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ABSTRACT 
 

It is well-known that the most popular probability density estimator is kernel density estimator in 
literature. Adaptive kernel density estimators are generally preferred for data with long tailed 
densities. In this paper, the adaptive kernel estimators for probability density function are studied. A 
modified adaptive kernel estimator is investigated. For finite sample performance comparisons, the 
root mean squared errors of the fixed and the adaptive kernel estimations are computed for 
simulated samples from various density distributions. The simulation results show that the modified 
adaptive kernel density estimators have better performance than the classical adaptive kernel 
density estimator. 
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1. INTRODUCTION  
 

The kernel estimation method which is still one of 
the contemporary issues is a non-parametric 
estimation method on which many studies have 
been carried out so far. The kernel estimation 
methods are widely used in many areas of 
statistics such as the estimations of probability 
density, regression function and spectral density 
function.  
 

Let x1, x2, ..., xn be randomly chosen sample from 
unknown probability density function f, the kernel 
estimator of a probability density function for any 
point of x is given as 
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where K is the kernel function and generally a 
probability density function with a single mode 
and symmetrical around zero [1,2,3]. Here h is 
the smoothing parameter which is also called as 
window width or bandwidth. The value of kernel 
estimation at any point is a weighted mean that 
considers this point and neighbor observations 
with certain weights as this point is to be the 
center. Such weights are obtained by means of 
the kernel function K and the bandwidth h. In 
practice, however, the kernel function K and the 
bandwidth h are selected by the user. 

Epanechnikov [4] has shown that there is an 
optimal kernel function in one sense, but other 
kernel functions have results closer to the values 
obtained by Epanechnikov kernel. Therefore, in 
practice, the selection of kernel function is not as 
important as the selection of bandwidth and such 
selection is made by taking into consideration of 
the ease of calculation and differentiability 
features. 
 
In the kernel estimation of probability density 
function the selection of bandwidth has a 
significant role [1,5,6,7]. Boneva et al. [8] have 
shown that minor changes on the bandwidth 
have caused significant changes on the 
estimations. The bandwidth h controls the 
smoothing degree. In other words, the selection 
of the bandwidth is very important in terms of the 
performance of the estimator. There are many 
researches in the literature, which have focused 
on choosing the proper value of the bandwidth. 

 
Various criteria on the difference between the 
probability density estimation and the true 
probability density function f are used to evaluate 
the performance of the kernel density estimator. 
The most widely used one is the mean squared 
error (MSE) first suggested by Rosenblatt [9]. 
MSE regarding the kernel density estimator is 
given as, 
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where hxxu i /)( −= . It can be written as, 
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where duuKKR )()( 2
∫=  and  ( ) ( ) duuKuK ∫= 2

2µ  [1]. The mean integrated squared error (MISE) 

of the kernel density estimator is given as      
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MISE cannot be exactly derived from the Equation (3) [7]. Therefore, asymptotic integrated mean 
squared error (AMISE) is used. AMISE can be written by using the Equation (3) as: 
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The optimal bandwidth value that minimizes the 
expression of AMISE is given as follows   
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As seen in the Equation (5), the optimal 
bandwidth itself depends on the integral of the 
square of the second order derivative of the 
unknown density function being estimated. 
Therefore, the bandwidth value cannot be 
obtained from the Equation (5). For this reason, 
to find the bandwidth, some methods are 
proposed. Subjective selection method, the least 
squares cross validation method, the biased 
cross validation method, the bootstrap method, 
the plug-in method, and the smoothed cross 
validation method are some common bandwidth 
selection methods. A comparison of these 
methods is performed by Loader [6], Park and 
Marron [10], Cao et al. [11], Scott and Terrell 
[12], Sheather and Jones [13], and Horava and 
Zelinka [14]. As a more specific approach, Slaoui 
[15] proposed an automatic selection of the 
bandwidth for recursive kernel density estimator 
based on a stochastic approximation algorithm. 
Slaoui [15] showed that the recursive estimator 
has good performance for small samples.     
 
