a victim detector. There are three types of these attacks: Vanishing, 
Fabrication, and Mislabeling. Each of these attacks creates a unique perturba
tion for each input.

In contrast to these types of attacks, a universal adversarial algorithm uses 
the same perturbation to corrupt any input, regardless of its content. This 
means that the same perturbation can be applied to multiple inputs, and it will 
have the same effect on all of them, causing the victim detector to fail to 
classify them correctly.

Deep object detection networks are usually trained by adjusting the model 
weights, represented as W, to minimize a loss function while the input image, 
denoted as ~x, is fixed. In contrast, adversarial attacks involve fixing the victim 
detector’s model weights and iteratively adjusting the input image, denoted as 
x, to achieve a specific attack goal. (Ruder 2016) 

x0tþ1 ¼
Y

x;2
x0t � αΓ

@L� x0t;O
�;W

� �

@x0t

� �� �

(2) 

where 
Q

x;2½�� is the projection onto a hypersphere with a radius 2
centered at x in Lp norm, Γ is a sign function, and L� defines the loss function 
to be optimized during the attack.

Vanishing. In the adversarial Vanishing attack, the goal is to cause the 
victim detector to detect no objects on the adversarial example. To do this, the 
target detection is set to be O� ¼ ; and the loss function is set to be the same as 
the original loss function, denoted as L� ¼ L.

Fabrication. The adversarial Fabrication attack aims to return a large 
number of false objects. To do this, the target detection is set to the predicted 
detections for the input, denoted as O� ¼ ÔðxÞ, and the loss function is set to 
be negative, denoted as L� ¼ � L.
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Mislabeling. In a mislabeling attack, the target detection O� is set to be the 
predicted detections for the input ÔðxÞ. However, each object in the input is 
given an incorrect label. The loss function used to evaluate the performance of 
the model is the same as the original loss function L� ¼ L. To generate the 
targets for the mislabeling attack, two systematic approaches are often used: 
the least-likely class attack and the most-likely class attack. In the least-likely 
class attack, the class label with the lowest probability is selected as the target 
class label. This is achieved by finding the argument that minimizes the 
probability of each class label for each object. In the most-likely class attack, 
the class label with the second-highest probability y�i ¼ arg mincp̂c

i is chosen as 
the target class label. Any incorrect class label can be chosen in these attacks, 
but these systematic approaches are commonly used.

Defense Mechanism Against Adversarial Attack

The defense model in Figure 2 is a system that is designed to protect against 
adversarial attacks on image classification models. It is composed of three 
main components: a generator, a discriminator, and a memory module. The 
generator is a combination of the encoder and decoder from an autoencoder, 
with the addition of three convolutional layers. The encoder processes the 
input image using convolutional techniques to extract higher-level character
istics, and encodes this information into a high-level latent encoding. This 
latent encoding is a compact representation of the input image that captures its 
important features. The decoder then restores the latent encoding back into an 
image using a deconvolution process. The memory module connects the first 
and second layers of the encoder to the second and third layers of the decoder, 
respectively. It is responsible for storing the information that is passed 
between these layers and allowing it to be used by the generator in the 
restoration process. Overall, the defense model works by first encoding the 
input image into a latent encoding using the encoder, storing this information 
in the memory module, and then using the decoder to restore the latent 
encoding back into an image. This restoration process helps to ensure that 
the output image is similar to the original input, even if it has been modified by 
an adversarial attack.

Adversarial GAN
AdvGAN (Adversarial Generative Networks) is a type of generative model that 
is specifically designed to generate adversarial examples. The Adversarial GAN 
serves as an adversary, challenging the defense mechanism by generating 
adversarial examples. The AdvGAN model generates an adversarial example 
GðxÞ from an original image by adding a new goal ðLy ¼ JθðGðxÞ; f ðxÞ þ αÞ to 
the objective function ðLAdvGAN ¼ Ly þ αLGANÞ of the model. The new 
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goal is defined as the difference between the prediction of the machine 
learning model for the original image and the prediction of the machine 
learning model for the adversarial example. The new goal is minimized 
using an optimization algorithm, such as stochastic gradient descent. The 
objective function of the AdvGAN model is a combination of the new goal 
and a regularization term. The regularization term is used to ensure that the 
adversarial example looks similar to the original image and that the adversarial 
example is generated using a smooth and continuous function. After training, 
the AdvGAN model should be able to generate an adversarial example x0 that 
looks the same as the original image, but produces a prediction f ðx0Þ that 
differs from the prediction f ðxÞ for the original image by an amount Δ. The 
value of Delta depends on the strength of the adversarial attack and the 
robustness of the machine learning model.

