
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Towards Autonomous Driving Model Resistant to
Adversarial Attack

Kabid Hassan Shibly, Md Delwar Hossain, Hiroyuki Inoue, Yuzo Taenaka &
Youki Kadobayashi

To cite this article: Kabid Hassan Shibly, Md Delwar Hossain, Hiroyuki Inoue, Yuzo Taenaka &
Youki Kadobayashi (2023) Towards Autonomous Driving Model Resistant to Adversarial Attack,
Applied Artificial Intelligence, 37:1, 2193461, DOI: 10.1080/08839514.2023.2193461

To link to this article: https://doi.org/10.1080/08839514.2023.2193461

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 24 Mar 2023.

Submit your article to this journal

Article views: 774

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2023.2193461
https://doi.org/10.1080/08839514.2023.2193461
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2023.2193461
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2023.2193461
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2023.2193461&domain=pdf&date_stamp=2023-03-24
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2023.2193461&domain=pdf&date_stamp=2023-03-24
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2023.2193461#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2023.2193461#tabModule

Towards Autonomous Driving Model Resistant to
Adversarial Attack
Kabid Hassan Shiblya, Md Delwar Hossaina, Hiroyuki Inoueb, Yuzo Taenakaa,
and Youki Kadobayashia

aDivision of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan; bFaculty
of Information Science and Engineering, Kyoto Sangyo University, Kyoto, Japan

ABSTRACT
Connected and Autonomous Vehicles (CAVs) offer improved
efficiency and convenience through innovative embedded
devices. However, the development of these technologies has
often neglected security measures, leading to vulnerabilities
that can be exploited by hackers. Conceding that a CAV system
is compromised, it can result in unsafe driving conditions and
pose a threat to human safety. Prioritizing both security mea
sures and functional enhancements on development of CAVs is
essential to ensure their safety and reliability and enhance con
sumer trust in the technology. CAVs use artificial intelligence to
control their driving behavior, which can be easily influenced by
small changes in the model that can significantly impact and
potentially mislead the system. To address this issue, this study
proposed a defense mechanism that uses an autoencoder and
a compressive memory module to store normal image features
and prevent unexpected generalization on adversarial inputs.
The proposed solution was studied against Hijacking, Vanishing,
Fabrication, and Mislabeling attacks using FGSM and AdvGAN
against the Nvidia Dave-2 driving model, and was found to be
effective, with success rates of 93:8% and 91:2% in a Whitebox
setup, and 74:1% and 64:4% in a Blackbox setup for FGSM and
AdvGAN, respectively. That improves the results by 24:7% in
Whitebox setup 21:5% in Blackbox setup.

ARTICLE HISTORY
Received 31 December 2022
Revised 15 March 2023
Accepted 16 March 2023

Introduction

Connected and autonomous vehicles (CAVs) are a type of transportation that
use a combination of connected and automated technology to either support
or fully replace human involvement in the driving process. These vehicles are
equipped with a range of advanced technologies, such as sensors, machine
learning algorithms, onboard and remote processing capabilities, Global
Positioning System (GPS), and telecommunications networks, which allow
them to function autonomously. (Elliott, Keen, and Miao 2019)

CONTACT Kabid Hassan Shibly shibly.kabid_hassan.sl1@is.naist.jp Division of Information Science, Nara
Institute of Science and Technology, Ikoma, Nara, Japan

APPLIED ARTIFICIAL INTELLIGENCE
2023, VOL. 37, NO. 1, e2193461 (1007 pages)
https://doi.org/10.1080/08839514.2023.2193461

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the
Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2023.2193461&domain=pdf&date_stamp=2023-03-24

According to a market research report, the autonomous car market is
expected to experience significant growth in the coming years, with
a compound annual growth rate of 22:75% predicted between 2021 and
2027. This growth is expected to take the value of the market from USD
22.22 billion in 2021 to USD 75.95 billion in 2027 (MordorIntelligence
2021). The increasing prevalence of level 2 and level 3 autonomous vehicles,
which are capable of greater levels of autonomy, is expected to drive this
market growth by 2030.

While the use of autonomous vehicles has the potential to bring many
benefits, such as improved safety, reduced congestion, and lower fuel con
sumption, the safety of these systems is a major concern. One approach to
improving the control of autonomous vehicles is the use of end-to-end learn
ing (e2e), which involves using deep learning algorithms to transform percep
tual inputs, such as images, into control decisions such as steering angles
(Bojarski et al. 2016). Research has shown that this approach (Bojarski et al.
2016) is effective, particularly when learning to emulate human drivers.

However, it is known that deep learning systems relying upon patterns
within data can fall prey to adversarial interference. Adversarial interference is
defined as a deliberate manipulation of input data resulting in erroneous or
malicious outcomes from the machine learning model. In the context of deep
learning, adversarial examples can be devised to deceive the model, leading to
misclassification of images for instance. This vulnerability stems from the
sensitivity of deep learning systems to slight alterations in input data that
can significantly impact the output of the model. Furthermore, the intricacies
of deep learning models, with their non-linear complexity, present challenges
in detecting and mitigating adversarial interference. Hence, deep learning
systems are at risk to various attack types,

However, it is important to note that deep learning systems can be vulner
able to adversarial interference in their inputs, which can potentially compro
mise the safety of the autonomous driving system.

In addition to the safety concerns related to the use of autonomous vehicles,
there are also a number of other challenges that need to be addressed in order
to fully realize the potential of these systems. These challenges include reg
ulatory and legal issues, the need for infrastructure and communication
systems to support autonomous driving, and the need to address privacy
and security concerns related to the collection and use of data by autonomous
vehicles. Despite these challenges, it is clear that connected and autonomous
vehicles have the potential to transform the transportation industry and bring
significant benefits to society.

There have been various strategies proposed for defending against adver
sarial examples, which are inputs specifically designed to cause a machine
learning model to make mistakes. These strategies can be broadly classified
into two categories. The first category involves improving the machine

e2193461-978 K. H. SHIBLY ET AL.

learning model or training set through techniques such as modifying the
network architecture, altering the model’s loss function, and increasing the
size of the training dataset. These approaches aim to increase the model’s
resistance to adversarial attacks (Papernot et al. 2016; Tramèr et al. 2017 by
making it more robust to slight variations in the input data. Particularly,
modifying the network architecture can involve adding more layers or neu
rons to the model, which can increase its capacity to learn and better handle
adversarial examples. Modifying the loss function can involve adding regular
ization terms to the optimization objective, which can help the model general
ize better to unseen data. Increasing the size of the training dataset can also
help the model generalize better and become more resistant to adversarial
attacks, as it has more examples to learn from. However, one of the key
limitations of this approach is that the model must be retrained in order to
incorporate these changes, which means that it cannot defend against
unknown threats.

The second category of defensive strategies involves adjusting adversarial
inputs to make them more similar to clean inputs, rather than modifying the
model or training process. This can involve using techniques such as input
preprocessing, which involves applying transformations to the input data
before it is fed into the model. In particular, adding noise (Goodfellow,
Shlens, and Szegedy 2014a) to the input data or applying image processing
techniques such as blurring can help make adversarial examples less effective.
Another approach is to use adversarial training, which involves generating
adversarial examples during the training process and adding them to the
training dataset. This helps the model learn to be more resistant to adversarial
attacks. One of the advantages of this approach is that the model does not need
to be retrained (Guo et al. 2017), as it has already learned to handle adversarial
examples during training. However, it is important to note that these defensive
strategies may not be effective against all types of adversarial examples (Song
et al. 2017; Zhou, Liang, and Chen 2020), and further research is needed to
improve their effectiveness.