In this study, the kernel density estimator given in 
the Equation (1) will be called as the fixed kernel 
density estimator to distinguish it from the 
adaptive kernel density estimator that will be 
given below. In practice, one of the undesirable 
features of the fixed kernel density estimator is 
its being inefficient at the tail parts of long tail 
distributions. While the selected fixed bandwidth 
is able to perform efficient smoothing around the 
mode of a distribution, it cannot perform any 
efficient smoothing at the tail parts. On the other 
hand, the selected fixed bandwidth values may 
be efficient at the tail parts of a distribution 
whereas they may destroy some important 
characteristics around the mode of a distribution. 
It is difficult to find a single bandwidth that 
adequately separates peaks and valleys if the 
data have a distribution with multi peaks; if the 
bandwidth is too large, it will result in eliminating 
significant modes by over smoothing the data; if 
the bandwidth is too small and then it may result 
in the appearance of misleading modes. 
 
In the higher dimensional setting, the fixed kernel 
density estimators may result in untrue 
conclusion unless sample size is extremely large 
[16]. In general, the fixed kernel estimators will 

have difficulties with densities that exhibit large 
changes in magnitude. Those are the basic 
motivations for considering the kernel estimator 
that allows the bandwidth to vary one 
observation to another. As a result, kernel 
estimators with variable bandwidth are used in 
such cases. The variable bandwidth estimator 
was first introduced by Breiman et al. [17] who 
had stated that the bandwidth must be large 
around the parts where density is small and vice 
versa. 
 
These estimators with variable bandwidth are 
grouped into two categories. The first group is 
called balloon estimators or the kth nearest 
neighbor estimators; the second group is called 
sample point estimators or adaptive kernel 
estimators. The first one varies the fixed 
bandwidth with the estimation point; the second 
one in which the bandwidth is varied with each 
sample point not with the estimation point. In this 
study, the adaptive kernel estimator will be 
considered. 
 

2. ADAPTIVE KERNEL ESTIMATOR 
 
The difference of the adaptive kernel density 
estimators and the fixed kernel estimators is the 
use of different bandwidth at each data point. 
The adaptive kernel density estimator which is 
first introduced by Breiman et. al. [17] is given as  
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where h(xi) is the variable bandwidth at each 
sample point and d is the number of dimension. 
Note that the bandwidth, h(xi), is written explicitly 
as a function of the sample point.  Breiman et al. 
[17] suggested that h(xi) must be taken as being 
proportional to the distance from xi to its kth 
nearest neighbor; Abramson [18] suggested that 

h(xi) must be proportional to )(
2/1

ixf
− ,

 
with f 

replaced by a pilot estimate,
  
for all dimensions; 

and Silverman [7] suggested that it must be 

proportional to 2/1
))(ˆ/( ixfg

 
where g is the 

geometric mean of )(ˆ
ixf  values.  

 
The main feature of such methods is the use of 
different bandwidths for each data point. Muller 
et al. [19] have expressed that the mean squared 
error of the kernel estimator derived from the use 
of variable bandwidth is smaller than the mean 
squared error of kernel estimator derived from 
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the use of the fixed bandwidth. A study carried 
out by Terrell and Scott [20] and the study by 
Hall and Marron [21] showed that in certain 
cases the adaptive kernel estimator has worse 
results than the fixed kernel estimator [22]. 
 

The mean squared error (MSE) of Abramson’s 
estimator is studied by Silverman [7], Hall and 
Marron [21] and derived MSE expression by 

Jones [23] for d = 1 as follows:    
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Silverman [7] gives a three-stage algorithm to 
obtain Abramson type estimator that he calls it 
first as adaptive kernel estimator.  
 

At the first stage, a pilot estimate that satisfies 

0)(ˆ >ixf  (for each i) is obtained. Any method 

can be applied to obtain a pilot estimate of                  
the probability density function. However, the 
common method construct estimate is the fixed 
kernel estimation method.   
 

At the second stage, Silverman defines the factor 

of local bandwidth as { } α
λ

−
= Gxf ii /)(ˆ , where G 

is the geometric mean of the )(ˆ
ixf  values and 

∑−= )(ˆloglog 1
ixfnG . The parameter α  that 

satisfies the condition of 10 ≤≤ α  is called as 

sensitivity parameter.  
 

At the third stage, taking ii hxh λ=)( , the 

adaptive kernel density estimator )(
~

xf  can be 

obtained from the following expression: 
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The use of the local bandwidths depended on α  

enables flexibility to the method. The bigger α  

is, the more sensitive the system will be to the 
changes in pilot estimates and the distance 

between bandwidths used at different parts of 

sample will be higher too. If 0=α , then the 

method becomes a kernel estimation with fixed 
bandwidth as all values of iλ  will be one. If 

1=α , then adaptive kernel estimator is 

equivalent to the nearest neighbor approximation 
[24]. According to the studies carried out by 
Abramson, taking the sensitive parameter for all 

dimensions as 5.0=α  gives better results [18]. 