The pixels of an image are first processed by a downsampling operation and 
then masked using the Pixel Scaling before being input to the input layer of 
a neural network. The purpose of the downsampling operation is to reduce the 
resolution of the image and the purpose of the masking operation is to 
selectively preserve or discard certain pixel values. The encoder is responsible 
for extracting a latent code z from the input image, while the decoder is 
responsible for generating an output image from the latent code. In 
a traditional decoder architecture, the latent code is simply used as input to 
the first layer of the decoder and the output image is generated by cascading 
the output of each subsequent layer. However, when the decoder has more 
layers, the influence of the latent code decreases as it is passed upstream and 
the output image becomes increasingly reliant on the feature information 
provided by the skip link (a connection between the encoder and the decoder). 
This can lead to a decrease in the quality of the output images. To address this 
issue, we have included the latent code in each layer of the decoder. The 
extraction of latent codes from images involves obtaining a compact and 
lower-dimensional representation of an image, referred to as a latent code, 
that embodies the essential features and patterns contained within the image. 
This approach leverages the concept of unsupervised learning, where the 
objective is to learn a mapping from the high-dimensional pixel space to 
a lower-dimensional latent space that retains the critical information present 
in the image. This allows the latent code to have a more direct influence on the 
output image at each stage of the decoding process. The latent code is divided 
into three parts and each part is input to a different layer of the decoder. The 
first part is directly input to the first layer of the decoder, while the second and 
third parts are input to the second and third layers of the decoder after being 
connected to the features from the memory module (a component of the 
neural network that stores and retrieves information). This approach allows 
the latent code to have a more consistent influence on the output image, which 
should result in higher quality output images.
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The memory module in our system uses several components to store the 
typical features of clean images. We use a softmax function to calculate the 
similarity score between each query and all the items before reading them. The 
softmax function is a widely used technique for computing the similarity score 
between two data sets. It involves the calculation of the exponential of the 
similarity score between each query-item pair, and subsequent normalization 
of these values by dividing them by the sum of all exponentials. This process 
results in a probability distribution over the items, wherein the relative simi
larity of each item to the query is reflected. Mathematically, given a set of items 
and a query, let the similarity score between the query and the i � th item be 
represented by si. The softmax function (Bishop 2006) for this score is then 
defined as: 

pi ¼
expðsiÞ

Pn

j¼1
expðsjÞ

(3) 

where pi represents the probability of item i, si represents the similarity 
score between the query and item i, and n is the total number of items.

Each item is connected to multiple query vectors, which means that there 
may be several query vectors that are similar to it. Therefore, when updating 
items, we use all of the query vectors that are closest to the item. To update the 
memory, we use two operations: forget and update.

The forget operation functions by assigning a weight to each item in 
memory and subsequently multiplying it by a forget gate value between 0 
and 1, thereby determining which information should be removed from 
memory. The forget gate value is indicative of the quantity of information 
from the corresponding memory item that ought to be discarded. This opera
tion is essential in preventing memory overload with obsolete or irrelevant 
information. Conversely, the update operation determines the specific new 
information that should be added to the memory. This is done by assigning 
a weight to each candidate item and multiplying it by an update gate value 
between 0 and 1, indicating the proportion of the new information from the 
corresponding item that should be incorporated. The update operation is 
integral in accommodating new information and refreshing the memory.

In this case we work with Autoencoder. The Autoencoder with GAN takes 
this a step further by incorporating the adversarial information into the 
training process of the autoencoder, leading to a stronger defense.

