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1. Introduction

he geometry of Lagrange spaces is applied to the description of classical general relativity and
T electrodynamics. First, the Einstein equations are given in a new form, where the geometrical objects
related to the internal variables are separated from those related to the external variables. After this, several
special Lagrange spaces are analyzed. The almost Riemannian Lagrange spaces are rather simple for explicit
calculations and they recover all classical results of general relativity and electrodynamics.

The theory of Finsler spaces with («a, f)-metrics was introduced by Matsumoto [1]. The natural extension
of this theory is based on the canonial Cartan nonlinear connection N [2].

In [3], Bucataru studied the Finsler space with (&, f)-metrics have nonholonomic frames which are useful

for unifying theories in theoretical physics.

The notion of Lorentz nonlinear connection N was introduced by Hassan, which depends only on the
metric L(«, B), so the spaces FL" = (M, L(«, 8), N) are called the Finsler-Lagrange spaces with (&, §)-metrics.
This theory has been applied in the study of gravitational and electromagnetic [4,5].

The present paper organized the Euler-Lagrange spaces with («, §)-metrics and Lorentz equations. Also,
Einstein equations for Lagrange space with («, §)-metrics, in particularly Randers metric by means of canonical
N-metrical connection is presented.

2. Preliminaries

The present section deals with some fundamental concepts and facts of Finsler-Lagrange geometry [6-8].

2.1. Finsler-Lagrange space with («, §)-metrics

Let F* = (M, F(x,y)) be a Finsler space with (a, 8)-metric and F(x,y) be a fundamental function of the
form

F(x,y) = E(a(x,y), B(x,y)),
where, F is a differentiable function of two variables:
o2 (x,y) = a;(x)y'y,
B(x,y) = bi(x)y".

The notion « in the above equation represent the pseudo-Riemannian metric on the base manifold M
which gives the gravitational part of F(x,y) whereas B is the eletromagnetic 1-form on M.
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Denoting L(a(x,y), B(x,y)) = F(a(x,y),B(x,y)), gives L" = (M, L) Lagrange space with fundamental
metric tensor g;;(x,y) of the form

1
817 2 3yiayl”
Which further modified as
8ij = paij + pobibj + p—1(bil; + bjl;) + p2lilj, M

where b; = g—fi, I; = ai]'yf = aaa—;‘j, 0, Po, p—1 and p_p are invariants of the space L":

1 1 1 1 1
0= ﬂl‘“’ 00 = ELﬁﬁ’ -1 = ELL‘KISI -2 = ﬁ(LMX - &sz) )
with
oL oL o’L 9’L o’L
sz = ﬂ/ Lﬁ = @/ me = W Lﬁﬁ - @/ La,S - a“aﬁ-

The totally symmetric Cartan tensor defined by

co o1 L 19
ijk = 4 dyidyioyk — 2 Yk’

By means of g;; from (1) taking into account the formulae from [9], one obtains

1 1
ZCi]'k = O(ijk) (p_laijbk + pfzai]‘lk + 51’_1bib]'bk + szb,‘b]'lk + 1’,3biljlk + §1’_4liljlk), 3)
where ¢(; ; 1) means the cyclic sum in the indices i, j, k.

2.2. Variational problem and Lorentz non-linear Connection

Let L : TM — R be a regular Lagrangianand c : t € [0,1] — (x/(t)) € U C M be a regular curve. The
functional defined as follows:

1) = [ Llaloy). Bl )t

gives Euler-Lagrange equations as:

[y _ 9L _d L

()= = 2 (Z=y = Ll
The co-vector E;(L) can also be expressed as:
(L) = E:(a?) + 2P71E, da n
(1) = Ei(o?) + 22 LE(B) +255 5 5)

If c is an extremal curve, i.e., c is a solution of Euler-Lagrange equation (4), then along c the energy of a
Lagrangian L is:
;oL
E - 174 - L
L=Y ay
Now, let us fix the parametrization of the curve ¢ by a natural parameter t = s, with respect to the
Riemannian metric a?(x, dx/dt) given by:

dx

v Xae (6)

ds* = a?(

Thus, along the extremal curve ¢ parameterized by arc lengths t = s, we have a?(x,dx/ds) = 1 and
da/ds = 0,dL/ds = 0, which implies that d3/ds =0, dL,/ds =0, dLl;/ds =0.
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Since E;(p) is given by:
dx/ ob;  ob:
Ei(p) = Eij(x) =, Fj= 7ax]i — o