One potential reason for the effectiveness of Generative Adversarial
Networks (GAN) in reconstructing adversarial samples is the strong general
ization abilities of neural networks. There are several factors that may con
tribute to this, including overfitting, the structural similarities between
adversarial and normal samples, and the lack of a clear boundary between
the two. The inclusion of unlabeled adversarial samples in the training data
can further exacerbate this issue, as autoencoders are designed to minimize
reconstruction error for all samples, including adversarial ones.

In this study, we assess the performance of various defense approaches that
are commonly used, such as auto-encoder (Wang et al. 2014), block switching
(Pang et al. 2020), adversarial training (Goodfellow, Shlens, and Szegedy
2014b), defensive distillation (Papernot et al. 2016), and feature squeezing

APPLIED ARTIFICIAL INTELLIGENCE e2193461-979

(Liu, Daniel Wang, and Song 2015). However, the diversity of generative
models can result in reconstructed images that differ from the original inputs,
and the high representation capacity of Convolutional Neural Networks
(CNN) allows for the reconstruction of adversarial perturbations. These fac
tors can make the aforementioned defense mechanisms complex and prone to
failure. To address these limitations and defend against unknown threats, we
do not train the model using adversarial examples. Instead, we propose
a system that cleans adversarial inputs and makes them more similar to the
original inputs captured by the CAV’s camera. We also introduce a memory
module to store the original data features. The requirement for enhanced
representation learning models for sequential and structured data has inspired
the development of memory. Autoencoders, as a type of learning technique,
aim to learn compact representations of the input data. However, conventional
autoencoders lack the ability to store information about the input data, thus
rendering the task of learning representations for sequential and structured
data challenging.

The major contribution of this paper is addressed as follows:

● We proposed a defense mechanism to the adversarial attack in an autono
mous driving model, which purifies the adversarial samples into clean
samples.

● In this study we use a memory module to improve the model’s ability to
capture and maintain the features of the input examples.

● Our proposed method achieves a reasonable performance compared to
the most common defense approaches.

Background and Related Work

Pomerleau’s pioneering work on the Autonomous Land Vehicle in a Neural
Network (ALVINN) technology in 1989 (Pomerleau 1988) was a major mile
stone in the development of autonomous vehicles. Pomerleau’s research
demonstrated that a fully trained neural network could be used to successfully
guide a car on public highways, using sensor data and machine learning
algorithms to make driving decisions. This work laid the foundation for the
development of later autonomous vehicle technologies, such as DAVE-2
(Bojarski et al. 2016). DAVE-2 is a further development of the ALVINN
technology that was inspired by Pomerleau’s work. One of the key differences
between ALVINN and DAVE-2 is the increased availability of data and
computing power that has become available over the past 25 years. These
advancements have allowed for the development of more complex and sophis
ticated autonomous vehicle systems that can handle a wider range of driving
scenarios. DAVE-2 is distinguished by its ability to use these advances in

e2193461-980 K. H. SHIBLY ET AL.

technology to perform autonomous driving tasks more effectively and reliably
than earlier systems.

Adversarial attacks are a type of malicious attack on machine learning
models that involve introducing small, imperceptible perturbations to the
input data in order to mislead the model into making incorrect predictions.
These perturbations are known as adversarial examples, and they can cause the
model to classify the original input as a different class than it would normally
predict (Goodfellow, Shlens, and Szegedy 2014a). Adversarial attacks can be
classified as Whitebox (Huang et al. 2017) or Blackbox (Papernot et al. 2017)
attacks based on the knowledge required to execute the attack.

Whitebox attacks require extensive knowledge of the target model, includ
ing the training data, neural network architecture, parameters, hyperpara
meters, and the ability to obtain the model’s gradients and prediction
outputs. This type of attack involves a direct, unrestricted access to the
model, allowing the attacker to fully understand its internal workings and
design the most effective adversarial examples. In contrast, Blackbox attacks
only involve querying the model with arbitrary input data and receiving
a predicted result. The attacker does not have access to the model’s internal
details, and can only observe the model’s input-output behavior. This makes
Blackbox attacks more challenging, as the attacker must find a way to generate
adversarial examples without full knowledge of the model’s workings.

One way that attackers can perform Blackbox attacks is by creating
a substitute model based on the input and output data of the target model.
The substitute model is designed to mimic the behavior of the target model as
closely as possible, using the same type of machine learning algorithms and
input features. The attacker can then execute Whitebox attacks on the sub
stitute model in order to generate adversarial examples that are effective
against the target model. This approach is known as transferability of adver
sarial examples, and it refers to the ability to use adversarial examples created
for the substitute model to successfully attack the target Blackbox model.

In this study, we investigate different type of adversarial attacks. In
Hijacking Adversarial Attack the attacker modifies the actual trajectory of
the model. This type of attack involves manipulating the model’s output in
a way that causes it to take a different action than it would normally take. For
example, in case of an autonomous vehicle, an adversarial attack could be used
to cause the vehicle to turn left instead of right, or to brake unexpectedly
Figure 1. Hijacking Adversarial Attacks can be particularly dangerous, as they
can have significant consequences for the safety of the model’s users and the
surrounding environment. Therefore, it is important for machine learning
models to be robust against this type of attack in order to ensure their safety
and reliability.

Vanishing Adversarial Attacks are designed to cause an object detection
system to fail to recognize an object in an image or video by adding small

APPLIED ARTIFICIAL INTELLIGENCE e2193461-981

perturbations to the object that are undetectable to the human eye. These
perturbations can take the form of noise or other distortions added to the
image or video, and they can be generated using algorithms that search for the
minimum amount of perturbation needed to cause the object detection system
to fail.

Fabrication Adversarial Attacks are similar to Vanishing attacks, but they
involve adding fake objects to an image or video rather than modifying
existing objects. These fake objects can be designed to be indistinguishable
from real objects to the human eye, but they can cause object detection systems
to fail by confusing them with the real objects within image or video.

Mislabeling Adversarial Attacks are also similar to Vanishing attacks, but
they involve changing the label or classification of an object in an image or
video rather than causing the object to disappear entirely. For example, an

Figure 1. Change of trajectory in after FGSM and AdvGAN attack in both whitebox and blackbox
setup. The green line shows the actual trajectory.

e2193461-982 K. H. SHIBLY ET AL.

attacker could use a Mislabeling attack to cause a object detection system to
label a car as a bicycle, or a pedestrian as a tree.

Adversarial training is a widely-used method for increasing the
robustness of machine learning models. However, it can be resource-
intensive due to the need to generate a large number of adversarial
examples, and it may not be effective at protecting against unknown
adversarial threats. Researchers have found that various types of image
manipulation, such as adding noise (Shixiang and Rigazio 2014), scaling
(Guo et al. 2017), JPEG compression (Buckman et al. 2018), and more,
can undermine the effectiveness of adversarial attacks. One commonly
used technique to counter adversarial perturbations is image denoising,
such as using an Auto-Encoder to clean up adversarial examples before
feeding them into a target model (Jalal et al. 2017). Another approach is
to use generative networks like Defense-GAN (Samangouei, Kabkab, and
Chellappa 2018) or PixelDefend (Song et al. 2017) to transform adver
sarial samples into clean ones. However, this requires solving an opti
mization problem, which can be computationally difficult and
vulnerable to advanced attack methods. Defense-GAN uses latent encod
ing to generate clean samples directly, but this can result in a loss of
model accuracy as the classifier is unable to effectively identify the
purified samples. Our solution relies on a memory module containing
clean features to help the model reconstruct clean images using the
input image as a prior. We use the discriminator of generative network

Figure 2. The network architecture of defense model used in this study.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-983

to assist with this process and adjust the weight of the reconstruction
loss based on the dataset, ensuring that clean input images result in
matched output images.

