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Abstract

Recognition of probe interval graphs has been studied extensively. Recognition algorithms
of probe interval graphs can be broken down into two types of problems: partitioned and
non-partitioned. A partitioned recognition algorithm includes the probe and nonprobe partition
of the vertices as part of the input, where a non-partitioned algorithm does not include the
partition. Partitioned probe interval graphs can be recognized in linear-time in the edges,
whereas non-partitioned probe interval graphs can be recognized in polynomial-time. Here
we present a non-partitioned recognition algorithm for 2-trees, an extension of trees, that
are probe interval graphs. We show that this algorithm runs in O(m) time, where m is the
number of edges of a 2-tree. Currently there is no algorithm that performs as well for this problem.
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1 Introduction

Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). The number of
vertices of G is referred to as n and the number of edges by m. A graph G is a probe interval graph
if there is a partition of V (G) into P and N and a collection {Iv : v ∈ V (G)} of closed intervals
of R in a one-to-one correspondence with V (G) such that uv ∈ E(G) if and only if Iu ∩ Iv ̸= ∅
and at least one of u or v belongs to P. The set P is referred to as the probes, and the set N the
nonprobes. The collection of intervals along with the partition into probes and nonprobes will be
referred to in this paper as a representation. Probe interval graphs were introduced in conjunction
with the human genome project, in order to aid with a task called physical mapping [1, 2, 3].

Recognition of probe interval graphs has been studied extensively. Recognizing probe interval graphs
can be broken down into two types of problems: partitioned and non-partitioned. A partitioned
recognition algorithm includes the probe and nonprobe partition as part of the input, where a
non-partitioned algorithm does not. McConnell and Nussbaum present a linear-time recognition
algorithm for the partitioned probe interval graph problem in [4]. Chang et al. proved the existence
of a polynomial-time recognition algorithm for the non-partitioned probe interval graph problem in
[5], but stated that a more efficient algorithm remains an open problem.

Because of the difficulty of the non-partitioned problem, many people have turned their attention
to the recognition of probe interval graphs from specific families of graphs. Some examples of probe
graph classes with non-partitioned recognition algorithms are chordal graphs [6], probe distance-
hereditary graphs [7], probe cographs [8], and probe comparability graphs [9]. In this paper, we will
add to this list, giving an efficient non-partitioned recognition algorithm for probe interval 2-trees.
Our algorithm runs in O(m) time, where m is the number of edges of a 2-tree, and currently there
is no algorithm that performs as well for this problem. In addition, we implemented our algorithm
and tested it on a variety of challenging 2-trees.

2 Foundations

A 2-tree is recursively defined as follows.

• K2 is a 2-tree;

• Suppose G is a 2-tree; create G′ by adding a vertex to G adjacent to both vertices of some
K2 of G.

Pržulj and Corneil investigated a forbidden induced subgraph characterization for 2-tree probe
interval graphs in [10], finding that there are at least 62 forbidden subgraphs. This large obstruction
set was added to in [11], where Brown, et al. found one more infinite family of forbidden subgraphs.
In that paper, there was a complete characterization of 2-tree probe interval graphs based on a
structure called a sparse spiny interval 2-lobster (ssi2-lobster). We use this structure as our basis
for the recognition algorithm.

Theorem 2.1. [11] Let G be a 2−tree. Then G is a probe interval graph if and only if it is an
ssi2-lobster.

To understand the structure of an ssi2-lobster, we recall the generalized idea of a path from Beineke
and Pippert in [12]. As we walk through the details of the structure of the ssi2-lobster, we will
simultaneously give the corresponding piece of the algorithm.

Definition 2.1. A 2-path of G is an alternating sequence of distinct 2-cliques and 3-cliques of G,
(e0, t1, e1, t2, e2 , ..., tp, ep), starting and ending with a 2-clique and such that ti contains exactly
two of the distinct 2-cliques: ei−1 and ei (1 ≤ i ≤ p). The length of the 2-path is the number p of
3-cliques. The letters e and t are used to remind us of edges and triangles (K3s).
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A vertex v of a 2-tree G is a 2-leaf if the degree of v is two. Let G be a 2-tree and define G
′
to

be G − L̂, where L̂ is the set of 2-leaves of G; iteratively, G
′′
= G

′
− L̂

′
. It is necessary, but not

sufficient, that G
′′
is a 2-path for G to be a probe interval graph. Thus we first remove the 2-leaves

via Algorithm 2.1 twice.