Autoencoder with GAN
An autoencoder (Rumelhart, Hinton, and Williams 1986) is a type of 
neural network that is trained to reconstruct an input by learning to 
compress and then reconstruct the input data. It consists of two parts: an 

e2193461-990 K. H. SHIBLY ET AL.



encoder, which maps the input data to a lower-dimensional representation 
called the latent space, and a decoder, which maps the latent representation 
back to the original input data. During training, the autoencoder is pre
sented with a set of input samples and is asked to reconstruct them using 
the encoder and decoder. The goal of the autoencoder is to learn a function 
that can accurately reconstruct the input data from the latent representa
tion. To measure the quality of the reconstruction, a reconstruction loss is 
used, which is a measure of the deviation between the input data and the 
reconstructed data. One issue with traditional autoencoder and the 
Variational AutoEncoder (VAE) (Kingma and Welling 2013), use a”pixel- 
level” reconstruction error such as the ,2 distance or the log-likelihood to 
measure the deviation of the reconstructed samples from the input samples. 
The error can be too strict and result in overly smooth reconstructions. To 
address this issue, we add a discriminator to distinguish between the true 
input samples and the reconstructed samples. This helps to reduce blurri
ness and improve detail in the reconstruction, as the discriminator focuses 
on similarities in the overall distribution. The Memory Module is a key 
component that enables the defense mechanism to learn and retain infor
mation about the original data distribution, even in the presence of adver
sarial examples. By combining the autoencoder with adversarial training, 
we can improve the accuracy and detail of reconstructions while still being 
able to detect anomalies and defend against attacks.

Memory Module
To counteract against adversarial attack images that are designed to fool 
machine learning models, we can use a memory module to maintain 
a representation of normal patterns in the input data. The memory module 
consists of vectors, each of which represents a point on the normality mani
fold, which is a space that represents normal patterns in the input data. 
A normal pattern would be a pattern that is representative of the majority of 
the data points in the input data and is considered to be typical or expected. 
The normality manifold is a space that represents these normal patterns in the 
input data. During the reconstruction process, the encoder generates a query 
that retrieves vectors from the memory, which are then used to calculate the 
latent vector. By reconstructing the input data using the latent vector, we can 
ensure that the model is strictly reconstructing normal patterns. This can 
improve the model’s ability to detect and defend against adversarial attacks.

We utilized a neural network architecture that includes an encoder and 
a decoder. The encoder, represented by feð�Þ, processes the input x and 
generates a latent vector z. The decoder, denoted as fdð�Þ, takes the latent 
vector and converts it back into the input space to produce the reconstructed 
sample x̂. 
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z ¼ feðxÞ;
x̂ ¼ fdðẑÞ:

(4) 

In a standard autoencoder, the latent vector z is used directly to obtain the 
reconstructed output, ẑ ¼ z. However, in our approach, the latent vector z is 
transformed into a different latent vector, denoted as ẑ, using the memory 
module. The reconstruction error between the input sample and the recon
structed output is measured using various metrics, such as the Euclidean 
distance, ,2. 

Lrec ¼k x � x̂k2 (5) 

The objective of a standard autoencoder is to minimize the reconstruction 
error Lrec. Autoencoder-based defense methods use the reconstruction error 
Lrec as a measure of defense effectiveness, with samples that have high 
reconstruction errors being considered adversarial images.

A common challenge with standard autoencoders is that the mean squared 
error (MSE) loss can cause reconstructions to be overly smooth. To address 
this issue, we utilize adversarial training. Specifically, we add a discriminator, 
represented by ϕð�Þ, to differentiate between the input samples and the 
reconstructions. 