Then, Miron and Hassan [5] obtained the following theorems:

@)

Theorem 1. Consider the natural parametrization t = s, the Euler-Lagrange equations of the Lagrangian L(x, B) are
given by

Ei(e?) + 250y (0)y) = 0, ¢ = %—ﬁ (8)
Choosing 'y;:k(x) as the Christoffel symbols of pseudo-Riemannian metric #* and
olay) = £ E) = (0 F(2)
we have the following result.
Theorem 2. The Euler-Lagrange equation (8) are equivalent to the Lorentz equations as:
By ) e, B 2 o)

If Euler-Lagrange equations E;(L)=0, then we determine a canonical semispray S as:

] .0
S == 17, — 2Gl -
Y o oy
where 2G(x,y) = 'y;k(x) —o(x, y)F]-" (x)y/. Then, the integral curve of S are given by the Lorentz equation (9).
Now, let us consider the non-linear connection N with the coefficients as:

N} = 7 (Y — o) (x)

Thus, the variation of autoparallel curves of a non-linear connections work should be progressed in 2003.

Since the autoparallel curves of N are given by the Lorentz equation (8), we call it as the Lorentz non-linear
connection of the metric L and so FL" is the Finsler- Lagrange («, )-metric L(«, ) and the Lorentz non-linear
connection N. The semispray S associated to N has the coefficients as:

2G' = Njy/. (10)

2.3. Properties of the Lorentz non-linear connection

(i) The Berwald connection BI'(N) = (B;:k(x, ¥),0) of N has the coefficients

Bl (x,y) = vjx(x) — 0xF} (x),

where ¢} = %

(ii) The weak torsion of N is
L}k = 0jF(x) — O'kF}(X).

Clearly, if b; = grad;¢(x), then L;.k =0.
(iii) The adapted bases are

S _ 9 N2
oxi oxt oy’
(iv) The integrability tensor ‘
N o,

L P
of Nis
. W . . 4 .
ik = Y ik (%) + 03F — 0 Fj — o (Fyye — Fy7),
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where 0; = % and ‘|" is the covariant derivative with respect to the Levi-Civita connection of a? and
pz jk(x) is the curvature tensor of the Levi-Civita connection.

(v) The Lorentz non-linear connection N is integrable if and only if the d-tensor of integrability R;.k vanishes.
(vi) The dual basis (dx’,dy') of (6/5x',0/9y') is determined by

L= 4y Idx/
oyt = dy'+ N;dx/,

dy' + ’y;'-kykdxj - aF}dxj,
| _ oFidyl
oy’ — oFjdx/.

(vii) The autoparallel curves of Lorentz non-linear connection are given by the system of differential
equations:
syt dx
ar VT A

(viii) In the parametrization S with a?(x,dx/ds) = 1, the property (vii) are the Lorentz equation (8).
(ix) The exterior differential of 1-forms &y’ of the form
4oy’ = LR dxk A dyi + Byt A dxl
y - 2 ]k ]k y :

2.4. Canonical N-metrical connection

The metric N-linear connection is called the canonical N-linear connection or the Cartan connection of
the Lagrange space. The space FL" = (M, L(«, ), N) has a canonical N-linear connection CI'(N) with the
coefficients (L;k, C!) given by the generalized Christoffel symbols are:

i 1gis (08 o %8s _ I8k
Ly =38 (M' T 5F T o

11

i 1,is (98 | %8s _ 98k
Cir =38 (ayj Tk T

The 1-form connection CT'(N) is:
, e
wj = Lydx" + Cjdy".

By the property (ix), the structure equations of CT'(N) expressed in the following theorem [10]:

Theorem 3. The structure equations of the canonical N-linear metrical connection CT(N) of the space FL" are as
follows:

d(dx') — dxf A wl = 10,

d(8y') — oy* A wi = —20),

dwt, — w}‘ Awh = —Q;:,
where 1Q), 2Q) are the 2-forms of torsion.
Here
'OF = Cjdxd A6y,
200 = %R;dexf A dx¥ + Phdx) A Syt

and ) is the 2-form of curvature.

i_ 1

. . 1 .
o ZR;.khdxk N dx" 4 Pl dx A Sy + Es;khayk Ady",

where Rj'k is tensor given in property (iv), P]?k = B;.k - L;.k and R;‘khf P;kh/ S;‘kh are the curvature tensor of CI'(N).