Memory models are a type of artificial neural network that are
designed to be able to store and retrieve information over a long period
of time. They are typically used in deep learning systems to enable the
model to learn from sequential data, such as natural language texts or
time series data. Memory models are able to store information in
a”memory” and then use this information to make predictions or deci
sions based on new inputs. One of the most common types of memory
models is the long short-term memory (LSTM) model, which was
introduced by Hochreiter and Schmidhuber in 1997 (Hochreiter and
Schmidhuber 1997). LSTMs are a type of recurrent neural network
(RNN) (Jain and Medsker 1999) that are able to learn from long
sequences of data by using a”memory cell” to store information over
a long period of time. They are often used for tasks such as natural
language processing and machine translation. Another type of memory
model is the gated recurrent unit (GRU), which was introduced as
a simpler alternative to LSTMs (Chung et al. 2014)). GRUs are also
a type of RNN, but they use a simpler structure and fewer parameters
than LSTMs, which makes them faster to train and easier to optimize.

In addition to being used in traditional deep learning tasks, memory models
have also been used in contrastive representation learning (Kaiming et al.
2020; Zhirong et al. 2018). In this context, memory models are used to store
historical representations of data, which can then be used to learn more robust
and generalizable representations.

Memory models have been used in previous research to improve general
ization on samples and prevent unexpected results (Gong et al. 2019; Park,
Noh, and Ham 2020). However, these approaches are not specifically designed
to handle adversarial samples and do not address all of the major challenges in
defending against adversarial attacks.

Adversarial defense in deep neural networks presents several critical
issues that must be addressed in order to ensure the robustness of the
model. Firstly, the model must be able to withstand a diverse array of
perturbations, thus maintaining its stability and reliability. Secondly, it
is essential to maintain a high level of accuracy, even in the presence of
adversarial samples, in order to preserve the validity of the model’s
outputs. Lastly, it is imperative to have the capability of detecting and
responding to adversarial attacks in real time, so as to prevent any
potential harm or negative consequences.

e2193461-984 K. H. SHIBLY ET AL.

Methodology

Dataset

In this experiment, the researchers generated adversarial instances using the
Udacity dataset (Udacity 2017). Adversarial instances are examples of images
or videos that have been specifically designed to trick machine learning models
into making incorrect decisions. In the context of this experiment, the adver
sarial instances were likely designed to cause the autonomous driving model to
make incorrect decisions about the objects in the road photos, such as mis
identifying a pedestrian as a tree or a car as a bicycle. Udacity dataset consists
of real-world road photos taken by a vehicle’s front camera, which Udacity has
divided into a training set with 33,805 frames and a test set with 5614 frames.
The purpose of generating adversarial instances in this experiment was likely
to test the robustness of the autonomous driving model to adversarial attacks,
and to identify any vulnerabilities that could be exploited by attackers. By
testing the model with adversarial instances, the researchers were able to gain
a better understanding of the model’s ability to handle such attacks and to
identify any areas where the model might be improved.

Attack Scenarios – Hijacking Adversarial Attacks

Adversarial attacks on the autonomous driving model were evaluated using an
adversarial threshold, which is a tolerable error range that defines the max
imum allowed difference between the original prediction of the model and the
prediction of an adversarial example. If the difference between the original
prediction and the prediction of an adversarial example is greater than the
adversarial threshold, the attack is considered successful. Figure 1 shows the
results of a hijacking attack, which is a specific type of adversarial attack that
involves causing a machine learning model to make incorrect predictions by
manipulating the input data.

It can be inferred from the information presented in Figure 1 that it depicts
the ground truth, or the accurate prediction made by the model. Meanwhile,
Figure 1 seemingly depict the outcome of a hijacking attack, as evidenced by
the incorrect predictions made by the model. This suggests that the hijacking
attack was successful in altering the model’s performance and inducing it to
produce erroneous results.

Adversarial attacks on autonomous driving models can be broadly classified
into two categories based on their perturbation generation mechanism: Fast
Gradient Sign Method (FGSM) and generative model-based approaches. This
study involved implementing two adversarial attack methods: the Fast Gradient
Sign Method (FGSM) and AdvGAN (Goodfellow, Shlens, and Szegedy 2014a).
The loss gradient is a measure of how sensitive the model is to changes in the
input data, and adding the sign of the loss gradient to the original image causes

APPLIED ARTIFICIAL INTELLIGENCE e2193461-985

the model to make incorrect predictions. FGSM is a fast and effective method for
generating adversarial examples, but it has a number of limitations, including
the fact that it is prone to being detected by defense mechanisms.

AdvGAN is a state-of-the-art generative model-based attack that uses
a Generative Adversarial Network (GAN) to generate adversarial examples.
GANs are a type of machine learning model that consists of two networks:
a generator network and a discriminator network. The generator network is
trained to generate synthetic data that is similar to the real data, while the
discriminator network is trained to distinguish between real and synthetic
data. By training a GAN to generate adversarial examples, it is possible to
create synthetic data that is indistinguishable from real data to the human eye
but causes the model to make incorrect predictions. AdvGAN is typically more
robust and harder to detect than FGSM, but it is also more computationally
expensive and can take longer to generate adversarial examples.

Fast Gradient Sign Method On original frames, this approach simply adds
the sign of the loss gradient to each pixel. To provide a more potent adversarial
scenario, we applied the targeted FGSM numerous times.

Attack Scenarios – Vanishing, Fabrication, and Mislabeling

Objectness Gradient Adversarial attacks (Chow et al. 2020) are a type of attack
that target object detection networks in order to alter their objectness seman
tics, such as causing objects to disappear, generating false objects, or incor
rectly labeling objects. These attacks introduce small perturbations that are
almost imperceptible to the human eye, but can cause the object detection
network to behave incorrectly. These attacks are highly efficient, as they can
create a single perturbation that is effective at deceiving the victim detector
when applied to any input and can be launched as”black-box” attacks, mean
ing that the attacker does not need to have access to the internal workings of
the network and can use the attack with minimal online attack cost through
adversarial transferability. This makes these attacks particularly dangerous for
object detection in real-time edge applications.

Deep object detection networks are a type of machine learning model that
are designed to recognize and classify objects in images or video frames by
using bounding box techniques. These networks typically have a similar
structure and accept similar types of inputs and outputs, regardless of the
specific object detection algorithm that is being used. These attacks can be
applied to any object detection algorithm without any limitations, making
them a potential threat to a wide range of object detection systems. It is
important for organizations using object detection systems to be aware of
the potential for the attacks and to take steps to protect against them, in order
to ensure the reliability and accuracy of their systems.

e2193461-986 K. H. SHIBLY ET AL.

An adversarial example denoted as x0, is created by making small,
often imperceptible changes, or perturbations, to a benign input x that
is input to the victim detector. The goal of this process is to trick the
victim detector into making random (untargeted) or targeted (targeted)
mistakes in its detections. The creation of the adversarial example can
be represented mathematically as follows: x0 ¼ xþ p, where p is
a distance metric that measures the changes made to the input, such
as the percentage of pixels changed ðL0normÞ, the Euclidean distance
ðL2normÞ, or the maximum change to any pixel ðL1normÞ. O� represents
the target detections for targeted attacks or any incorrect detections for
untargeted attacks.

min k x0 � xkp s:t:Ôðx0Þ ¼ O�; Ôðx0Þ�ÔðxÞ (1)

In the attack, a module is used to generate a perturbation, or small change,
that is added to an input (such as an image or video frame) in order to deceive
a victim detector. There are three types of these attacks: Vanishing,
Fabrication, and Mislabeling. Each of these attacks creates a unique perturba
tion for each input.

