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Abstract

The streaming instability is thought to play a central role in the early stages of planet formation by enabling the
efficient bypass of a number of barriers hindering the formation of planetesimals. We present the first study
exploring the efficiency of the linear streaming instability when a particle-size distribution is considered. We find
that, for a given dust-to-gas mass ratio, the multi-species streaming instability grows on timescales much longer
than those expected when only one dust species is involved. In particular, distributions that contain close-to-order-
unity dust-to-gas mass ratios lead to unstable modes that can grow on timescales comparable to, or larger than,
those of secular instabilities. We anticipate that processes leading to particle segregation and/or concentration can
create favorable conditions for the instability to grow fast. Our findings may have important implications for a large
number of processes in protoplanetary disks that rely on the streaming instability as usually envisioned for a unique
dust species. Our results suggest that the growth rates of other resonant-drag instabilities may also decrease
considerably when multiple species are considered.
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1. Introduction

The building blocks of planetary bodies are kilometer-sized
planetesimals, which are believed to form and grow from small
dust particles present in the protoplanetary disk. When growing
from micro- to meter-sized objects, the particles need to
overcome the so-called “growth barriers” (see Testi et al. 2014
for a review). In particular, under the typical conditions
expected in protoplanetary disks, the radial-drift barrier
prevents particles from growing beyond centimeter scales.
This corresponds roughly to the particle size for which the
timescale involved in particle growth is comparable to the
timescale associated with their radial drift (Whipple 1972;
Weidenschilling 1977; Nakagawa et al. 1986). One mechanism
envisioned to overcome this barrier is the streaming instability
(Youdin & Goodman 2005; Youdin & Johansen 2007; Jacquet
et al. 2011; Auffinger & Laibe 2018).

Even though there have already been a handful of papers
reporting numerical simulations exploring the effects of dust-
sized distributions in the nonlinear outcome of the streaming
instability (see, e.g., Bai & Stone 2010a; Schaffer et al. 2018), a
systematic study addressing its linear regime is yet to be
presented. Such a study is necessary for a number of reasons.
Conceptually, it provides a more sensible framework to
assess the efficiency of the streaming instability in more
realistic models of protoplanetary disks. From a computational
perspective, it provides valuable benchmarks against which to
test numerical codes (e.g., Benítez-Llambay et al. 2019), as
well as an idea of the numerical requirements to recover the
proper evolution of the instability during its early (linear)
phase.

In this Letter, we present the first study of the linear phase of
the streaming instability involving a distribution of dust
particles of different sizes. Our systematic exploration of
parameter space allows us to provide the growth rate of the
most unstable mode as a function of the dust-to-gas mass ratio,
particle-size range, and number of dust species considered for
describing a particle-size distribution.

2. Multi-species Streaming Instability

2.1. Dust-size Distribution

We consider an underlying (continuous) number-density
distribution of particles, which is a power law of index q in the
particle size, a (Dohnanyi 1969; Mathis et al. 1977). In what
follows, we take q=−3.5 for definitiveness3 (see e.g., Garaud
et al. 2004). We consider the Epstein regime in which the
Stokes number is proportional to the particle size, i.e., T as µ .
A discrete approximation of this dust-size distribution is

characterized by the total gas-to-dust mass ratio, ò, a range of
Stokes numbers properly bound by a minimum and a
maximum, T T T,s s,min s,maxD = [ ], and the total number of
species N associated with a distinct Stokes number, Ts,i, with
i=1, K, N. The total mass of the distribution remains
constant when varying N, i.e., i

N
i1  å == , where òi is the dust-

to-gas mass ratio associated with a given dust species. We
define the Stokes numbers characterizing the distribution
evenly in logarithmic scale.4

A robust discrete approximation of the underlying particle-
size distribution should in principle lead to a dynamical model
that converges as the number of dust species considered
increases, i.e., as the continuous limit is approached. Therefore,
it is of particular interest to understand the sensitivity of the
results obtained with respect to the number of dust species, N,
used to describe the underlying dust-size distribution.