Open J. Math. Sci. 2020, 4, 240-247 244

In this study, we use the metric N-linear connection DI'(N) = (i;k, C]l‘k) and has a given d-tensor of torsion

T;k and S_;k as follows:
=i 4 Lot (o Tr 4 o0 Tr — o TT
ik ik T 28 \&jrkn T &jhLjn — 8hrlyj) .
(12)
Ci:Ci+lih S o S
ik ik T 28 \&jrokn T 8jh2jn — 8hrokj ) 1
where (L;:k, C}k) are the local coefficients of the canonical metric N-linear connection CI'(N) and T;‘k' S_;.k simply
by (T;k, S}k).
2.5. Einstein Equations on TM

Let TM be endowed with a non-linear connection N, an h-v metric structure G and a metrical
N-connection DI'(N) with a priori given torsions (T;’k/ S;'k)'

Given an h-v metric G on TM becomes a pseudo-Riemannian manifold of dimension 2n. The Einstein
equations written for the connection DI'(N) on TM as:

Rﬂ(D)A—%SdEDG::kI (13)

where Ric(D) is the Ricci tensor field and Sc(D) is the scalar curvature of DI'(N), k is constant and T is the
energy-momentum tensor field.
In local coordinates, Miron and Anastasiei stated as [11]:

Theorem 4. The Einstein equations of the Lagrange space L = (M, L) corresponding to the metric N-linear connection
DT(N) = (L;k, C]l:k) with the coefficients (12) have the following form:

1
Rij = 5 (R+5)gij = kTjj,
1
Sij = 5(R+5)gij = kT ()5,
1pi 2pi
P =kl “Pp = —KTyg),
where Tjj, T 3)(j), Ty(;) are d-tensor fields.
3. The notion of Randers metric
The preliminaries theories has a remarkable particular case, that is based on the Randers metric.

F(x,y) = a(x,y) + B(x,y)- (14)

The Lagrange space L" = (M, L) with

L(a(x,y), B(x,y)) = F(a(x,y), B(x,y)) = (a + B). (15)

The invariants (2) of Randers metric are given by:

_at+p 1 __ B
P— x s P0—11 P—l—a/ P72— 0‘3*
Using the formula (1), we obtain the fundamental metric tensor Sij»
o+ 1
8ij = T'Ba,‘]' + bib]' + E(bilj + b]'l,‘) — %lilj. (16)

Its contravariant counterpart ¢/ as:

L1/ (WU 4Bl b2 .>
R - ivi) . 17
8 p(“ a1 p @ prYY (17)




Open J. Math. Sci. 2020, 4, 240-247 245

And we know g;; is positively defined if b? < 1. The Cartan tensor Cijx (3) given by:

1
Ci]'k (l]k)z ( az]bk iaijlk b L lk —|— 'B l L lk> (18)
Clearly, we see that C;jx # 0. Thus, we have
Theorem 5. The Cartan tensor Cjj. of Randers metric is non zero (different from zero).

Moreover, the Randers metric is not reducible to a Riemannian metric. For this metric (15), the
Euler-Lagrange equation in the natural parametrization given by:

2 i i dxi
Ei(a )"‘Z‘TFijy] =0, y = a5’ (19)
where o = &1 5 %?ﬁ X.
From Theorem 2, we have the result

Theorem 6. The Euler-Lagrange equations of Randers metric L = (a + B)? is the natural parametrization
a(x,dx/ds) = 1 and are given by the Lorentz equation

d?x! dx/ dx* i dx

@ P g =0 e

Thus, the coefficients of the canonical semispray and non-linear connection N are:

G'(x,y) = V()Y — a(x ) F(x)y,
NI = 7 (1) — i ().
The weak torsion of N is L;-k = 0 and the metric N-linear connection DT (N) = (f,;-k, C’]l:k) is given in (12)

coincide with those of the Cartan connection. Moreover, taking into account that, with respect to the canonical

N-linear connection N, we have 2 5 - = 0.