Ladv ¼ Ex,pdataðxÞ½logðϕðxÞÞ� þ Ex̂,pgenðx̂Þ½logð1 � ϕðx̂ÞÞ� (6) 

The distribution of the ground truth data is represented by pdata, while the 
distribution of the reconstructed samples is represented by pgen. Consequently 
the goal of training an autoencoder becomes: 

Lfull� adv ¼ Ladv þ λ � Lrec (7) 

The weight of the reconstruction objective is represented by λ where the 
value ranging from 0.01 to 0.1. To maintain the structure of normal patterns, 
we enhance the autoencoder with a memory module. The latent vector that the 
decoder receives is created by combining different elements from the memory 
module. In the memory module shown in Figure 3, the vector produced by the 
encoder is used to determine the weights for the memory slots, which means 
that the memory module is responsible for capturing normal patterns instead 
of the encoder. The memory module is used consistently throughout the 
training process.

The memory module consists of a matrix M ¼ m1; � � � ;mM½ � 2 R M�K 

where M is the size of the memory and K is the dimension of each memory 
spot mi. Given a query z, the latent vector ẑ is computed through a linear 
combination of the memory spots: 
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ẑ ¼
XM

i¼1
wi �mi ¼ wM: (8) 

In this case, the weight of the i-th memory slot mi in the overall memory is 
represented by the variable wi. The query vector z, which is generated by the 
encoder and is equal to z ¼ feðxÞ, determines this contribution.

There are various ways to calculate the memory weights w. In this case, the 
normalized query vector is used directly as the memory weights. If the 
dimensions of the query and memory size do not match, the query is first 
mapped into the R M space using the projection head ψð�Þ. It is used to 
calculate the weights for the memory slots by normalizing the query- 
memory similarities using the Softmax function. The purpose of the projection 
head is to help the network more effectively compare and retrieve relevant 
information from its memory, which can improve its overall performance. 

w ¼ SoftmaxðψðzÞÞ: (9) 

To produce accurate reconstructions in the reconstruction task, the decoder 
is restricted to using representations that come from the normality manifold. 
To achieve this, the memory module needs to store the most typical normal 

Figure 3. The memory module in the illustration is used to represent a set of memory vectors that 
represent what is considered normal. When reconstructing an input, the encoder’s output is used 
to determine the weights of each memory vector. The latent vector that is input into the decoder is 
created by combining the memory vectors using these weights.
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patterns. This ensures that the decoder has access to high-quality information 
for recreating the input.

Experiment Results

Attack Injection and Success Against Autonomous Driving

The Nvidia DAVE-2 autonomous driving model is a well-known and widely 
used model that is implemented and trained using PyTorch. It consistently 
uses an input image size of 128� 128 pixels.

The Root Mean Square Error (RMSE) is used to measure the model’s error 
rate, and it is shown in the table. A default model that always predicts 0 for all 
frames on the test dataset has an RMSE of 0.20678. In contrast, the customized 
Nvidia DAVE-2 model has an RMSE of 0.1055, indicating a lower error rate.

Two main types of environments in which experiments are conducted: 
Whitebox and Blackbox. In a Whitebox environment, the researchers have 
full knowledge of the driving model being used and can therefore create 
adversarial cases directly. In a Blackbox environment, attackers may try to 
train a proxy driving model offline and then use the AdvGAN model to 
perform Blackbox attacks. The effectiveness of adversarial attacks and coun
termeasures is measured by the attack success rate, which is calculated based 
on the number of successful attacks out of all adversarial examples. Successful 
Hijacking attacks are identified by steer angle deviation larger than 0.3, while 
the success of Vanishing, Fabrication, and Mislabeling attacks can be seen in 
the model’s output data in Figures 4, 5 and Figure 6, respectively. The success 
rate for these attacks is reported in Table 1.

According to Table 1, AvdGAN consistently outperforms FGSM in terms of 
success rate in adversarial situations. Within Whitebox setup, FGSM has 
a success rate of only 33:2% for the Hijacking Attack, while AvdGAN has 
a success rate of 97:2%. This is because AvdGAN is able to learn and exploit 
the internal features of colored road lines, which can impact steer angle 
predictions and create adversarial disturbances. On Whitebox setup, FGSM 
has success rates of 49:88% and 71:65% for the Vanishing and Fabrication 
attacks, respectively, while AdvGAN has success rates of 89:75% and 87:49%, 
respectively. Similarly, FGSM has a success rate of 58:88% for Mislabeling 
attacks during Whitebox setup, while AdvGAN has a success rate of 90:14%. 
In the Blackbox setup, the Hijacking Attack with AdvGAN has the highest 
success rate, at 87:7%, and AdvGAN outperforms FGSM in this case as well.

