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Abstract 
 

In this paper we use Darboux’s theory to set up a second order partial differential equation. Later, we will 
use the variable transformation method to rotate the axis, degree 422.8756235   by , in order to remove the 

interaction terms, which will allow us to find the geodesic equation of two parameter’s extreme value 
distribution. We also list and prove some useful moments of this distribution. Finally, we apply six 
transformations that relate this extreme value distribution to other well known distributions, which will 
extend the value of the results.    
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1 Introduction 
 
Extreme value distribution theory originated to assist astronomers in evaluating the validity of outlying 
observations. However, this distribution has also found a variety of applications related to natural 
phenomena such as rainfall, floods, wind gusts, air pollution and corrosion. The early papers by Fuller [1] 
and Griffith [2] on the subject were highly specialized; both in the fields of application and in the methods of 
mathematical analysis. This area of research thus attracted initially the interests of theoretical probabilists as 
well as engineers and hydrologists, and only recently of the mainstream statisticians. Historically work on 
extreme value length problems may be dated back to as early as 1709 when Nicolas Bernoulli discussed the 
mean largest distance from the origin when n points lie at random on a straight line of length t. (see Gumbel 
[3]) The most detailed bibliography that contains more than 350 references about this distribution can be 
found in Johnson, N.L., Kotz, S. and Balakrishnan N [4]. 
 
In this paper we focus on the geodesic equation aspect of the extreme value distribution theory. We use 
Darboux’s theory to set up a second order partial differential equation. Later, we introduce a two variable 
chain rule method to rotate the main axis, degree 422.8756235  by , to remove the interaction terms. In 
this way, we can use the separable variable method to solve this second order partial differential equation. In 
section 5 we list and prove some related moments. Finally, we give six transformations which transform 
standard exponential distribution to some well known distributions that extend our results.  
 

2 List the Fundamental Tensor 
 
The standard form of the two-parameter extreme value distribution has the cumulative function and the 
probability density function given by,  
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From the equation (2.1) and (2.2) above, we derive the basic metric tensor components for this distribution 
as follows,  
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Equation (2.3), (2.4), (2.5) and (2.6) will be used to set up the partial differential equation (3.1) in the next 
section. 
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Equation (2.7) and (2.8) used to define F and G.  
 
In section IV, we will give more detail on how we find the expectation of these second  partial derivatives. 
 

3 The Geodesic Equation  
 
In this section, we will find the geodesic equation of the extreme value distribution by solving one partial 
differential equation. This idea originated from Darboux’s theory. Chen W. [5,6,7,8] has applied similar 
method in his previous paper to find the geodesic equation of inverse Gaussian and some other useful 
distribution. There are some other related useful references for example Kass RE, Vos PW [9], Struik DJ 
[10], and Grey A. [11]. To avoid confusion, we will only index those formulas that will use later and ignore 
the others. Base on result of section 2, we can easily set up  1=∇Ζ  as follows,    
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To solve the partial differential equation (3.1) above, we would consider the polar coordinate transformation. 
,rsinv  ,rcosu  Let θθ ==  We should keep in mind that Z is a function (u,v) while both (u,v) are also 

function of ),r( θ . In calculus we learn that the chain rule will give us the following results. 
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Using Cramer Rule in equation (3.2), we can solve reversely of v   u  ZandZ  as a function of 

θ  ZandZ    r  as follows: 
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Substitute (3.3) into (3.1), we get  
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Constant term  
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After rotation 22.87562354 then equation (3.4) becomes 
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We now can break above equation (3.5) into two separate parts and let them equal the same constant, say 
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Put the equations (3.6) and (3.7) together and finally we arrived the general solution of equation (3.5), 
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Applying the Darboux Theory, we find that the geodesic equation of extreme value distribution is given by, 
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From previous defined relations, we know that ),r( θ  and )v,u(  are related to  
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hence after substituting the relation (3.9) into equation (3.8) we find our geodesic equation of extreme value 
distribution as: 
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Where A, B are arbitrary constants. 
  

4 Deriving the Basic Tensor 
 
We demonstrated the detailed calculation of the four expected values that used to support the results in 
section 2. To simplify the complicated integrand we always use the following transformation. 
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From (4.1) we substitute v
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ey =  , u;y  ln -vx +=  and dy
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 -dx =  into (4.2) and (4.3) then 

integral turns out to be well known gamma and digamma function. In mathematical analysis by Apostol T. 
[12], p284, defined this ‘derivative of the gamma function’ as follows: 
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Apostol T. p303 defined the nth derivative of the gamma function as follows: 
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5 List and Prove Some Related Moments 
 
(5.1) mean: constant sEuler' is         wherev  u γγ+  
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Assume random variable x has extreme value distribution then we can find the moment generating function 
of x: 
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Then as usual we can take derivative of )t(M x  and let t=0 find the mean value of the distribution. 
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6 Conclusion and Remarks  
 
There are three types of extreme value distribution for maxima and three corresponding types of extreme 
value distribution for minima. The term extreme value distributions includes all distributions with 
cumulative distribution function: 
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mind that all six types of extreme value distributions given in the appendix are closely related to exponential 
distributions. Let x have a standard exponential distribution and the six transformed random variables have 
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Using the method suggested by Balakrishnan N. and Nevzorov V.B. [13] on page 194~196, we can easily 
find the other six related distribution corresponding moments from (6.1). In this way it may fit more 
applications. 
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APPENDIX 
 
We list the six corresponding cumulative distribution function as follows; 
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can also be limiting distribution of normalized maxima values. 1H  is called the Frechet-type distribution, 

2H  the Weibull-type distribution, and 3H is also referred to in the literature as the log-weibull, double 

exponential, and doubly exponential distribution.  
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