In contrast to these types of attacks, a universal adversarial algorithm uses
the same perturbation to corrupt any input, regardless of its content. This
means that the same perturbation can be applied to multiple inputs, and it will
have the same effect on all of them, causing the victim detector to fail to
classify them correctly.

Deep object detection networks are usually trained by adjusting the model
weights, represented as W, to minimize a loss function while the input image,
denoted as ~x, is fixed. In contrast, adversarial attacks involve fixing the victim
detector’s model weights and iteratively adjusting the input image, denoted as
x, to achieve a specific attack goal. (Ruder 2016)

x0tþ1 ¼
Y

x;2
x0t � αΓ

@L� x0t;O
�;W

� �

@x0t

� �� �

(2)

where
Q

x;2½�� is the projection onto a hypersphere with a radius 2
centered at x in Lp norm, Γ is a sign function, and L� defines the loss function
to be optimized during the attack.

Vanishing. In the adversarial Vanishing attack, the goal is to cause the
victim detector to detect no objects on the adversarial example. To do this, the
target detection is set to be O� ¼ ; and the loss function is set to be the same as
the original loss function, denoted as L� ¼ L.

Fabrication. The adversarial Fabrication attack aims to return a large
number of false objects. To do this, the target detection is set to the predicted
detections for the input, denoted as O� ¼ ÔðxÞ, and the loss function is set to
be negative, denoted as L� ¼ � L.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-987

Mislabeling. In a mislabeling attack, the target detection O� is set to be the
predicted detections for the input ÔðxÞ. However, each object in the input is
given an incorrect label. The loss function used to evaluate the performance of
the model is the same as the original loss function L� ¼ L. To generate the
targets for the mislabeling attack, two systematic approaches are often used:
the least-likely class attack and the most-likely class attack. In the least-likely
class attack, the class label with the lowest probability is selected as the target
class label. This is achieved by finding the argument that minimizes the
probability of each class label for each object. In the most-likely class attack,
the class label with the second-highest probability y�i ¼ arg mincp̂c

i is chosen as
the target class label. Any incorrect class label can be chosen in these attacks,
but these systematic approaches are commonly used.

Defense Mechanism Against Adversarial Attack

The defense model in Figure 2 is a system that is designed to protect against
adversarial attacks on image classification models. It is composed of three
main components: a generator, a discriminator, and a memory module. The
generator is a combination of the encoder and decoder from an autoencoder,
with the addition of three convolutional layers. The encoder processes the
input image using convolutional techniques to extract higher-level character
istics, and encodes this information into a high-level latent encoding. This
latent encoding is a compact representation of the input image that captures its
important features. The decoder then restores the latent encoding back into an
image using a deconvolution process. The memory module connects the first
and second layers of the encoder to the second and third layers of the decoder,
respectively. It is responsible for storing the information that is passed
between these layers and allowing it to be used by the generator in the
restoration process. Overall, the defense model works by first encoding the
input image into a latent encoding using the encoder, storing this information
in the memory module, and then using the decoder to restore the latent
encoding back into an image. This restoration process helps to ensure that
the output image is similar to the original input, even if it has been modified by
an adversarial attack.

Adversarial GAN
AdvGAN (Adversarial Generative Networks) is a type of generative model that
is specifically designed to generate adversarial examples. The Adversarial GAN
serves as an adversary, challenging the defense mechanism by generating
adversarial examples. The AdvGAN model generates an adversarial example
GðxÞ from an original image by adding a new goal ðLy ¼ JθðGðxÞ; f ðxÞ þ αÞ to
the objective function ðLAdvGAN ¼ Ly þ αLGANÞ of the model. The new

e2193461-988 K. H. SHIBLY ET AL.

goal is defined as the difference between the prediction of the machine
learning model for the original image and the prediction of the machine
learning model for the adversarial example. The new goal is minimized
using an optimization algorithm, such as stochastic gradient descent. The
objective function of the AdvGAN model is a combination of the new goal
and a regularization term. The regularization term is used to ensure that the
adversarial example looks similar to the original image and that the adversarial
example is generated using a smooth and continuous function. After training,
the AdvGAN model should be able to generate an adversarial example x0 that
looks the same as the original image, but produces a prediction f ðx0Þ that
differs from the prediction f ðxÞ for the original image by an amount Δ. The
value of Delta depends on the strength of the adversarial attack and the
robustness of the machine learning model.

The pixels of an image are first processed by a downsampling operation and
then masked using the Pixel Scaling before being input to the input layer of
a neural network. The purpose of the downsampling operation is to reduce the
resolution of the image and the purpose of the masking operation is to
selectively preserve or discard certain pixel values. The encoder is responsible
for extracting a latent code z from the input image, while the decoder is
responsible for generating an output image from the latent code. In
a traditional decoder architecture, the latent code is simply used as input to
the first layer of the decoder and the output image is generated by cascading
the output of each subsequent layer. However, when the decoder has more
layers, the influence of the latent code decreases as it is passed upstream and
the output image becomes increasingly reliant on the feature information
provided by the skip link (a connection between the encoder and the decoder).
This can lead to a decrease in the quality of the output images. To address this
issue, we have included the latent code in each layer of the decoder. The
extraction of latent codes from images involves obtaining a compact and
lower-dimensional representation of an image, referred to as a latent code,
that embodies the essential features and patterns contained within the image.
This approach leverages the concept of unsupervised learning, where the
objective is to learn a mapping from the high-dimensional pixel space to
a lower-dimensional latent space that retains the critical information present
in the image. This allows the latent code to have a more direct influence on the
output image at each stage of the decoding process. The latent code is divided
into three parts and each part is input to a different layer of the decoder. The
first part is directly input to the first layer of the decoder, while the second and
third parts are input to the second and third layers of the decoder after being
connected to the features from the memory module (a component of the
neural network that stores and retrieves information). This approach allows
the latent code to have a more consistent influence on the output image, which
should result in higher quality output images.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-989

The memory module in our system uses several components to store the
typical features of clean images. We use a softmax function to calculate the
similarity score between each query and all the items before reading them. The
softmax function is a widely used technique for computing the similarity score
between two data sets. It involves the calculation of the exponential of the
similarity score between each query-item pair, and subsequent normalization
of these values by dividing them by the sum of all exponentials. This process
results in a probability distribution over the items, wherein the relative simi
larity of each item to the query is reflected. Mathematically, given a set of items
and a query, let the similarity score between the query and the i � th item be
represented by si. The softmax function (Bishop 2006) for this score is then
defined as:

pi ¼
expðsiÞ

Pn

j¼1
expðsjÞ

(3)

where pi represents the probability of item i, si represents the similarity
score between the query and item i, and n is the total number of items.

Each item is connected to multiple query vectors, which means that there
may be several query vectors that are similar to it. Therefore, when updating
items, we use all of the query vectors that are closest to the item. To update the
memory, we use two operations: forget and update.

The forget operation functions by assigning a weight to each item in
memory and subsequently multiplying it by a forget gate value between 0
and 1, thereby determining which information should be removed from
memory. The forget gate value is indicative of the quantity of information
from the corresponding memory item that ought to be discarded. This opera
tion is essential in preventing memory overload with obsolete or irrelevant
information. Conversely, the update operation determines the specific new
information that should be added to the memory. This is done by assigning
a weight to each candidate item and multiplying it by an update gate value
between 0 and 1, indicating the proportion of the new information from the
corresponding item that should be incorporated. The update operation is
integral in accommodating new information and refreshing the memory.

In this case we work with Autoencoder. The Autoencoder with GAN takes
this a step further by incorporating the adversarial information into the
training process of the autoencoder, leading to a stronger defense.