Many researchers have expressed that square 
root principle has better results for simulation 
studies with smaller samples. While calculating 
estimation at the final stage our bandwidth for 
each xi point is equal to ihλ . This estimate 

ensures that provided K will not be negative; and 
K is a density function, then the obtained 
estimate is a density function too [12,25]. 
 
Furthermore, Hall and Marron [21] also show that 
the adaptive kernel estimators have higher 
convergence rate than the fixed kernel 
estimators. 
 

2.1 Modified Adaptive Kernel Estimator   
 
In this study, having being inspired by the 
adaptive kernel estimator suggested by 
Silverman, we searched for the use of arithmetic 
mean of the pilot estimate of f, rather than 
geometric mean to be employed in the selection 
of )( ixh ; in other words, we searched for the 

effects and changes on the estimation if we  take 
variable bandwidth which is proportional to 

)(ˆ/ ixfM    
where  M

   
is the arithmetic mean of 

)(ˆ
ixf  which refers to the pilot estimate of f. 

Furthermore, it is compared with both 
Silverman’s adaptive estimator and the fixed 
kernel estimator. In the adaptive kernel 

estimation, taking arithmetic mean M of )(ˆ
ixf  

rather than geometric mean g in the equation of 

iλ  as,    
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modified adaptive kernel density estimation 
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Using the approximated density function and the 
usual form for the expected value of this 
estimator can be written as 
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where t is used instead of xi for continuous                   
case. The expected value of the                             
estimator given in Equation (8) can be written as 
below; 
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where )/()( 21
mhtxv −=   and  the variance  of the 

estimator in Equation (7)  is obtained as 
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For 1=d , the estimator in Equation (7) becomes as  

 













 −
=









′

−

′
= ∑∑

==

)(
)(1

)(

11
)(

~ 2/1

21
1

21

2/1

1

i
i

n

i

i

i

i
n

i i
M xf

mh

xx
K

mh

xf

nh

xx
K

hn
xf

λλ
                                            (9) 

 

The expected value and the variance of this estimator are respectively given by 
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To find this expected value and the variance of the proposed adaptive kernel estimator, the processes 

similar to the ones performed with Abramson’s estimator using the bandwidth )(2/1 xfh
 
by Hall and 

Marron [21] are done. If 2/1))(( xfmh=η  and 2/1))()(( xfwxfw −=  are included in Equation 

(10) and Equation (11) after the transformation of )(/ 2/1 xfzv = , then the expected value and 

variance of this estimator are found respectively as   
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One way of taking the integrals on the right- hand side in Equation (12) and Equation (13) is to 

change variable from z to )( zuzy η= , which transformation  is invertible within  a region  1−≤ εηy  for 

some 0>ε . Then we can rewrite Equation (12) as 
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and expanding 
dy

dz
zuy )()( 3 ηηϕ =  as a series of powers of yη  and after the complex calculations, as 

∞→n , 0→h  such that ∞→nh , the expected value of the proposed adaptive kernel density 

estimator  is obtained  as  
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In the variance in Equation (13), taking 

dy

dz
zuyH )()( 4 ηη =   and expanding  it series, we 

obtain as 
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The mean squared error will be obtained as 
follows: 
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We have investigated the rate of convergence of 

the modified estimator. { })(
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xfMSE M  is obtained 

as follows: 
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As it can be seen from the above equality, the 

rate of convergence is )( 9/8−nO  and marginally 

improved from )( 5/4−nO  to )( 9/8−nO .   

 
In next section, a simulation study is performed 

for the finite sample performance of )(
~

xfM . In 

addition to )(
~

xfM , we also include an alternative 

modified kernel estimator which is based on 

using range of )(ˆ
ixf  by motivating from Aljuhani 

and Al turk [26]. Let )(
~

xfR denote this alternative 

adaptive kernel density estimator. 
 