The torsion tensor of DI'(N) are:

Tjx =0, Rj Cjo Py = Nj = L, Sj = 0. @

In the following and using the properties form [2], we get
iy =0, Pyy =0. (22)

4. Einstein equations of Lagrange space with Randers metric

Now, we express equation (13) in the basis (6/ 5xi,9/ ayi), i.e., adapted to the decomposition of T, TM,
u € TM into horizontal and vertical subspaces.

Set (X«) = (Xi, X(j)), where X; = 5/6x and Xy = 9/9y'. The indices i will run from 1 to 21 and (i) will
run from #n + 1 to 2n. The local vector fields (X,) provides a nonholonomic basis given by

[Xb/ XC] = WZCXLZ/
which satisfies the following Vranceanu indentities [12]

Y [Xa(WEL) + WeabWs] = 0.
(abc)

Let Dx X}, = I'; Xg, then the basis (X;) the torsion T of the N-linear connection D has the components:

Zc = F 1—'ab + Wbc
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In the basis (X, ) the curvature R of the N-linear connection D has the components:
Rieq = Xal'he — Xclpg + Ty Tgq — Tpalee + TpeTey-
The torsion and curvature components given by:
T(Xe, Xp) = Tp.Xa, R(Xg, Xe) Xy = Ry 3 Xa-
In the adapted basis (X,) the Bianchi identities of D of the form:

Z(D”Rdbc + Rdav ) =0,

abc
Y (DaTf, + T, T4 — R%,.) =0,
abc
where D, = DX,.
If in these equations the components with respect to X; = §/6x’ and Xi =09/ dy' are separated, it comes
out that among the coefficients I'; , we have

Il = Li, TV =Ch.

ik () (k)

This is advantage created by the choice of the basis (X;) as well as by the fact that D is an N-linear
connection.

The set of components Tj of the torsion field T splits into following:

. L

T() Ti T <;>() ~Clio }<k(>) ~Cls T(())()—O,} =)
i 1 i 1 i _

T = Rjer T = =By Tjgy = Po Tjypy =0

with respect to the basis (X, ), the Ricci tensor field of the N-linear connection DI'(N) has the components
Rij = Rij, R =" P, Ri) = —"Piji Ry = Sy
By the pseudo-Riemannian metric G has the components G, given by:
Gij = 8ijs Gi() =0, Gw; =0, Gy = Sijy
Gl =4, GU) =0, GWI =0, GO = g7,
where g;; and ¢'l are given in (16) and (17) respectively.

Thus, the tensor field R} = G*R.;, and the scalar curvature Sc(D) have in the frame X, the components
e (i) (i)
i_pi ) _1pi pi _2pi 0 _ ci —
Rj =R}, R =" P, Ry ="P, R(].) =S, Sc(D)=R+S5,
where R = gifRZ-]- and S = gijSij.
Theorem 7. The Einstein equations of the Largrange space with Randers metric corresponding to the metric N-linear
connection DT(N) = (L e Ci) have the following form:

R

3R+ 5)8ijs
=0, *PI=0, (24)
Sij = 3(R+9)gij,

where g;; given in (16).

Proof. Making use of the formulae in Theorem (4), one can shows that from theorem and corresponding
d-tensor fields in (12), (21), (22) and (23) are equivalent to get (24). O



Open J. Math. Sci. 2020, 4, 240-247 247

In vacuum, which corresponds to the case T;; = 0, if we multiply this with Gl = ¢l the equation (13) of
Randers metric can be written in the form:
1 B 1 B
Rij - ESC(D)GU =0, or Rij — ESC(D)&] =0, (25)
which implies that Sc(D) — nSc(D) = o. Hence, Sc(D) = 0 for n > 1. Thus, the equation (25) takes the form
R;j = 0 and immediately, we obtain the following result:

Lemma 8. For the vacuum state, the Einstein equations of the Lagrange space with Randers metric corresponding to the
metric connection DT (N) = (L;k, C!) are as follows:

Rl']':O, 51] =0, 1P]i =0, 2P]l: . (26)

5. Conclusion

The development of the geometry of Lagrange spaces, using the fundamental concepts from Analytical
Mechanics as: the integral of action, the Euler-Lagrange equations, the law of conservation of energy and
symplectic form etc. The geometry of a Lagrange space is mostly derived from the Euler-Lagrange equations.
This paper is devoted to derived the Euler Lagrange equations of Randers metric. Then, by using canonical
N-metrical connection, characterized the Einstein equations of Finsler Lagrange space with Randers metric.
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