Autoencoder with GAN
An autoencoder (Rumelhart, Hinton, and Williams 1986) is a type of
neural network that is trained to reconstruct an input by learning to
compress and then reconstruct the input data. It consists of two parts: an

e2193461-990 K. H. SHIBLY ET AL.

encoder, which maps the input data to a lower-dimensional representation
called the latent space, and a decoder, which maps the latent representation
back to the original input data. During training, the autoencoder is pre
sented with a set of input samples and is asked to reconstruct them using
the encoder and decoder. The goal of the autoencoder is to learn a function
that can accurately reconstruct the input data from the latent representa
tion. To measure the quality of the reconstruction, a reconstruction loss is
used, which is a measure of the deviation between the input data and the
reconstructed data. One issue with traditional autoencoder and the
Variational AutoEncoder (VAE) (Kingma and Welling 2013), use a”pixel-
level” reconstruction error such as the ,2 distance or the log-likelihood to
measure the deviation of the reconstructed samples from the input samples.
The error can be too strict and result in overly smooth reconstructions. To
address this issue, we add a discriminator to distinguish between the true
input samples and the reconstructed samples. This helps to reduce blurri
ness and improve detail in the reconstruction, as the discriminator focuses
on similarities in the overall distribution. The Memory Module is a key
component that enables the defense mechanism to learn and retain infor
mation about the original data distribution, even in the presence of adver
sarial examples. By combining the autoencoder with adversarial training,
we can improve the accuracy and detail of reconstructions while still being
able to detect anomalies and defend against attacks.

Memory Module
To counteract against adversarial attack images that are designed to fool
machine learning models, we can use a memory module to maintain
a representation of normal patterns in the input data. The memory module
consists of vectors, each of which represents a point on the normality mani
fold, which is a space that represents normal patterns in the input data.
A normal pattern would be a pattern that is representative of the majority of
the data points in the input data and is considered to be typical or expected.
The normality manifold is a space that represents these normal patterns in the
input data. During the reconstruction process, the encoder generates a query
that retrieves vectors from the memory, which are then used to calculate the
latent vector. By reconstructing the input data using the latent vector, we can
ensure that the model is strictly reconstructing normal patterns. This can
improve the model’s ability to detect and defend against adversarial attacks.

We utilized a neural network architecture that includes an encoder and
a decoder. The encoder, represented by feð�Þ, processes the input x and
generates a latent vector z. The decoder, denoted as fdð�Þ, takes the latent
vector and converts it back into the input space to produce the reconstructed
sample x̂.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-991

z ¼ feðxÞ;
x̂ ¼ fdðẑÞ:

(4)

In a standard autoencoder, the latent vector z is used directly to obtain the
reconstructed output, ẑ ¼ z. However, in our approach, the latent vector z is
transformed into a different latent vector, denoted as ẑ, using the memory
module. The reconstruction error between the input sample and the recon
structed output is measured using various metrics, such as the Euclidean
distance, ,2.

Lrec ¼k x � x̂k2 (5)

The objective of a standard autoencoder is to minimize the reconstruction
error Lrec. Autoencoder-based defense methods use the reconstruction error
Lrec as a measure of defense effectiveness, with samples that have high
reconstruction errors being considered adversarial images.

A common challenge with standard autoencoders is that the mean squared
error (MSE) loss can cause reconstructions to be overly smooth. To address
this issue, we utilize adversarial training. Specifically, we add a discriminator,
represented by ϕð�Þ, to differentiate between the input samples and the
reconstructions.

Ladv ¼ Ex,pdataðxÞ½logðϕðxÞÞ� þ Ex̂,pgenðx̂Þ½logð1 � ϕðx̂ÞÞ� (6)

The distribution of the ground truth data is represented by pdata, while the
distribution of the reconstructed samples is represented by pgen. Consequently
the goal of training an autoencoder becomes:

Lfull� adv ¼ Ladv þ λ � Lrec (7)

The weight of the reconstruction objective is represented by λ where the
value ranging from 0.01 to 0.1. To maintain the structure of normal patterns,
we enhance the autoencoder with a memory module. The latent vector that the
decoder receives is created by combining different elements from the memory
module. In the memory module shown in Figure 3, the vector produced by the
encoder is used to determine the weights for the memory slots, which means
that the memory module is responsible for capturing normal patterns instead
of the encoder. The memory module is used consistently throughout the
training process.

The memory module consists of a matrix M ¼ m1; � � � ;mM½ � 2 R M�K

where M is the size of the memory and K is the dimension of each memory
spot mi. Given a query z, the latent vector ẑ is computed through a linear
combination of the memory spots:

e2193461-992 K. H. SHIBLY ET AL.

ẑ ¼
XM

i¼1
wi �mi ¼ wM: (8)

In this case, the weight of the i-th memory slot mi in the overall memory is
represented by the variable wi. The query vector z, which is generated by the
encoder and is equal to z ¼ feðxÞ, determines this contribution.

There are various ways to calculate the memory weights w. In this case, the
normalized query vector is used directly as the memory weights. If the
dimensions of the query and memory size do not match, the query is first
mapped into the R M space using the projection head ψð�Þ. It is used to
calculate the weights for the memory slots by normalizing the query-
memory similarities using the Softmax function. The purpose of the projection
head is to help the network more effectively compare and retrieve relevant
information from its memory, which can improve its overall performance.

w ¼ SoftmaxðψðzÞÞ: (9)

To produce accurate reconstructions in the reconstruction task, the decoder
is restricted to using representations that come from the normality manifold.
To achieve this, the memory module needs to store the most typical normal

Figure 3. The memory module in the illustration is used to represent a set of memory vectors that
represent what is considered normal. When reconstructing an input, the encoder’s output is used
to determine the weights of each memory vector. The latent vector that is input into the decoder is
created by combining the memory vectors using these weights.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-993

patterns. This ensures that the decoder has access to high-quality information
for recreating the input.

Experiment Results

Attack Injection and Success Against Autonomous Driving

The Nvidia DAVE-2 autonomous driving model is a well-known and widely
used model that is implemented and trained using PyTorch. It consistently
uses an input image size of 128� 128 pixels.

The Root Mean Square Error (RMSE) is used to measure the model’s error
rate, and it is shown in the table. A default model that always predicts 0 for all
frames on the test dataset has an RMSE of 0.20678. In contrast, the customized
Nvidia DAVE-2 model has an RMSE of 0.1055, indicating a lower error rate.

Two main types of environments in which experiments are conducted:
Whitebox and Blackbox. In a Whitebox environment, the researchers have
full knowledge of the driving model being used and can therefore create
adversarial cases directly. In a Blackbox environment, attackers may try to
train a proxy driving model offline and then use the AdvGAN model to
perform Blackbox attacks. The effectiveness of adversarial attacks and coun
termeasures is measured by the attack success rate, which is calculated based
on the number of successful attacks out of all adversarial examples. Successful
Hijacking attacks are identified by steer angle deviation larger than 0.3, while
the success of Vanishing, Fabrication, and Mislabeling attacks can be seen in
the model’s output data in Figures 4, 5 and Figure 6, respectively. The success
rate for these attacks is reported in Table 1.

According to Table 1, AvdGAN consistently outperforms FGSM in terms of
success rate in adversarial situations. Within Whitebox setup, FGSM has
a success rate of only 33:2% for the Hijacking Attack, while AvdGAN has
a success rate of 97:2%. This is because AvdGAN is able to learn and exploit
the internal features of colored road lines, which can impact steer angle
predictions and create adversarial disturbances. On Whitebox setup, FGSM
has success rates of 49:88% and 71:65% for the Vanishing and Fabrication
attacks, respectively, while AdvGAN has success rates of 89:75% and 87:49%,
respectively. Similarly, FGSM has a success rate of 58:88% for Mislabeling
attacks during Whitebox setup, while AdvGAN has a success rate of 90:14%.
In the Blackbox setup, the Hijacking Attack with AdvGAN has the highest
success rate, at 87:7%, and AdvGAN outperforms FGSM in this case as well.