2.2. Linear Modes in Fourier Space

The equations describing the dynamics of a gas coupled to N
dust species via drag forces in the framework of the shearing
box, together with the analytical steady-state background
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3 We have obtained results similar to those presented here using q=−4,
which corresponds to a distribution with equal mass per logarithmic bin in
Stokes number. Our analysis can be easily generalized to accommodate for
more sophisticated distributions.
4 The results of this work do not change qualitatively if we distribute the
Stokes numbers so that they all contain the same dust-to-gas mass ratio per
species.
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solution, have been recently derived in Benítez-Llambay et al.
(2019); see Section 3.5. Linear axisymmetric perturbations
with respect to the steady-state background lead to 4(N+1)
(continuity and momentum) equations describing the multiple-
species streaming instability, presented in their Appendix E. A
given eigenmode of this linear system evolves in space and
time according to f k k eRe ,x z

i k x k z tx zd w+ -[ ˆ ( ) ]( ) . Here, f k k,x zd ˆ ( )
are the 4(N+1)-dimensional (complex) eigenvectors in Four-
ier space, spanned by the wavenumbers (kx, kz), associated with
the (complex) eigenvalue ω(kx, kz). In the context of the
streaming instability, it is customary to work with dimension-
less wavenumbers K=H0

2k/R0, where H0 is the disk scale
height at the fiducial radius R0, where the shearing box is
centered, and to use the Keplerian angular frequency,
Ω0≡ΩK(R0), to scale the eigenvalues.

The early evolution of the instability is governed by the
unstable modes—i.e., those with Re(ω)<0—with maximum
growth rate5 σ. In order to identify these modes, we consider
the space spanned by the set (Kx, Kz) when each normalized
wavenumber takes values in the range 10 , 101 3-[ ]. Our fiducial
grid is evenly spaced in logarithmic scale and contains 260
cells in each direction. Given a dust-size distribution, the
dynamical evolution of a specific mode is completely
determined by the spectrum of 4(N+1) complex eigenvalues
ω. This spectrum is found using the function eig of NumPy

(Walt et al. 2011), which uses LAPACK routines for complex
nonsymmetric matrices (Anderson et al. 1999).

2.3. Fastest Growing Modes—Two Test Cases

We consider two discrete particle-size distributions both with
ò=1, but spanning two overlapping ranges of Stokes
numbers: T 10 , 10s

I 4 1D = - -[ ] and T 10 , 1s
II 4D = -[ ]. We

compute the growth rate using N 16, 128, 512Î { } dust
species. These considerations lead to six different eigenvalue
problems that are solved to find the fastest growing modes as a
function of (Kx, Kz). The results corresponding to Ts

ID and
Ts

IID , for each of the adopted N-values, are shown in the upper
and lower panels of Figure 1, respectively. For Ts

ID , the upper
panels show a maximum growth rate that converges with
increasing dust species to σ;1.6×10−2Ω0 (see Figure 2).
For this distribution, the set of modes that grow fastest
converge to a confined region close to the center of the
explored domain in (Kx, Kz). In contrast, for Ts

IID the maximum
growth rate decreases monotonically from σ;6.7×10−2Ω0

for 16 species to σ;0.33×10−2Ω0 for 512 species (see also
Figure 2).
The sensitivity of the results obtained for the fastest growth

rate with respect to the number of species N can be better
appreciated in the leftmost panel in Figure 2, which shows the
growth rates of the most unstable modes for the two
distributions with Ts

ID (orange line) and Ts
IID (blue line),

Figure 1. Color map displaying the growth rate σ of the most unstable mode for the multi-species streaming instability as a function of the wavenumbers Kx and Kz.
Results are shown for two number-density distributions with a power law of index q=−3.5 in the particle-size/Stokes number and equal dust-to-gas mass ratio,
ò=1, for Stokes numbers logarithmically spaced in T 10 , 10s

I 4 1D = - -[ ] (upper panels) and T 10 , 1s
II 4D = -[ ] (lower panels) and for an increasing number of dust

species N=16, 128, 512. Dashed lines denoting σ=10−3Ω0 mark the turning point of the divergent color palette. The hatched regions are stable. The white triangles
correspond to the fastest growing modes whose temporal evolution we checked independently using the code FARGO3D (see Figure 2).

5 i.e., max Re : Re 0s w w= <{∣ ( )∣ ( ) }.
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when the number of dust species doubles from N=2 to
N=2048. For the case Ts

ID , the maximum growth rate
converges when using 64 dust species. This is not the case for

Ts
IID , for which the maximum growth rate decreases below

σ<10−3Ω0. However, in a region around Kx=10−1, the
growth rate converges to ∼5×10−4Ω0 for N�64. This value
sets the timescale of the linear instability for N>2048 species.

In order to shed some light on the strikingly different
behavior exhibited byΔTI andΔTII, we show in Figure 3 high-
resolution maps in (Kx, Kz) zooming in on the neighborhood of
the fastest growing modes. The left and right panels show the
maximum growth rate for 64 and 128 species, respectively. The
upper and lower panels correspond to Ts

ID and Ts
IID (orange

and blue curves in Figure 2), respectively. These maps reveal a
pattern with fringes whose number increases linearly with N, as
they split unstable regions whose growth rates decay also
linearly with N. When these fringes merge, i.e., their separation
is smaller than their width, the growth rates converge. It is
worth stressing that the imaginary parts corresponding to the
most unstable eigenvalues (shown in the middle panel of
Figure 2) do converge as N increases in both cases.