Let G be the graph depicted in Fig. 1. In G the vertices v1, v7, v11, v15, v17 and v18 are all 2-leaves,
so V (G

′
) = {v2, v3, v4, v5, v6, v8, v9, v10, v12, v13, v14, v16}. Now G

′
has the 2-leaves v2, v6, v14 and

v16, so V (G
′′
) = {v3, v4, v5, v8, v9, v10, v12, v13}.

In Algorithm 2.1, we define M
′
to be the adjacency matrix for G

′
and M

′′
to be the adjacency

matrix for G
′′
. In our implementation, for computational savings, we also store the degrees of the

vertices for G,G
′
and G

′′
and label the array as d, d

′
and d

′′
, respectively. The 2-leaves that are

removed will later need to be classified as probes or nonprobes, so we save them and their neighbors
in an array titled L̂1 for the first sweep and L̂2 for the second sweep.

Although we conceptually speak of removing the vertices from the graph, the implementation of
our algorithm keeps the vertices in the adjacency matrix and zeros out the row and column, giving
it degree zero. Maintaining the original data structure helps keep the indexing correct and saves
on computations.

After removing the 2-leaves twice, we check to make sure the resulting graph, G
′′
, is a 2-path, which

is only to check that the resulting matrix has exactly two 2-leaves. If it has more than two 2-leaves,
then the graph is not a probe interval graph, and the algorithm ends. If it has exactly two 2-leaves,
then we need to define the edges and triangles of the 2-path, which is done in Algorithm 2.2.

Algorithm 2.1: Remove 2-Leaves
Input: n× n adjacency matrix M and n× 1 list of the degree of each vertex (if known)
Output: n× n adjacency matrix M ′, n× 1 degree of each vertex d′, and l̂ × 3 matrix L̂ of

2-leaves of M with neighbors
1 l = 0;
2 if Degrees are unknown (d = 0) then
3 for i = 1 : n do
4 d(i, 1) = sum ith row of M ;
5 if d(i, 1) = 2 then
6 Store index i and neighbors in L;
7 Count number of 2-leaves: l = l + 1;

8 else
9 for i = 1 : n do

10 if d(i, 1) = 2 then
11 Store index i and neighbors in L;
12 Count number of 2-leaves: l = l + 1;

13 Copy the original adjacency matrix and list of degree: M ′ = M , d′ = d;
14 for i = 1 : l do
15 Zero out corresponding rows and columns of M ′;
16 Adjust degrees in d′ based on pruned vertices;
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Algorithm 2.2: Construct 2-Path

Input: n× n adjacency matrix M ′′, n× 1 list of the degree of each vertex d′′

Output: p× 3 matrix T of triangles and (p+ 1)× 2 matrix E of edges
1 Locate 2-leaves and remaining active vertices in M ′′;
2 dcount = the number of two leaves;
3 active = the number of active vertices in M ′′;
4 if dcount > 2 then
5 Exit, not a Probe Interval Graph;

6 sweep = 1;
7 while sweep < active− 1 do
8 if sweep = 1 then
9 i = locate(1, 1), T (sweep, 1) = i;

10 Find neighbors of vertex i and store in T (sweep, 2) and T (sweep, 3);
11 Construct E using the two appropriate vertices from current triangle T ;
12 Select new vertex i from currrent neighborhood in T ;
13 sweep = sweep+ 1;

14 else
15 Current location in ith vertex
16 Construct E using the two appropriate vertices from current triangle T ;
17 Select new vertex i from currrent neighborhood in T ;
18 sweep = sweep+ 1;
19 if sweep = active− 2 then
20 Return T and E as the 2-path has been identified;

v1

v10

v9

v8

v5

v7
v6

v4

v3

v2

v17

v16

v15

v14

v13

v12

v11

v18

Fig. 1. An example of a probe interval 2-tree

3 Classification of Vertices

If G
′′

is a 2-path we then need to start classifying certain vertices to determine whether it is an
ssi2-lobster and to later help with the partition into probes and nonprobes. Suppose G is a 2-tree
such that G