The Whitebox scenario depicted in Figure 7(a), the AdvGAN performs
exceptionally well. It has a higher success rate than FGSM, which achieved
a rate of 26:4%. AdvGAN, on the other hand, achieved a rate of 87:7%. These
techniques generate adversarial perturbations that are tailored for specific
models, and as a result, they are not as effective when used on different models.

e2193461-994 K. H. SHIBLY ET AL.

AdvGAN is more effective at attacking autonomous vehicles on Blackbox
setup compared to FGSM, but its performance decreases when compared to
the Whitebox setup. See Figure 7(b),. This suggests that adversarial attacks on
autonomous vehicles are possible, raising concerns about their safety and the
potential for the driving system to be compromised.

AdvGAN is a particularly dangerous attack because it can generate effective
adversarial instances when attacking a model in a Whitebox setting. This is
because AdvGAN leverages the properties of the targeted model to create its
attacks. However, when tested in a Blackbox setting, the transferability of
adversarial examples to driving models was not as strong. This suggests that
the complexity of the network architecture of driving models may impact their
vulnerability to adversarial attacks. In general, adversarial examples seem to be
less successful at attacking autonomous driving models in a Blackbox setting.
Figure 8 showing the successful attacks in Vanishing, Fabrication and
Mislabeling attack.

Defense Performance Result – Proposed

We tested several defensive techniques, including Autoencoder, Block
Switching, Adversarial Training, Defense Distillation, and Feature

Figure 4. In this scenario no adversarial attack is involved, so the driving model easily can detect
the objects.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-995

Figure 5. The following figures illustrate the effects of adversarial attacks on a detection system. (a)
shows the results of a Vanishing attack, in which no objects can be detected. (b) shows the results
of a Fabrication attack, in which the detection system returns a large number of falsely detected
objects.

e2193461-996 K. H. SHIBLY ET AL.

Figure 6. The figures illustrate the effects of adversarial attacks on the performance of a detection
system. In Figure (a), all detected objects are incorrectly labeled with the same label as a result of
the attack. Figure (b) demonstrates the effect of an attack in which objects with the same label are
wrongly labeled with different labels.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-997

Squeezing, on FGSM and AdvGAN attacks, and compared their effectiveness
with our proposed study.

From Table 2, we can see that the defense techniques of adversarial training,
Defense Distillation, Feature Squeezing, and Autoencoder are not effective at
defending against AdvGAN attacks in both Whitebox and Blackbox settings
when applied to the Udacity dataset. However, the Block switching technique left
minimal impact in terms of defense, though it does have an impact on the
accuracy of the original image’s classification. Overall, it appears that adversarial
training has poor generalization ability and is not able to withstand many attacks.

Our technique is not specifically designed to defend against any
particular type of attack, but it has shown to be effective against
a range of attacks. It is used to ensure high-quality reconstruction and
to prevent the generation of disrupted images during the reconstruction
phase. This helps to improve the model’s overall robustness while
maintaining a high level of accuracy on unmodified images. As shown

Table 1. Attack success rate in blackbox and whitebox setup.
Attack Success Rate (Blackbox) Success Rate (Whitebox)

Hijacking (FGSM) 26.4% 33.2%
Hijacking (AdvGAN) 87.7% 97.2%
Vanishing (FGSM) 37.34% 49.88%
Vanishing (AvdGAN) 64.71% 89.75%
Fabrication (FGSM) 44.23% 71.65%
Fabrication (AvdGAN) 61.84% 87.49%
Mislabeling (FGSM) 41.31% 58.88%
Mislabeling (AvdGAN) 67.05% 90.14%

Figure 7. Attack success rate for FGSM and AdvGAN attack in both whitebox and blackbox setup
(Highjacking attack).

e2193461-998 K. H. SHIBLY ET AL.

in Figure 9, the predicted trajectory of our model remains accurate even
when applied to cleaned images.

Performance in Whitebox Setup

Table 2 (a) presents a comparison of the defense success rates of
Blackbox and Whitebox setups against Hijacking attacks. The results
indicate that, among the defense mechanisms examined, Autoencoder,
Adversarial training, and Defense Distillation are most effective in
defending against FGSM attacks in the Whitebox setup. Adversarial
Training also performs well in protecting against AdvGAN attacks in
this setup. Our proposed defense method demonstrated the highest
success rate, achieving a defense rate of 93:8% against FGSM and
91:2% against AdvGAN.

Table 2 (b) illustrates the success rate of different defense methods against
Vanishing attacks. In the Whitebox scenario, Adversarial Training outper
formed our proposed method.

As demonstrated in Table 2 (c), the performance of our proposed
method is lowest against Fabrication attacks. However, it still performs
better than the other methods. It performs 3.5% better than Defense
Distillation against FGSM attack in Whitebox scenario and 7.2% better
than AdvGAN.

In this paper, we examine two types of mislabeling attacks. In order to
evaluate the results, we calculated the average of the data. As depicted in
Table 2 (c), our proposed method demonstrates the highest effectiveness
in defending against mislabeling attacks in a whitebox configuration for
both FGSM and AdvGAN, in comparison to vanishing and fabrication
attacks.

Figure 8. Successful Attack for Vanishing, Fabrication and Mislabeling Attack.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-999

Performance of Proposed Method – Blackbox Setup

In the Blackbox configuration, the most probable information that the attacker
may possess is related to the classifier, leading to a lower defense success rate in
comparison to the Whitebox setup. The Feature Squeezing method demon
strated insufficient performance, with a defense success rate of 35:7% against
FGSM and 31:6% against AdvGAN. Other defense techniques, including
Block switching, Adversarial Training, and Defense Distillation, exhibited

Table 2. Defense success rate in whitebox and blackbox setup.

Attacks Mechanisms Whitebox Blackbox

(a) Hijacking Defensive FGSM AdvGAN FGSM AdvGAN

Autoencoder 78.4% 45.2% 45.4% 23.5%
Block Switching 31.8% 17.3% 49.2% 37.3%
Adversarial Training 89.7% 66.5% 50.1% 40.4%
Defense Distillation 76.5% 45.3% 40.6% 25.7%
Feature Squeezing 67.1% 54.2% 35.7% 31.6%
Proposed 93.8% 91.2% 71.3% 63.1%

(b) Vanishing Autoencoder 60.2% 40.4% 37.7% 26.1%
Block Switching 20.1% 14.9% 56.2% 39.3%
Adversarial Training 77.2% 65.5% 45.0% 39.3%
Defense Distillation 58.3% 34.6% 33.8% 24.8%
Feature Squeezing 51.7% 34.6% 33.4% 21.7%
Proposed 63.97% 48.49% 71.43% 63.74%

(c) Fabrication Autoencoder 44.5% 23.1% 23.3% 20.5%
Block Switching 29.2% 17.5% 34.9% 25.8%
Adversarial Training 50.4% 45.0% 33.7% 31.3%
Defense Distillation 57.8% 30.9% 31.4% 25.5%
Feature Squeezing 46.1% 35.4% 29.6% 30.1%
Proposed 61.3% 52.2% 69.1% 60.0%

(d) Mislabeling Autoencoder 59.3% 42.6% 35.9% 28.3%
Block Switching 25.4% 24.8% 52.6% 36.6%
Adversarial Training 65.4% 44.1% 34.4% 41.5%
Defense Distillation 53.8% 38.9% 30.1% 26.6%
Feature Squeezing 49.6% 29.2% 32.7% 24.5%
Proposed 69.5% 57.7% 74.1% 64.4%

Figure 9. Prediction of the cleaned image in both whitebox and blackbox setup.

e2193461-1000 K. H. SHIBLY ET AL.

defense success rates ranging from 40 � 50%, which are also deemed inade
quate in comparison to the proposed method. The proposed method exhibited
superior performance, achieving a defense success rate of 71:3% against FGSM
and 63:1% against AdvGAN.