3. SIMULATION STUDY 
 
A simulation study is conducted to compare the 
performances of the fixed kernel estimator, the 
adaptive kernel estimator, and the modified 
adaptive kernel estimators. For the simulation, 
1000 samples of sizes =n 25, 100, 250, 500 are 

generated from some normal mixture type 
density distributions by following Marron and 
Wand [27]. The graphics of the normal mixture 
densities used in the simulation study are given 
in Fig. 1. For each generated sample, a fixed 
bandwidth is determined by using the least 
squares cross-validation method with Gaussian 
kernel function. Thus the fixed kernel 
estimations, the adaptive kernel estimations, and 
the modified adaptive kernel estimations are 
computed. Then the root mean squared errors 
(RMSE) are calculated for the finite sample 
performances for each estimator over 1000 
samples. All computations are made by writing R 
(version 3.2.5) codes. The results are given in 
Tables 1 and 2. 

Table 1. RMSE values for sample sizes of 25 and 100 
 

Distribution n=25 n=100 

f̂  Gf
~

 Mf
~

 Rf
~

 f̂  Gf
~

 Mf
~

 Rf
~

 

Standard Normal 0.05837 0.06199 0.06059 0.05842 0.03403 0.03688 0.03596 0.03364 

Skewed Unimodal 0.07045 0.07220 0.07057 0.06779 0.04117 0.04283 0.04158 0.03891 

Strongly Skewed 0.14016 0.14220 0.13930 0.13424 0.09022 0.08961 0.08725 0.08421 

Kurtotic Unimodal 0.15021 0.14645 0.14258 0.13746 0.08899 0.08632 0.08129 0.07570 

Outlier 0.17596 0.17124 0.16883 0.16690 0.10206 0.10153 0.09797 0.09399 

Bimodal 0.06295 0.07016 0.06940 0.06734 0.03866 0.04188 0.04160 0.04026 

Separated Bimodal 0.07866 0.08203 0.08127 0.07860 0.04624 0.04805 0.04734 0.04555 

Skewed Bimodal 0.06988 0.07693 0.07595 0.07355 0.04345 0.04711 0.04677 0.04546 

Trimodal 0.06625 0.07339 0.07267 0.07044 0.04153 0.04487 0.04461 0.04326 
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Fig. 1. Graphs of the normal mixture densities used for the simulation study 

 
Table 2. RMSE values for sample Size of 250 and 500 

 

Distribution n=250 n=500 

f̂  Gf
~

 Mf
~

 Rf
~

 f̂  Gf
~

 Mf
~

 Rf
~

 

Standard Normal 0.02406 0.02608 0.02541 0.02377 0.01853 0.02028 0.01978 0.01863 

Skewed Unimodal 0.02943 0.03006 0.02915 0.02738 0.02264 0.02357 0.02283 0.02141 

Strongly Skewed 0.06552 0.06504 0.06242 0.05975 0.04996 0.04927 0.04670 0.04404 

Kurtotic Unimodal 0.06302 0.06239 0.05761 0.05148 0.04788 0.04897 0.04471 0.03861 

Outlier 0.07072 0.07216 0.06891 0.06622 0.05605 0.05858 0.05502 0.05244 

Bimodal 0.02788 0.02940 0.02917 0.02826 0.02083 0.02184 0.02162 0.02088 

Separated Bimodal 0.03268 0.03397 0.03341 0.03206 0.02465 0.02598 0.02552 0.02445 

Skewed Bimodal 0.03152 0.03319 0.03289 0.03188 0.02446 0.02552 0.02522 0.02428 

Trimodal 0.02999 0.03180 0.03160 0.03073 0.02341 0.02466 0.02447 0.02372 

 
From Tables 1 and 2, it is seen that the adaptive 
kernel density estimators have good 
performances for long-tailed distributions 

(strongly skewed, kurtotic unimodal, outlier). For 

all cases, )(
~

xfM  has better performance than 
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Gf
~

 . The performance of )(
~

xfR  is the most 

attractive result in our study. In all cases, )(
~

xfR  

has the best performance among the considered 
adaptive kernel density estimators.   

 
4. CONCLUSION 
 
In this study, we investigated a modified adaptive 
kernel density estimator for estimating probability 
density function. This estimator is based on the 
using arithmetic mean of pilot kernel density 
estimations in the Silverman’s algorithm. 
Alternatively, we considered the performance of 
the third adaptive kernel density estimator based 
on the using range of pilot kernel density 
estimations. The simulation results show that the 
modified adaptive kernel estimators have better 
performance than the classical adaptive kernel 
density estimator. Specificially, the adaptive 
estimator based on using the range has very 
attractive performance for estimating probability 
density.   
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