′′
is the 2-path (e0, t1, e1, t2, . . . , tp, ep), such that e0 and ep are defined in the following

way. Let a0 be a 2-leaf of G
′
such that NG

′ (a0) ⊂ t1 and ap be a 2-leaf of G
′
such that NG

′ (ap) ⊂ tp.
Define e0 = NG

′ (a0) and ep = NG
′ (ap). This will be our intended meaning for e0 and ep for the

rest of the paper. Note that there may be an ambiguity in which edge of G
′′
is to be e0 or ep, but

this choice may always be made arbitrarily as it does not affect any results.
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Consider again our example G in Fig. 1. Notice here that G
′′

is a 2-path, with e0 = {v3, v4},
t1 = {v3, v4, v5}, e1 = {v4, v5} t2 = {v4, v5, v8}, e2 = {v5, v8}, t3 = {v5, v8, v9}, e3 = {v8, v9},
t4 = {v8, v9, v10}, e4 = {v9, v10}, t5 = {v9, v10, v12}, e5 = {v10, v12}, t6 = {v10, v12, v12} and
e6 = {v12, v13}.

After the completion of Algorithm 2.2, we need check the vertices L̂1 and L̂2 to see if their
neighborhood in G and G

′
, respectively, are equal to some ei in the 2-path created in Algorithm

2.2. This is the first step in Algorithm 3.1. If a vertex has a neighborhood not equal to an ei, then
it is put in L1 or L2. We now formally define L1 and L2:.

• L1 = {v ∈ L̂1 : NG(v) ̸= ei (0 ≤ i ≤ p)};

• L2 = {v ∈ L̂1 : NG
′ (v) ̸= ei (0 ≤ i ≤ p)}.

Algorithm 3.1: Categorize 2-Leaves

Input: l̂1 × 3 matrix L̂1 of 2-leaves from M , l̂2 × 3 matrix L̃2 of 2-leaves from M ′, and
n× 1 list d′′ of the degree of each vertex in M ′′

Output: l1 × 3 matrix L1, l
1
1 × 3 matrix L1

1, l
2
1 × 3 matrix L2

1, l2 × 3 matrix L2

1 Set L1 = L̂1 and L2 = L̂2 with l1 = l̂1 and l2 = l̂2;
2 Remove from L1 any 2-leaves in L1 with neighborhoods in E and adjust l1 accordingly;
3 Remove from L2 any 2-leaves in L2 with neighborhoods in E and adjust l2 accordingly;
4 if L2 is nonempty then
5 Exit, not a Probe Interval Graph;

6 Set L1
1 = L1 and l11 = l1;

7 Remove from L1
1 any vertices whose neighborhood is nonzero in d′′ and adjust l11

accordingly;
8 Set L2

1 = L1 and l21 = l1;
9 Remove from L2

1 any vertices also in L1
1 and adjust l21 accordingly;

In the example from Fig. 1, L̂1 = {v1, v7, v11, v15, v17, v18} and L1 = {v1, v7, v11, v15, v17}. The
vertex v18 is not in L1, since its neighborhood is e5 = {v10, v12}. The rest of the vertices, though,
have a neighborhood which is not equal to any ei, so they are in L1. Also, L̂2 = {v2, v6, v14, v16}
and L2 = ∅, since all of the vertices from L̂2 have a neighborhood equal to an ei in G

′
. If L2 is not

empty, then G is not a spiny interior 2-lobster nor a probe interval graph, and the algorithms ends.

Definition 3.1. A 2-tree G is a 2-lobster if G
′′
is a 2-path. A spiny interior 2-lobster is a 2-lobster

G with L2 = ∅.

Spiny interior 2-lobsters are the defining characteristic of another variation of interval graphs, called
interval 3-graphs. However, for G to be a probe interval graph, the spiny interior 2-lobster must
also be sparse. Thus we have some further checking of conditions if L2 is empty. Algorithm 3.1
then checks each vertex in L1 to see if its neighborhood in G is a subset of the 2-path found in
Algorithm 2.1, creating L1

1 and L2
1, which are formally as

• L1
1 = {v ∈ L1 : NG(v) ⊆ V (G

′′
)};

• L2
1 = {v ∈ L1 : NG(v) ̸⊆ V (G

′′
)}.