The results presented in Table 2 (b), within the Blackbox configuration,
indicate that the defense Vanishing attack achieved a success rate of 71:43%

and 63:74%, respectively. In contrast, our proposed study demonstrated
superior performance in defending against Mislabeling attacks, as demon
strated in Table 2 (d).

The proposed method uses discrete memory addressing mechanisms to
access stored information. Unlike traditional neural networks, which use
continuous weights and activations, this method uses discrete memory
addresses, making it non-differentiable and challenging to apply gradient-
based optimization methods. In order to overcome the non-differentiability
of our technique, we employed Adversarial training to estimate the gradient of
the classifier. In the course of our experiments, we maintained consistency by
utilizing the same attack parameters and datasets. The results of our experi
ments demonstrate that by training the purification model and the classifier
concurrently through Adversarial training, our proposed strategy is successful
in effectively defending against attacks from adversarial examples. As
a consequence, the samples reconstructed by our model are highly similar to
the original samples, thereby enhancing the robustness of the model without
affecting its accuracy.

Time and Computation Overhead on Defense Mechanism

For our proposed experiment, we used python Jupyter Notebook 4.8 and
Keras with TensorFlow as the backend. We did our experiment on an AMD
Ryzen 5 5600 H CPU 3.30 GHz, 16 GB RAM, Windows 11 (64-bit), and
NVIDIA GeForce RTX 3050.

Table 3 shows the impact of different defense strategies on Time (delay),
GPU usage, and GPU memory. Adversarial Training and Defense Distillation
have the longest Time overhead, with delays of 5:27s and 2:81s, respectively.
These approaches also have high GPU memory overhead, with Adversarial

Table 3. Time and computation overhead on defense mechanism (Hijacking attack).
Defensive Time Overhead (s) GPU Overhead GPU Overhead

(Utilization %) (Memory %)

Autoencoder 0.064 8 2.4
Block Switching 0.073 8 4.75
Adversarial Training 5.27 11 47.4
Defense Distillation 2.81 8 25.1
Feature Squeezing 0.0572 5 5.01
Proposed 0.743 10 7.72

APPLIED ARTIFICIAL INTELLIGENCE e2193461-1001

Training using more than 40% of GPU memory when predicting an attack.
While the other defenses have low Time overhead and better GPU utilization
and memory usage compared to Adversarial Training, our proposed method
has a Time overhead of 0:743s, 10% GPU utilization overhead, and 7:72%

GPU memory overhead.

Discussion

In this study, we aimed to explore the use of memory module with autoenco
der as a defense mechanism against adversarial attacks in autonomous driving
systems. Our results showed that the integration of the memory module
significantly improves the performance of the autoencoder by enabling it to
reduce false negatives during evaluation and prevent contamination of the
encoded latent space with adversarial samples. The memory module helps the
autoencoder to reconstruct a diverse range of adversarial attacks and provides
a more robust and effective defense system for real-world applications.

One of the challenges in using autoencoders as a defense mechanism is the
difficulty in learning representations for sequential and structured data.
Traditional autoencoders lack the ability to store information about the data,
making it challenging to effectively reconstruct adversarial attacks. The mem
ory module in our system overcomes this challenge by providing an additional
metric for evaluating reconstruction errors, allowing the autoencoder to
identify and reconstruct a broader range of adversarial attacks.

The reconstruction task has been traditionally used as an effective method
for detecting global adversarial samples. However, it may not consistently
identify local perturbations or contextual deviations, particularly when the
values are within the bounds of normality. By integrating the reconstruction
task with the memory module, the autoencoder is able to effectively detect
a wider range of adversarial attacks, making the defense system more robust
and effective for real-world applications. Figure 10 clearly shows struggle
without the memory module.

The results of the defense success rates against various types of attacks in
whitebox and blackbox setups were analyzed and compared. In the case of
Hijacking attacks, the proposed mechanism achieved the highest defense
success rate with 93.8% against FGSM and 91.2% against AdvGAN in the
whitebox setup, and 71.3% against FGSM and 63.1% against AdvGAN in the
blackbox setup. In the case of vanishing attacks, the proposed mechanism
showed a defense success rate of 63.97% in the whitebox and 71.43% in the
blackbox against FGSM, and 48.49% in the whitebox and 63.74% in the
blackbox against AdvGAN. In the case of fabrication attacks, the proposed
mechanism outperformed with a defense success rate of 61.3% in the whitebox
and 69.1% in the blackbox against FGSM, and 52.2% in the whitebox and
60.0% in the blackbox against AdvGAN. The proposed mechanism also

e2193461-1002 K. H. SHIBLY ET AL.

performed the best in defending against Mislabeling Attacks, with a defense
success rate of 69.5% in the whitebox and 74.1% in the blackbox against FGSM
and AdvGAN, respectively.

In comparison, Adversarial Training also showed good performance, but its
defense success rate dropped in the blackbox scenario. The autoencoder
mechanism had a lower success rate compared to the proposed mechanism
in all the attacks. Defense Distillation and Feature Squeezing performed poorly
in both setups, while Block Switching showed slightly better results against
FGSM in the blackbox setup. Overall, the proposed mechanism demonstrated
superior performance in defending against various attacks, outperforming the
other mechanisms, including autoencoder, adversarial training, defense dis
tillation, feature squeezing, and block switching, in both whitebox and black
box setups.

Figure 10. Evaluating and comparing the performance of memory module-based model in
different setups.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-1003

Despite its advantages, our system still faces some limitations. The defense
success rate of the system varies substantially across different attacks, and the
system incurs a significant computational cost due to a high time and GPU
overhead value. Future research could focus on conducting experiments
utilizing advanced autonomous driving models in real-time scenarios to
further evaluate the effectiveness of the system and identify potential areas
for optimization.

In the future, potential areas for improvement of the memory module
with autoencoder system for adversarial defense in autonomous driving
systems could include reducing computational costs through more efficient
memory storage techniques or reducing the number of parameters in the
memory module. Another area to explore is incorporating other defense
mechanisms, such as adversarial training or generative models, to further
enhance the robustness of the system. Further validation of the system’s
effectiveness can be achieved by conducting experiments with larger and
more complex datasets, as well as evaluating its performance against multi
ple concurrent adversarial attacks, which are likely to occur in real-world
scenarios. Additionally, investigating the system’s performance against
adversarial attacks generated through various methods and under different
conditions, such as targeted versus untargeted attacks, can provide insights
into its robustness. Lastly, the potential for transfer learning, where the
memory module could be trained on one autonomous driving system and
transferred to another, could also be explored to improve the defense
performance.

In conclusion, the incorporation of the memory module into our autoen
coder system represents a significant advancement in the field of adversarial
defense. By leveraging the additional information provided by the memory
module, the autoencoder is able to effectively defend against a broader range of
adversarial attacks and provide a more robust and effective defense system for
real-world applications.

Conclusion

In this research, we propose a new method for defending autonomous
driving models against adversarial attacks and compare it to other common
defense systems. We test the effectiveness of our approach using four
adversarial attacks in both Whitebox and Blackbox scenarios. Our defense
method uses a memory module to encode the normal behavior of the
model into memory vectors. By combining these vectors, reconstructions
are only calculated based on typical patterns. We conducted experiments
on a real-world driving dataset and found that our method performs better
than other baselines in terms of effectiveness and robustness. In the
Whitebox scenario, our defense had success rates of 93:8% and 91:2%.

e2193461-1004 K. H. SHIBLY ET AL.