The Whitebox scenario depicted in Figure 7(a), the AdvGAN performs 
exceptionally well. It has a higher success rate than FGSM, which achieved 
a rate of 26:4%. AdvGAN, on the other hand, achieved a rate of 87:7%. These 
techniques generate adversarial perturbations that are tailored for specific 
models, and as a result, they are not as effective when used on different models.
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AdvGAN is more effective at attacking autonomous vehicles on Blackbox 
setup compared to FGSM, but its performance decreases when compared to 
the Whitebox setup. See Figure 7(b),. This suggests that adversarial attacks on 
autonomous vehicles are possible, raising concerns about their safety and the 
potential for the driving system to be compromised.

AdvGAN is a particularly dangerous attack because it can generate effective 
adversarial instances when attacking a model in a Whitebox setting. This is 
because AdvGAN leverages the properties of the targeted model to create its 
attacks. However, when tested in a Blackbox setting, the transferability of 
adversarial examples to driving models was not as strong. This suggests that 
the complexity of the network architecture of driving models may impact their 
vulnerability to adversarial attacks. In general, adversarial examples seem to be 
less successful at attacking autonomous driving models in a Blackbox setting. 
Figure 8 showing the successful attacks in Vanishing, Fabrication and 
Mislabeling attack.

Defense Performance Result – Proposed

We tested several defensive techniques, including Autoencoder, Block 
Switching, Adversarial Training, Defense Distillation, and Feature 

Figure 4. In this scenario no adversarial attack is involved, so the driving model easily can detect 
the objects.
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Figure 5. The following figures illustrate the effects of adversarial attacks on a detection system. (a) 
shows the results of a Vanishing attack, in which no objects can be detected. (b) shows the results 
of a Fabrication attack, in which the detection system returns a large number of falsely detected 
objects.
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Figure 6. The figures illustrate the effects of adversarial attacks on the performance of a detection 
system. In Figure (a), all detected objects are incorrectly labeled with the same label as a result of 
the attack. Figure (b) demonstrates the effect of an attack in which objects with the same label are 
wrongly labeled with different labels.
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Squeezing, on FGSM and AdvGAN attacks, and compared their effectiveness 
with our proposed study.

From Table 2, we can see that the defense techniques of adversarial training, 
Defense Distillation, Feature Squeezing, and Autoencoder are not effective at 
defending against AdvGAN attacks in both Whitebox and Blackbox settings 
when applied to the Udacity dataset. However, the Block switching technique left 
minimal impact in terms of defense, though it does have an impact on the 
accuracy of the original image’s classification. Overall, it appears that adversarial 
training has poor generalization ability and is not able to withstand many attacks.

Our technique is not specifically designed to defend against any 
particular type of attack, but it has shown to be effective against 
a range of attacks. It is used to ensure high-quality reconstruction and 
to prevent the generation of disrupted images during the reconstruction 
phase. This helps to improve the model’s overall robustness while 
maintaining a high level of accuracy on unmodified images. As shown 

Table 1. Attack success rate in blackbox and whitebox setup.
Attack Success Rate (Blackbox) Success Rate (Whitebox)

Hijacking (FGSM) 26.4% 33.2%
Hijacking (AdvGAN) 87.7% 97.2%
Vanishing (FGSM) 37.34% 49.88%
Vanishing (AvdGAN) 64.71% 89.75%
Fabrication (FGSM) 44.23% 71.65%
Fabrication (AvdGAN) 61.84% 87.49%
Mislabeling (FGSM) 41.31% 58.88%
Mislabeling (AvdGAN) 67.05% 90.14%

Figure 7. Attack success rate for FGSM and AdvGAN attack in both whitebox and blackbox setup 
(Highjacking attack).
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in Figure 9, the predicted trajectory of our model remains accurate even 
when applied to cleaned images.