In Fig. 1, L1 = {v1, v7, v11, v15, v17}, so these vertices are divided into L1
1 = {v11} and L2

1 =
{v1, v7, v15, v17} by Algorithm 3.1. The vertex v11 has a neighborhood in G of v8 and v9, both of

which are vertices in G
′′
. On the other hand, consider vertex v7, whose neighborhood in G is v6

and v5. The vertex v6 is not in G
′′
, so v7 is put into L2

1.
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Some subset of the vertices of L1
1 and L2

1 will end up being part of the set of nonprobes, but which
subset is determined by relationships with the vertices of G

′′
. Algorithm 3.2 creates the sets W 1,

W 2, W 3 and W 3′ which help determine those relationships. We now define the following:

• W 1 = {v ∈ V (G
′′
) : NG(x) = ti − v for some x ∈ L1

1, (1 ≤ i ≤ p)};

• W 2 = {v ∈ V (G
′′
) : NG(y) = NG

′′ (z) + z − v = ei + z − v for some y ∈ L2
1 and z ∈ V (G),

(1 ≤ i ≤ p− 1)};

• W 3 = {v ∈ V (G
′′
) : NG(y) = NG

′′ (z) + z − v = ei + z − v for some y ∈ L2
1 and z ∈ V (G),

(i ∈ {0, p})}.

Algorithm 3.2: Categorize 2-Path

Input: l11 × 3 matrix L1
1, l

2
1 × 3 matrix L2

1, l̃2 × 3 matrix L̃2, p× 3 matrix T , and (p+ 1)× 2
matrix E

Output: vectors W 1, W 2, W 3 and W 3′

1 for i = 1 : l11 do
2 Locate the vertex in T that has neighbors L1

1(i, 2) and L1
1(i, 3) and then put this vertex

in W 1;

3 for i = 1 : l21 do

4 Locate the neighbor of L2
1(i, 1) that is in L̂2;

5 Set xyz equal to the located row in L̂2;
6 if yz ∈ E(1, :) or yz ∈ E(p+ 1, :) then
7 From yz, choose the vertex which is not a neighbor of L2

1(i, 1) and add it to W 3;
8 else
9 From yz, choose the vertex which is not a neighbor of L2

1(i, 1) and add it to W 2;

10 If a vertex occurs more than once in W 3 add it to W 3′ ;

For each vertex x ∈ L1
1, you check which ti in G

′′
contains the neighborhood of x. There will be

exactly one vertex v in that ti that is not adjacent to x, and that v goes in W 1.

In G from Fig. 1, we consider v11, which is in L1
1. Notice that v11 is adjacent to v8 and v10, which

are in t4 defined in Algorithm 2.2. The only vertex that is part of t4 that is not adjacent to v11 is
v9, so v9 ∈ W 1, and since there is only one vertex in L1

1, W
1 = {v9}. The idea is that v11 and v9

will both need to be nonprobes with intersecting intervals. Thus you want these two vertices to be
non-adjacent, since two nonprobes cannot have an edge between them. The algorithm continues to
find these types of pairs of vertices.

Similarly we look at every vertex x ∈ L2
1. In this case, however, every vertex x ∈ L2

1 will be adjacent
to exactly one vertex, z from L̂2. Furthermore, that neighborhood of z in G

′
and the neighborhood

of x in G will differ by exactly one vertex, v, which goes in W 3 if NG
′ (z) is equal to either e0 or

ep or W 2 otherwise. In the graph from Fig. 1, consider v7 ∈ L2
1. It is adjacent to v6 ∈ L̂2 and

NG
′ (v6) = e1 and the vertex that v7 is not adjacent to from e1 is v4, so v4 ∈ W 2. Consider further

v17 ∈ L2
1, which for the reasons stated above places v13 ∈ W 3. After checking each vertex in L2

1, we
get W 2 = {v4} and W 3 = {v4, v12, v13}.