The result is 4:1% and 24:7% better than Adversarial Training. Adversarial
Training is the preceding optimum outcome from this experiment. In the
Blackbox scenario, the success rates were 64:4% and 74:1%. These are
22:9% better than Adversarial Training and 21:5% better than Block
Switching. Both of these provided the prior optimal results. Our results
show that this method significantly improves the model’s ability to cor
rectly classify adversarial cases.

Acknowledgements

Part of this study was funded by the ICSCoE Core Human Resources Development Program
and MEXT Scholarship, Japan.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Bishop, C. M. 2006. Pattern recognition and machine learning. New York: Springer.
Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M.

Monfort, U. Muller, J. Zhang et al. 2016. End to end learning for self-driving cars. arXiv
preprint arXiv 1604:07316.

Buckman, J., A. Roy, C. Raffel, and I. Goodfellow. 2018. “Thermometer encoding: One hot way
to resist adversarial examples.” In International Conference on Learning Representations,
Vancouver.

Chow, K.H., L. Liu, M. Loper, J. Bae, M. Emre Gursoy, S. Truex, W. Wei, and W. Yanzhao
2020. “Adversarial objectness gradient attacks in real-time object detection systems.” In 2020
Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems
and Applications (TPS-ISA), Atlanta, 263–72.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. 2014. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv 1412:3555.

Elliott, D., W. Keen, and L. Miao. 2019. Recent advances in connected and automated vehicles.
Journal of Traffic and Transportation Engineering (English Edition) 6 (2):109–31. https://
www.sciencedirect.com/science/article/pii/S2095756418302289 .

Gong, D., L. Liu, L. Vuong, B. Saha, M. Reda Mansour, S. Venkatesh, and A. van den Hengel.
2019. “Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for
unsupervised anomaly detection.” In Proceedings of the IEEE/CVF International Conference
on Computer Vision, Seoul, 1705–14.

Goodfellow, I. J., J. Shlens, and C. Szegedy. 2014a. Explaining and harnessing adversarial
examples. arXiv preprint arXiv 1412:6572.

Goodfellow, I. J., J. Shlens, and C. Szegedy. 2014b. Intriguing properties of neural networks.
arXiv preprint arXiv 1312:6199.

Guo, C., M. Rana, M. Cisse, and L. Van Der Maaten. 2017. Countering adversarial images using
input transformations. arXiv preprint arXiv 1711: 00117.

Hochreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Computation
9 (8):1735–80. doi:10.1162/neco.1997.9.8.1735.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-1005

https://www.sciencedirect.com/science/article/pii/S2095756418302289
https://www.sciencedirect.com/science/article/pii/S2095756418302289
https://doi.org/10.1162/neco.1997.9.8.1735

Huang, S., N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. 2017. Adversarial attacks on
neural network policies. arXiv preprint arXiv 1702:02284.

Jain, L. C., and L. R. Medsker. 1999. Recurrent neural networks: design and applications. 1st ed.
USA: CRC Press, Inc.

Jalal, A., A. Ilyas, C. Daskalakis, and A. G. Dimakis. 2017. The robust manifold defense:
Adversarial training using generative models. arXiv preprint arXiv 1712:09196.

Kaiming, H., H. Fan, W. Yuxin, S. Xie, and R. Girshick. 2020. “Momentum contrast for
unsupervised visual representation learning.” In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, Seattle, 9729–38.

Kingma, D. P., and M. Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv
1312:6114.

Liu, W., X. Daniel Wang, and D. Song. 2015. “Feature squeezing: Detecting adversarial
examples in deep neural networks.” In 2015 IEEE Symposium on Security and Privacy,
567–76. San Jose: IEEE.

MordorIntelligence. 2021. “AUTONOMOUS (DRIVERLESS) CAR MARKET - GROWTH,
TRENDS, COVID-19 IMPACT, and FORECASTS (2023 - 2028).” Accessed December 29,
2022 https://www.mordorintelligence.com/industry-reports/autonomous-driverless-cars-
market-potential-estimation .

Pang, L., X. Yuan, S. Jiantao, and L. Hongyang 2020. “Block switching defenses are not robust
to adversarial examples.” In International Conference on Learning Representations, Addis
Ababa.

Papernot, N., P. McDaniel, I. Goodfellow, S. Jha, Z. Berkay Celik, and A. Swami. 2017.
“Practical black-box attacks against machine learning.” In Proceedings of the 2017 ACM on
Asia conference on computer and communications security, Abu Dhabi, 506–19.

Papernot, N., P. McDaniel, X. Wu, S. Jha, and A. Swami. 2016. “Distillation as a defense to
adversarial perturbations against deep neural networks.” In 2016 IEEE symposium on
security and privacy (SP), 582–97. San Jose: IEEE.

Park, H., J. Noh, and B. Ham. 2020. “Learning memory-guided normality for anomaly
detection.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, 14372–81.

Pomerleau, D. A. 1988. Advances in Neural Information Processing Systems 1.
Ruder, S. 2016. An overview of gradient descent optimization algorithms. arXiv preprint arXiv

1609:04747.
Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representations by

back-propagating errors. Nature 323 (6088):533–36. doi:10.1038/323533a0.
Samangouei, P., M. Kabkab, and R. Chellappa. 2018. Defense-gan: Protecting classifiers against

adversarial attacks using generative models. arXiv preprint arXiv 1805:06605.
Shixiang, G., and L. Rigazio. 2014. Towards deep neural network architectures robust to

adversarial examples. arXiv preprint arXiv 1412:5068.
Song, Y., T. Kim, S. Nowozin, S. Ermon, and N. Kushman. 2017. “Pixeldefend: Leveraging

generative models to understand and defend against adversarial examples.” arXiv preprint
arXiv:1710.10766.

Tramèr, F., A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. 2017.
“Ensemble adversarial training: Attacks and defenses.” arXiv preprint arXiv:1705.07204.

Udacity, A. R. 2017. “Udacity self-driving car dataset.”
Wang, W., Y. Huang, Y. Wang, and L. Wang. 2014. “Generalized autoencoder: A neural

network framework for dimensionality reduction.” In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, Columbus, 490–97.

e2193461-1006 K. H. SHIBLY ET AL.

https://www.mordorintelligence.com/industry-reports/autonomous-driverless-cars-market-potential-estimation
https://www.mordorintelligence.com/industry-reports/autonomous-driverless-cars-market-potential-estimation
https://doi.org/10.1038/323533a0

Zhirong, W., Y. Xiong, S. X. Yu, and D. Lin. 2018. “Unsupervised feature learning via
non-parametric instance discrimination.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, Salt Lake City, 3733–42.

Zhou, J., C. Liang, and J. Chen. 2020. “Manifold projection for adversarial defense on face
recognition.” In European Conference on Computer Vision, 288–305. Glasgow: Springer.

APPLIED ARTIFICIAL INTELLIGENCE e2193461-1007

	Abstract
	Introduction
	Background and Related Work
	Methodology
	Dataset
	Attack Scenarios – Hijacking Adversarial Attacks
	Attack Scenarios – Vanishing, Fabrication, and Mislabeling
	Defense Mechanism Against Adversarial Attack
	Adversarial GAN
	Autoencoder with GAN
	Memory Module

	Experiment Results
	Attack Injection and Success Against Autonomous Driving
	Defense Performance Result – Proposed
	Performance in Whitebox Setup
	Performance of Proposed Method – Blackbox Setup
	Time and Computation Overhead on Defense Mechanism

	Discussion
	Conclusion
	Acknowledgements
	Disclosure statement
	References