The decay observed in the growth rate of the most unstable
modes when N increases in the case Ts

IID is in stark contrast
with the behavior observed for Ts

ID . This warrants a systematic
exploration of parameter space including the dust-to-gas mass
ratio. Before embarking on this, and given the complexity of
the equations involved in the linear mode analysis describing
the multi-species streaming instability, we provide an inde-
pendent check of our solutions below.

2.4. Verification of the Linear Mode Analysis

We test the time evolution of the most unstable modes using
the publicly available multifluid code FARGO3D (Benítez-
Llambay & Masset 2016; Benítez-Llambay et al. 2019),
following the procedure described in Section 3.5.4 of
Benítez-Llambay et al. (2019).

We consider four representative cases from Figure 2 (red and
green filled circles) and use the corresponding eigenvectors to
initialize four numerical simulations. The rightmost panels of
Figure 2 show the time evolution for one of the components (the
dust density for species 1, δρ1) for each of these four modes. The
solutions obtained with FARGO3D are shown with red and
green unfilled circles for 16 and 128 dust species, respectively.
The black solid lines are the solutions obtained from our linear

mode analysis described in Section 2.2. The excellent agreement
between the time evolution of the selected eigenmodes provides
additional support to our linear calculations. This critically
reduces the possibility of potential issues in several steps of our
analysis, including the derivation of the background equilibrium,
the linearization of the perturbed system, and the method used to
find the eigenvalues and eigenvectors.

2.5. Systematic Parameter Space Exploration

We seek the growth rate of the most unstable mode given a
particle-size distribution characterized by the dust-to-gas mass
ratio, ò, a range of Stokes numbers, T T T,s s,min s,maxD = [ ], and
the total number of species N. We consider four different mass
ratios, ò={0.01, 0.1, 0.5, 1} and two sets of intervals in
Stokes numbers for which either the minimum is fixed and the

I

II

II

I

Figure 2. Real (left panel) and imaginary (middle panel) parts for the eigenvalues corresponding to the most unstable modes for the particle distributions with dust-to-
gas mass ratio ò=1 and Stokes numbers in the intervals T 10 , 10s

I 4 1D = - -[ ] (orange) and T 10 , 1s
II 4D = -[ ] (blue) as a function of particle species number N. The

two rightmost panels show the time evolution of the density fluctuation of dust species 1, δρ1, for the most unstable eigenmode. The red and green unfilled circles
show the solutions obtained with FARGO3D for 16 and 128 dust species, respectively, using 32 cells per wavelength. The solid black lines correspond to the solutions
of the linear mode analysis described in Section 2.2.

Figure 3. High-resolution maps of the normalized growth rate 102
0s s= W˜ .

The domains surrounding the fastest growing modes for the distributions with
Stokes numbers in T 10 , 10s

I 4 1D = - -[ ] and T 10 , 1s
II 4D = -[ ] (upper and lower

panels, respectively) for N=64 and 128 species are shown zooms (left and
right panels, respectively).

3

The Astrophysical Journal Letters, 878:L30 (7pp), 2019 June 20 Krapp et al.



maximum varies, i.e., T T10 ,s, min
4

s,maxD = -[ ] with Ts,max Î
10 , 10 , 10 , 13 2 1- - -{ }, or the maximum is fixed and the
minimum varies, i.e., T T , 1s,max s,minD = [ ] with Ts,min =
10 , 10 , 10 , 101 2 3 4- - - -{ }. For each of these intervals in Stokes
numbers, we consider an increasing number of dust species by
doubling N from 2 to 2048 while keeping the dust-to-gas mass
ratio characterizing the distribution constant. This procedure
leads to 4×(4×2−1)×11=308 independent discrete
distributions.