Notice that W 3 will never be empty because Algorithm 2.1 eliminates two vertices on either end
of the longest 2-path in G. Thus some tricky things can happen on the end of 2-path in G

′′
. This

forces the creation of another set of vertices W 3′ , which is a subset of the vertices of W 3 and defined
as follows:

6
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• W 3′(G) = {v ∈ W 3 : NG(y) = NG
′′ (z) + z − v = ei + z − v and NG(s) = NG

′′ (r) + r − v =
ei + r − v for y, s ∈ L2

1 and distinct z, r ∈ V (G), (i = 0 or i = p)}.

In G from Fig. 1, W 3′ is empty because for each vertex v in W 3 there are not two distinct vertices
from L2

1 that place v in W 3.

4 Partition and Complexity

We are now ready to identify the class of 2-trees which are probe interval graphs: the sparse spiny
interior 2-lobsters.

Definition 4.1. Let G be a spiny interior 2-lobster with G
′′
the 2-path (e0, t1, e1, t2, . . . , tp,ep).

The following two conditions hold if and only if G is a sparse spiny interior 2-lobster (ssi2-lobster):

1. No ti, 1 ≤ i ≤ p, has two vertices in W 1 ∪W 2 ∪W 3′ .

2. No ti, i ∈ {1, p}, has three vertices x, y, and z such that x, y ∈ W 3 and if e0 = xy or ep = xy

then z ∈ W 1 ∪W 2 ∪W 3′ .

Algorithm 4.1 checks the condition above to verify that the graph G is an ssi2-lobster, which implies
that it is a probe interval graph. This check shows that there is a partition of vertices into probes
and nonprobes, but does not necessarily give the partition, so the algorithm needs to take it a step
further. Although it is true that all of the vertices of W 1 ∪W 2 ∪W 3′ must be nonprobes as well
as the corresponding vertices of L1

1 and L2
1 that put them there, not all of W 3 must be nonprobes.

Consider our example G from Fig. 1, W 1 ∪ W 2 ∪ W 3′ = {v9, v4} and W 3 = {v4, v12, v13}. Since
v12 and v13 are adjacent to one another, they can’t both be nonprobes. Thus the algorithm checks
to see one of these vertices is adjacent to another in W 1 ∪W 2 ∪W 3′ . If it is adjacent to a vertex
in W 1 ∪W 2 ∪W 3′ , then it, and the corresponding vertex from L2

1, will not be nonprobes. If there
isn’t a vertex adjacent to W 1 ∪W 2 ∪W 3′ , then an arbitrary choice can be made. In our example,
v12 is adjacent to v9, so v12 and v15 (the vertex that put v12 in W 3) are both probes. Algorithm
4.1 checks these last details and outputs the nonprobes and probes, if it is a probe interval graph.
In our example, the nonprobes are the set N = {v1, v4, v7, v9, v11, v13, v17} and the set of probes
P = V (G)−N .

Now Algorithm 4.2 puts all of the steps together representing our entire implementation. It inputs
an adjacency matrix for a 2-tree, and if the 2-tree is not a probe interval graphs, it exits. If the
2-tree is a probe interval graph, then it outputs the partition of probes and nonprobes.

In addition to the aforementioned pseudo-code, we also implemented the algorithm in the Matlab
environment and tested it on a variety of challenging 2-trees. Our implementation consistently
returned the desired partition within the estimated number of operations. We now prove the
complexity of our algorithm for all 2-trees.

Theorem 4.1. Probe interval 2-trees can be recognized in O(n2) time.

Proof. Algorithm 4.2 determines whether the inputted 2-tree is a probe interval graph by determining
whether it is an ssi2-lobster and then outputs the partition of vertices into probes and nonprobes.
Thus we now determine the complexity of Algorithm 4.2.