Performance in Whitebox Setup

Table 2 (a) presents a comparison of the defense success rates of 
Blackbox and Whitebox setups against Hijacking attacks. The results 
indicate that, among the defense mechanisms examined, Autoencoder, 
Adversarial training, and Defense Distillation are most effective in 
defending against FGSM attacks in the Whitebox setup. Adversarial 
Training also performs well in protecting against AdvGAN attacks in 
this setup. Our proposed defense method demonstrated the highest 
success rate, achieving a defense rate of 93:8% against FGSM and 
91:2% against AdvGAN.

Table 2 (b) illustrates the success rate of different defense methods against 
Vanishing attacks. In the Whitebox scenario, Adversarial Training outper
formed our proposed method.

As demonstrated in Table 2 (c), the performance of our proposed 
method is lowest against Fabrication attacks. However, it still performs 
better than the other methods. It performs 3.5% better than Defense 
Distillation against FGSM attack in Whitebox scenario and 7.2% better 
than AdvGAN.

In this paper, we examine two types of mislabeling attacks. In order to 
evaluate the results, we calculated the average of the data. As depicted in 
Table 2 (c), our proposed method demonstrates the highest effectiveness 
in defending against mislabeling attacks in a whitebox configuration for 
both FGSM and AdvGAN, in comparison to vanishing and fabrication 
attacks.

Figure 8. Successful Attack for Vanishing, Fabrication and Mislabeling Attack.
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Performance of Proposed Method – Blackbox Setup

In the Blackbox configuration, the most probable information that the attacker 
may possess is related to the classifier, leading to a lower defense success rate in 
comparison to the Whitebox setup. The Feature Squeezing method demon
strated insufficient performance, with a defense success rate of 35:7% against 
FGSM and 31:6% against AdvGAN. Other defense techniques, including 
Block switching, Adversarial Training, and Defense Distillation, exhibited 

Table 2. Defense success rate in whitebox and blackbox setup.

Attacks Mechanisms Whitebox Blackbox

(a) Hijacking Defensive FGSM AdvGAN FGSM AdvGAN

Autoencoder 78.4% 45.2% 45.4% 23.5%
Block Switching 31.8% 17.3% 49.2% 37.3%
Adversarial Training 89.7% 66.5% 50.1% 40.4%
Defense Distillation 76.5% 45.3% 40.6% 25.7%
Feature Squeezing 67.1% 54.2% 35.7% 31.6%
Proposed 93.8% 91.2% 71.3% 63.1%

(b) Vanishing Autoencoder 60.2% 40.4% 37.7% 26.1%
Block Switching 20.1% 14.9% 56.2% 39.3%
Adversarial Training 77.2% 65.5% 45.0% 39.3%
Defense Distillation 58.3% 34.6% 33.8% 24.8%
Feature Squeezing 51.7% 34.6% 33.4% 21.7%
Proposed 63.97% 48.49% 71.43% 63.74%

(c) Fabrication Autoencoder 44.5% 23.1% 23.3% 20.5%
Block Switching 29.2% 17.5% 34.9% 25.8%
Adversarial Training 50.4% 45.0% 33.7% 31.3%
Defense Distillation 57.8% 30.9% 31.4% 25.5%
Feature Squeezing 46.1% 35.4% 29.6% 30.1%
Proposed 61.3% 52.2% 69.1% 60.0%

(d) Mislabeling Autoencoder 59.3% 42.6% 35.9% 28.3%
Block Switching 25.4% 24.8% 52.6% 36.6%
Adversarial Training 65.4% 44.1% 34.4% 41.5%
Defense Distillation 53.8% 38.9% 30.1% 26.6%
Feature Squeezing 49.6% 29.2% 32.7% 24.5%
Proposed 69.5% 57.7% 74.1% 64.4%

Figure 9. Prediction of the cleaned image in both whitebox and blackbox setup.
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defense success rates ranging from 40 � 50%, which are also deemed inade
quate in comparison to the proposed method. The proposed method exhibited 
superior performance, achieving a defense success rate of 71:3% against FGSM 
and 63:1% against AdvGAN.