2.6. Results

The maximum growth rates for each of the distributions
defined above are shown in Figure 4. Each panel corresponds
to a different dust-to-gas mass ratio ò. The rows and columns
correspond to a given N and ΔTs, respectively. Each cell is
color-coded according to the logarithm of the maximum growth

rate obtained in (Kx, Kz)-space, following the method described
in Section 2.
The most relevant outcomes are (i) the growth rate of the

most unstable modes corresponding to the majority of the
distributions with low dust-to-gas mass ratios ò0.1 have not
converged and decreases below 10−3Ω0, independent of Ts,max.
In particular, when Ts,min=10−4 is fixed, (Figure 4, upper
panels), the upper bound for the grow rate decreases from
10−3Ω0 to 10−5Ω0 as Ts,max decreases. (ii) The range of Stokes
numbers for which convergence of the growth rate with the
number of species is reached increases with ò when Ts,min=
10−4. (iii) When fixing Ts,max=1 (Figure 4, lower panels)
convergence of the growth rate, with N=2048, is achieved for
none of the cases considered but one. The only exception is the
case that corresponds to ò=1 and Ts,min=10−1, for which the
most unstable mode has a growth rate σ;6×10−3Ω0. In all
other cases, the growth rate decreases below 10−3Ω0, independent
of the dust-to-gas mass ratio, ò.

Figure 4.Maximum growth rate for the multi-species streaming instability as a function of the number of the dust species N for different ranges of Stokes numbers and
(fixed) dust-to-gas mass ratio; from left to right each block corresponds to ò={0.01, 0.1, 0.5, 1}. The upper panels show the results when considering a fixed
Ts,min=10−4 and varying Ts,max. The lower panels show the results when considering a fixed Ts,max=1 and varying Ts,min. The green circles, in each panel, show
examples of distributions that have the same number of species per decade in Stokes number. The white triangles are used to indicate the correspondence with the
distributions used to compute the growth rate maps in Figure 1.
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3. Outcome and Implications

We have provided the first systematic study of the linear
growth of the multi-species streaming instability. We found
two different types of behaviors. On the one hand, there are
distributions for which convergence of the growth rates is
reached by considering between a handful and a couple of
hundred dust species. In the majority of cases we considered,
however, we were only able to find upper limits to the growth
rates, which are, in many cases, well below the values obtained
when only one dust species is involved. This result is better
appreciated in Figure 5, where we show the maximum growth
rates for the classical (gas and one dust species) streaming
instability (leftmost panel) together with those obtained for the
distributions with 2048 species studied in Section 2.5 (center
and rightmost panels).

Below, we briefly discuss some of the most relevant aspects
and consequences of our findings.

Growth rate decay and connection with resonant drag
instabilities. For a large fraction of the particle distributions we
studied, the maximum growth rate σ decreases as the number of
species N increases (and the mass per species decreases). A
concrete example is illustrated in Figure 2, where the growth
for the distribution with ò=1 and T 10 , 1s

II 4D = -[ ] decreases
as 1/N for sufficiently large N. It is natural to compare this to
the growth obtained when considering a single dust species
with a dust-to-gas mass ratio ò1∼ò/N corresponding to the
species with a Stokes number that in isolation leads to fastest
growth.

We found that for ò<10−2 the maximum growth rate of the
distribution is in good agreement with the value obtained when
considering in isolation the species with largest Stokes number,
Ts=1 in this case (see Figure 6). However, as the total mass of
the distribution considered is increased, a significant difference
between these growth rates exists. This is due to two effects
that are difficult to disentangle; (i) the background drift velocity
for each individual dust species is modified because it is
sensitive to the total mass of the particle-size distribution and
not just the mass per bin (see Benítez-Llambay et al. 2019) and

(ii) as the ensuing gas perturbation increases, the coupling
between species increases and interference among them may
not be negligible.
In the limit of very small dust-to-gas mass ratio, ò=1, we

have checked that the N dust-species streaming instability can
be well described as the superposition of N different two-fluid
instabilities occurring in a seemingly independent way. This
suggests that in this regime the resonant drag instability
framework (Squire & Hopkins 2018) can help provide insight
into the behavior of the multi-species streaming instability. At
sufficiently low dust-to-gas mass ratios the maximum growth

Figure 5. The left panel shows the maximum growth rate corresponding to the classical streaming instability involving only one dust species. The center and rightmost
panels show the maximum growth rate obtained for distributions with 2048 species when fixing Ts,min=10−4 and Ts,max=1, respectively. The dashed line
corresponds to σ=10−3Ω0 in all panels.

Figure 6. Maximum growth rate as a function of the dust-to-gas mass ratio
ò1∼ò/N of the species with Stokes number that leads to the fastest growth
when considered in isolation, Ts=1 in this case (solid black curve). The
dashed colored curves correspond to distributions with different dust-to-gas
mass ratios (each filled circle is obtained, from right to left, by doubling the
number of species N from 2 to 256).
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rate is expected to decay as N1 ~ . This is indeed
obtained for distributions with dust-to-gas mass ratios smaller
than ò=0.01 (see Figure 6).