We begin with an n × n adjacency matrix M for a graph G with n vertices. The first call to
Algorithm 2.1 requires the computation of the degree of each vertex. This is accomplished by
a row sum for each row in the matrix M . Along with computing the row sum, the location of
the neighbors is noted requiring a total of 2n operations. When a 2-leaf is located, the desired
information is stored. If dcount is the number of 2-leaves identified, there are 2dcount operations

7
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Algorithm 4.1: Categorize Probes and Nonprobes

Input: vectors W 1, W 2, W 3, W 3′ , (p+ 1)× 2 matrix of edges E, l21 × 3 matrix L2
1, l

1
1 × 3

matrix L1
1, and n× n adjacency matrix M

Output: Partition consiting of a vector of Probe vertices P and a vector of nonprobe
vertices N

1 Set W = W 3 −
(
W 1 ∪W 2 ∪W 3′

)
;

2 if E(1, :) or E(p+ 1, :) has exactly one vertex in W then
3 Locate that vertex in W 3 and let i equal the index in W 3;
4 Remove the ith vertex from W 3;
5 Remove the ith row from L2

1;

6 if E(1, :) or E(p+ 1, :) has both vertices in W then

7 Locate that vertex in W 3 that is adjacent to W 1 ∪W 2 ∪W 3′ and let i equal the index
in W 3;

8 Remove the ith vertex from W 3;
9 Remove the ith row from L2

1;

10 Set N = W 1 ∪W 2 ∪W 3 ∪ L2
1(:, 1) ∪ L1

1(:, 1);
11 if N has two adjacent vertices then
12 Exit; not a Probe Interval Graph;

13 Set P = V (G)−N ;

Algorithm 4.2: Probe Interval Graph Recognition
Input: n× n adjacency matrix M
Output: Partition consiting of a vector of Probe vertices P and a vector of nonprobe

vertices N
1 Prune 2-leaves:

2 [d,M ′, d′, L̂1] = Remove2–Leaves(M,d);
3 Prune 2-leaves again:

4 [dd,M ′′, d′′, L̂2] = Remove2–Leaves(M ′, d′);
5 Construct 2-path:
6 [T,E] = Construct2–Path(M ′′, d′′, d′);
7 Categorize 2-leaves:

8 [L1, L
1
1, L

2
1, L2] = Categorize2–Leaves(L̂1, L̂2, d

′′);
9 Categorize 2-path:

10 [W 1,W 2,W 3,W 3′ ] = Categorize2–Path(L1
1, L

2
1, L̂2, T, E);

11 Categorize probe and nonprobe vertices:

12 [P,N ] = CategorizeProbes–Nonprobes(W 1,W 2,W 3,W 3′ , E, L2
1,M);

where 2 ≤ dcount ≤ n. Finally, pruning the 2-leaves and adjusting the vector of degrees requires an
additional 5dcount operations bringing the total to n(2n+ 2dcount) + 5dcount. Using the bound on
dcount we have that the total cost is 4n2 + 5n or O(n2) for this first call to Algorithm 2.1.

The next step of Algorithm 4.2 is again a call to Algorithm 2.1. Some complexity savings are made
as the degree of each vertex is known. Identifying the location of the 2-leaves, the neighboring
vertices and pruning requires a total of

n(2n+ 3) + 5dcount,

8
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where dcount is again the number of 2-leaves. In this case, we have 2 ≤ dcount ≤ n
2
and our total

cost is 2n2 + 11
2
n or O(n2) for the second call to Algorithm 2.1.

Next we construct the 2-path using Algorithm 2.2. Algorithm 2.2 begins by identifying the active
vertices which requires n operations. Another 2n are required to check if a 2-path exits. To construct
the 2-path, we begin at one of the 2-leaves and work towards the other 2-leaf. This process requires
2n + 3n(active − 2) operations where active is the number of vertices in M ′′. Since we pruned
2-leaves in the repeated calls to Algorithm 2.1, we have that active ≤ n − 6 so the total cost is
3n2 − 19n or O(n2) to construct the 2-path.

The next step of Algorithm 4.2 uses Algorithm 3.1 to categorize the 2-leaves. The parameters of
interest for this algorithm are the following:

• l̂1 = the number of 2-leaves in M

• l̂2 = the number of 2-leaves in M ′

• p = the length of the 2-path T .