The results presented in Table 2 (b), within the Blackbox configuration, 
indicate that the defense Vanishing attack achieved a success rate of 71:43%

and 63:74%, respectively. In contrast, our proposed study demonstrated 
superior performance in defending against Mislabeling attacks, as demon
strated in Table 2 (d).

The proposed method uses discrete memory addressing mechanisms to 
access stored information. Unlike traditional neural networks, which use 
continuous weights and activations, this method uses discrete memory 
addresses, making it non-differentiable and challenging to apply gradient- 
based optimization methods. In order to overcome the non-differentiability 
of our technique, we employed Adversarial training to estimate the gradient of 
the classifier. In the course of our experiments, we maintained consistency by 
utilizing the same attack parameters and datasets. The results of our experi
ments demonstrate that by training the purification model and the classifier 
concurrently through Adversarial training, our proposed strategy is successful 
in effectively defending against attacks from adversarial examples. As 
a consequence, the samples reconstructed by our model are highly similar to 
the original samples, thereby enhancing the robustness of the model without 
affecting its accuracy.

Time and Computation Overhead on Defense Mechanism

For our proposed experiment, we used python Jupyter Notebook 4.8 and 
Keras with TensorFlow as the backend. We did our experiment on an AMD 
Ryzen 5 5600 H CPU 3.30 GHz, 16 GB RAM, Windows 11 (64-bit), and 
NVIDIA GeForce RTX 3050.

Table 3 shows the impact of different defense strategies on Time (delay), 
GPU usage, and GPU memory. Adversarial Training and Defense Distillation 
have the longest Time overhead, with delays of 5:27s and 2:81s, respectively. 
These approaches also have high GPU memory overhead, with Adversarial 

Table 3. Time and computation overhead on defense mechanism (Hijacking attack).
Defensive Time Overhead (s) GPU Overhead GPU Overhead

(Utilization %) (Memory %)

Autoencoder 0.064 8 2.4
Block Switching 0.073 8 4.75
Adversarial Training 5.27 11 47.4
Defense Distillation 2.81 8 25.1
Feature Squeezing 0.0572 5 5.01
Proposed 0.743 10 7.72
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Training using more than 40% of GPU memory when predicting an attack. 
While the other defenses have low Time overhead and better GPU utilization 
and memory usage compared to Adversarial Training, our proposed method 
has a Time overhead of 0:743s, 10% GPU utilization overhead, and 7:72%

GPU memory overhead.

Discussion

In this study, we aimed to explore the use of memory module with autoenco
der as a defense mechanism against adversarial attacks in autonomous driving 
systems. Our results showed that the integration of the memory module 
significantly improves the performance of the autoencoder by enabling it to 
reduce false negatives during evaluation and prevent contamination of the 
encoded latent space with adversarial samples. The memory module helps the 
autoencoder to reconstruct a diverse range of adversarial attacks and provides 
a more robust and effective defense system for real-world applications.

One of the challenges in using autoencoders as a defense mechanism is the 
difficulty in learning representations for sequential and structured data. 
Traditional autoencoders lack the ability to store information about the data, 
making it challenging to effectively reconstruct adversarial attacks. The mem
ory module in our system overcomes this challenge by providing an additional 
metric for evaluating reconstruction errors, allowing the autoencoder to 
identify and reconstruct a broader range of adversarial attacks.

The reconstruction task has been traditionally used as an effective method 
for detecting global adversarial samples. However, it may not consistently 
identify local perturbations or contextual deviations, particularly when the 
values are within the bounds of normality. By integrating the reconstruction 
task with the memory module, the autoencoder is able to effectively detect 
a wider range of adversarial attacks, making the defense system more robust 
and effective for real-world applications. Figure 10 clearly shows struggle 
without the memory module.