Single-dust species models of streaming instability. We
report the emergence of an unstable region for Kx?1 and
Kz�0, which has not been observed before (see Youdin &
Goodman 2005; Youdin & Johansen 2007). A good example is
provided by the two distributions studied in Figure 1. While a
comprehensive study of this new unstable region is beyond the
scope of this work, we found that the necessary condition for it
to appear is the presence of at least two dust species with
opposite background drift velocities. This observation suggests
that it may not be possible to capture the full dynamics of
multi-species streaming instabilities using single dust-species
models (e.g., Laibe & Price 2014; Lin & Youdin 2017).

Simulations of multi-Species streaming instability. The
successful recovery of known solutions is a key benchmark
for any numerical code. Previous numerical studies of the
nonlinear evolution of the streaming instability with one dust
species have been reported to recover, for example, its linear
phase (see, e.g., Johansen & Youdin 2007; Balsara et al. 2009;
Kowalik et al. 2013; Chen & Lin 2018; Riols & Lesur 2018;
Benítez-Llambay et al. 2019). Even though the linear results
have been derived using a Eulerian formalism, it has been
shown that numerical codes evolving Lagrangian particles
agree very well during the early phases of the streaming
instability (Youdin & Johansen 2007). This suggests that our
findings will also hold in the Lagrangian framework. It is
possible that a significant decay of the growth rate has not yet
been observed in multiple dust-species simulations because of
the relatively low number of species that have been used so far
(see, e.g., Bai & Stone 2010b; Schaffer et al. 2018).

Critical dust-to-gas mass ratio. Our study suggests that
particle-size distributions with ò�0.5 are required to allow the
multi-species streaming instability to grow on timescales
shorter than 103

0
1W- (see Figure 5). This, however, depends

on the range of Stokes numbers defining the distribution. For
example, if Ts,max=1 the growth rates are smaller than
10−3Ω0, even for large dust-to-gas mass ratios (i.e., ò=1).
When ò=0.5 and Ts,min=10−4 the maximum growth rate
converges to σ;10−3Ω0 for Ts,max=10−1, and the instability
can grow faster for particle-size distributions with Ts,max�
10−2. It can also grow faster if the dust-to-gas mass ratio
increases to ò;1 for those ranges of Stokes numbers. We
additionally found that, if the total mass of the distribution
decreases below ò=0.5 , the instability develops on timescales
of the order of 105

0
1W- , or even longer, depending on the range

of Stokes numbers spanned by the particle distribution.
Planetesimal formation. We anticipate that the multi-species

streaming instability could still be an efficient mechanism to
enable planetesimal formation if dust particles are filtered/
segregated according to their size and accumulated somewhere
in the disk. This will naturally produce regions with large
concentrations of dust with distributions characterized by
specific particle-sizes. For instance, vertical sedimentation
affected by the presence of winds (e.g., Riols & Lesur 2018)
or turbulence sustained by the vertical shear instability (e.g.,
Lin 2019) can favor the accumulation of larger grains at the
mid-plane of protoplanetary disks. Some other potential
mechanisms for such filtering/segregation are vortices (e.g.,
Barge & Sommeria 1995; Raettig et al. 2015; Ragusa et al.
2017), zonal flows (e.g., Johansen et al. 2009; Dittrich et al.

2013; Béthune et al. 2016; Krapp et al. 2018), planet-induced
pressure bumps (e.g., Pinilla et al. 2012; Zhu et al. 2012;
Weber et al. 2018), and planetary torques (Benítez-Llambay &
Pessah 2018; Chen & Lin 2018). Another candidate in this
regard is the growth (via dust coagulation) to sizes that are
limited by particle-drift, fragmentation or bouncing (Testi et al.
2014). Such mechanisms naturally appear to favor accumulat-
ing significant amounts of mass into (near-)monodisperse
populations of particles.
We conclude that a properly resolved particle-size distribu-

tion can significantly affect the linear phase of the streaming
instability. Depending on the dust-size distribution and dust-to-
gas mass ratio, the multi-species instability may only grow on
timescales much larger than those expected from the classical
(gas and one dust species) case when approaching the
continuum limit. In particular, distributions that contain
moderate to high dust-to-gas mass ratios (i.e., ò1) will only
grow on timescales comparable with those of secular
instabilities. Taken at face value, our results imply that the
scope of the streaming instability may be narrowed down
profoundly. Nevertheless, processes leading to particle segre-
gation and/or concentration may create favorable conditions
for the instability to develop. Because the growth rate of the
multi-species streaming instability depends sensitively on the
number of dust species used to represent a distribution, our
results may also have important implications for the wider
class of resonant-drag instabilities discussed in Squire &
Hopkins (2018).
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