We have that l̂1 + l̂2 + p+ 2 = n. First, the neighborhoods in L̂1 are checked against the edges in
E requiring 2l̂1(p + 1) operations. Removing identified vertices from L̂1 to construct L1 requires
rcount l̂1 operations where rcount is the number of vertices to be removed and rcount < l̂1. The total
cost for constructing L1 from L̂1 is at most 2l̂1(p + 1) + (l̂1)

2. Constructing L1
1 from L1 requires

l1 + rcountl1 operations where l1 ≤ l̂1 and rcount ≤ l1. This results in at most l̂1 + (1̂1)
2 operations

to construct L1
1. Constructing L2

1 requires l11l1 + rcountl1 operations where l11 ≤ l̂1 and rcount ≤ l1.
Here we have at most 2(l̂1)

2 to construct L2
1. Lastly, the neighborhoods in L̂2 are checked against

the edges in E requiring 2l̂2(p+1) operations. Removing vertices from L̂2 to construct L2 requires
an additional rcount l̂2 operations where rcount ≤ l̂2. Thus L2 requires at most 2l̂2(p + 1) + (l̂2)

2

operations. Putting this all together we have a total cost of approximately

2l̂1(p+ 1) + 4(l̂1)
2 + l̂1 + l̂2(p+ 1) + (l̂2)

2

or at most 5n2 or O(n2) operations.

Next we categorize the 2-path using Algorithm 2.2. Constructing W 1 requires the vertices in L1
1 to

be checked against the triangles in T requiring 3pl11 operations where l11 ≤ l̂1. Constructing W 2 and
W 3 requires 2l2l

2
1 operations where l2 ≤ l̂2 and l21 ≤ l̂1. Further constructing the set W 3′ requires

2
∣∣W 3

∣∣ operations where ∣∣W 3
∣∣. Putting this all together we have a total cost of

3pl11 + 2l2l
2
1 + 2

∣∣W 3
∣∣

for at most 5n2 + 2n or O(n2) operations.

The last step in Algorithm 4.2 is to categorize the vertices as probes or nonprobes and construct
the partition by a call to 4.1. Checking that e0 or ep has exactly one vertex in W or two vertices
in W and removing the desired vertex from W 3 requires

2 |W |+ 2n+
(∣∣∣W 1 ∪W 2 ∪W 3′

∣∣∣+ ∣∣W 3
∣∣+ 3l21

)
n+ 4

∣∣W 3
∣∣

operations for an upper bound of at most 5n2 + 8n operations or O(n2).

All together, the steps of Algorithm 4.2 require at most 24n2 + 3
2
n or O(n2) operations.

Corollary 4.2. Probe interval 2-trees can be recognized in O(m) time.

Proof. Since m = O(n2), Algorithm 4.2 runs in O(m) time.

9
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It is worth noting that while the algorithm runs in O(n2) time, that the bound of 24n2 + 3
2
n

operations could be lower. Look for example at the bound on the number of 2-leaves, or dcount in
the algorithm. The bound for the number of 2-leaves of G is n and the bound of the number of
2-leaves of G

′
is n

2
. Both of these bounds are tight individually, but a 2-tree cannot simultaneously

attain both of these bounds. There are many places where this happens, so there is research to be
done in finding a lower constant.

5 Conclusions

A graph is a probe interval graph if its vertices can be partitioned into probes and nonprobes with
an interval associated to each vertex so that vertices are adjacent if and only if their corresponding
intervals intersect and at least one of them is a probe. A 2-tree is recursively defined by adding a
vertex to an existing 2-tree that is adjacent to both vertices of some K2 in the 2-tree, and a K2

is a 2-tree. We have introduced, implemented and tested an efficient non-partitioned recognition
algorithm for 2-trees, an extension of trees, that are probe interval graphs. Our algorithm is based
on a structure called a sparse spiny interval 2-lobster introduced in [11]. The complexity of our
approach is O(n2) or O(m).

Our result is comparable with the partitioned algorithm of McConnell and Nussbaum [4], since
their result was linear in edges. Our result is an improvement in state-of-the-art algorithms for
this problem, since our nonparitioned algorithm is faster than all known nonpartitioned algorithms
and runs in the same time as a partitioned algorithm. While our result is specific to 2-trees, the
techniques may be generalizable. Often recognition algorithms use obstruction sets as a basis, while
our algorithm uses a structural characterization. Since the non-partitioned version of recognition
algorithms is quite a bit more difficult, future research in structural characterizations may be needed.
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