The results of the defense success rates against various types of attacks in 
whitebox and blackbox setups were analyzed and compared. In the case of 
Hijacking attacks, the proposed mechanism achieved the highest defense 
success rate with 93.8% against FGSM and 91.2% against AdvGAN in the 
whitebox setup, and 71.3% against FGSM and 63.1% against AdvGAN in the 
blackbox setup. In the case of vanishing attacks, the proposed mechanism 
showed a defense success rate of 63.97% in the whitebox and 71.43% in the 
blackbox against FGSM, and 48.49% in the whitebox and 63.74% in the 
blackbox against AdvGAN. In the case of fabrication attacks, the proposed 
mechanism outperformed with a defense success rate of 61.3% in the whitebox 
and 69.1% in the blackbox against FGSM, and 52.2% in the whitebox and 
60.0% in the blackbox against AdvGAN. The proposed mechanism also 
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performed the best in defending against Mislabeling Attacks, with a defense 
success rate of 69.5% in the whitebox and 74.1% in the blackbox against FGSM 
and AdvGAN, respectively.

In comparison, Adversarial Training also showed good performance, but its 
defense success rate dropped in the blackbox scenario. The autoencoder 
mechanism had a lower success rate compared to the proposed mechanism 
in all the attacks. Defense Distillation and Feature Squeezing performed poorly 
in both setups, while Block Switching showed slightly better results against 
FGSM in the blackbox setup. Overall, the proposed mechanism demonstrated 
superior performance in defending against various attacks, outperforming the 
other mechanisms, including autoencoder, adversarial training, defense dis
tillation, feature squeezing, and block switching, in both whitebox and black
box setups.

Figure 10. Evaluating and comparing the performance of memory module-based model in 
different setups.
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Despite its advantages, our system still faces some limitations. The defense 
success rate of the system varies substantially across different attacks, and the 
system incurs a significant computational cost due to a high time and GPU 
overhead value. Future research could focus on conducting experiments 
utilizing advanced autonomous driving models in real-time scenarios to 
further evaluate the effectiveness of the system and identify potential areas 
for optimization.

In the future, potential areas for improvement of the memory module 
with autoencoder system for adversarial defense in autonomous driving 
systems could include reducing computational costs through more efficient 
memory storage techniques or reducing the number of parameters in the 
memory module. Another area to explore is incorporating other defense 
mechanisms, such as adversarial training or generative models, to further 
enhance the robustness of the system. Further validation of the system’s 
effectiveness can be achieved by conducting experiments with larger and 
more complex datasets, as well as evaluating its performance against multi
ple concurrent adversarial attacks, which are likely to occur in real-world 
scenarios. Additionally, investigating the system’s performance against 
adversarial attacks generated through various methods and under different 
conditions, such as targeted versus untargeted attacks, can provide insights 
into its robustness. Lastly, the potential for transfer learning, where the 
memory module could be trained on one autonomous driving system and 
transferred to another, could also be explored to improve the defense 
performance.

In conclusion, the incorporation of the memory module into our autoen
coder system represents a significant advancement in the field of adversarial 
defense. By leveraging the additional information provided by the memory 
module, the autoencoder is able to effectively defend against a broader range of 
adversarial attacks and provide a more robust and effective defense system for 
real-world applications.

Conclusion

In this research, we propose a new method for defending autonomous 
driving models against adversarial attacks and compare it to other common 
defense systems. We test the effectiveness of our approach using four 
adversarial attacks in both Whitebox and Blackbox scenarios. Our defense 
method uses a memory module to encode the normal behavior of the 
model into memory vectors. By combining these vectors, reconstructions 
are only calculated based on typical patterns. We conducted experiments 
on a real-world driving dataset and found that our method performs better 
than other baselines in terms of effectiveness and robustness. In the 
Whitebox scenario, our defense had success rates of 93:8% and 91:2%. 
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The result is 4:1% and 24:7% better than Adversarial Training. Adversarial 
Training is the preceding optimum outcome from this experiment. In the 
Blackbox scenario, the success rates were 64:4% and 74:1%. These are 
22:9% better than Adversarial Training and 21:5% better than Block 
Switching. Both of these provided the prior optimal results. Our results 
show that this method significantly improves the model’s ability to cor
rectly classify adversarial cases.
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