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Abstract 
 

The Exponential distribution is memoryless and has a constant failure rate which makes it unsuitable for 
real life problems. This paper introduces a new distribution powered by an exponential random variable 
which gives a more flexible model for modelling real-life data. This new extension of the Exponential 
Distribution is called “Lomax-Exponential distribution (LED)”. The extension of the new distribution 
became possible with the help of a Lomax generator proposed by [1]. This paper derives and studies some 
expressions for various statistical properties of the new distribution including distribution function, 
moments, quantile function, survival function and hazard function known as reliability functions. The 
inference for the Lomax-Exponentially distributed random variable were investigated based on some 
plots of the distribution and others revealed its behaviour and usefulness in real life situations. The 
parameters of the distribution are estimated using the method of maximum likelihood estimation. The 
performance of the new Lomax-Exponential distribution has been tested and compared to the Weibull-
Exponential, Transmuted Exponential and the conventional Exponential distribution using three real life 
data sets. 
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1. Introduction  
 
The Exponential distribution has just a single parameter and it describes the time between events in a 
Poisson process. Apart from its usage in Poisson processes, it has been used extensively in the literature for 
life testing. The Exponential distribution is memoryless and has a constant failure rate; this latter property 
makes the distribution unsuitable for real life problems with bathtub failure rates [2] and inverted bathtub 
failure rates, hence there is a need to generalize the Exponential distribution in order to increase its 
flexibility and capability to model some other real life problems. There are several extensions of the 
exponential distribution. Some of the recent studies include the transmuted exponential distribution [3], 
transmuted inverse exponential distribution [4] and the Weibull-Exponential distribution by Oguntunde et al. 
[5]. 
 
The cumulative distribution function (cdf) and probability density function (pdf) of an exponential random 
variable X are respectively given by; 
 

 ( ) 1 expG x x                                                                                                                     (1.1) 

 

 ( ) expg x x                                                                                                                        (1.2) 

 

where 0  is the exponential parameter and 0x  is the random variable.  
 
According to Cordeiro et al. [1] the cdf and pdf of the Lomax-G family (Lomax-based generator) for any 
continuous probability distribution are given respectively as: 
 

  ( ) 1 log 1 ( )F x G x
 


   
                                                                                      (1.3)           

            
     

11
( ) ( ) 1 ( ) log 1 ( ) ,f x g x G x G x

 


   
                                                                   (1.4) 

 

where g(x) and G(x) are the pdf and cdf of any continuous distribution to be generalized respectively and 
>0 and β>0 are the two additional new parameters responsible for the scale and shape of the distribution 
respectively. 
 
Lomax [6] proposed an important probability distribution called Lomax distribution which has vast 
applications in lifetime and stochastic modelling of decreasing failure rate. Today, the distribution is widely 
used in studies of income, wealth inequality, and sizes of cities, queuing theory, and engineering, 
agricultural and biological analysis.  
 
Studies conducted on Lomax distribution by several authors have been documented in the literature. 
Balakrishnan & Ahsanullah [7] discussed some important properties and moments of Lomax distribution. 
Al-Awadhi & Ghitany [8] provided the discrete Poisson-Lomax distribution. Abd-Elfattah et al. [9] studied 
the Bayesian and non-Bayesian estimation procedure of the reliability of Lomax distribution. Marshall-Olkin 
extended Lomax distribution that was introduced by Ghitany et al. [10]. The optimal times of changing 
stress level for simple stress plans under a cumulative exposure model for the Lomax distribution was 
determined by [11]. Hassan et al. [12] studied the optimal times of changing stress level for k-level step 
stress accelerated life tests based on adaptive type-II progressive hybrid censoring with product's lifetime 
following Lomax distribution.  
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Several authors have constructed various extensions of the Lomax distribution. For example, [13] proposed 
the exponentiated Lomax (EL) by introducing a new shape parameter to the existing Lomax distribution. 
Lemonte & Cordeiro [14] studied beta Lomax, Kumaraswamy Lomax and McDonald Lomax distributions. 
Cordeiro et al. [15] suggested the gamma-Lomax distribution. Rajab et al. [16] investigated a five-parameter 
beta Lomax distribution. Tahir et al. [17,18] introduced the Weibull Lomax distribution and the Gumbel-
Lomax distribution. Recently [19] proposed the Exponentiated Lomax Geometric distribution. 
 
In this paper, we present a new generalization of the exponential distribution called the Lomax-Exponential 
distribution (LED) using the proposed family by Cordeiro et al. [1]. The rest of the paper comprises the 
following sections: section 2 defines the LED with graphics for its pdf and cdf.  Section 3 proposes some 
reliability functions of the new distribution. The maximum likelihood estimates (MLEs) of the unknown 
model parameters are obtained in section 4 while in section 5, we draw some applications of the LED using 
three real life datasets with concluding remarks in section 5. 
 

2. Construction of Lomax-Exponential Distribution (LED) 
 
Taking the cdf and the pdf of the Exponential distribution in equation (1.1) and (1.2) respectively. The cdf 
and pdf of the LED are obtained respectively from equation (1.3) and (1.4) as follows: 
 

  ( ) 1 log 1 ( )F x G x
 


   
 

   ( ) 1 log 1 1 expF x x


  


          ( ) 1 log expF x x


  


       

 
 ( ) 1F x x

  


  
 

 
 ( ) 1F x x

  


  
                                                                                                                     (2.1) 

 

     
11

( ) ( ) 1 ( ) log 1 ( ) ,f x g x G x G x
 


   

 

        
11

( ) exp 1 1 exp log 1 1 exp ,f x x x x


     
                   

       
11

( ) exp exp log exp ,f x x x x


     


      
 

     
 

11

exp log exp
( ) ,

exp

x x
f x

x


    





    



 

  
1

( ) log exp ,f x x


   
 

      

 
( 1)

( )f x x
   

 
 

                                                                                                                  (2.2) 
 
The following are the graphical representations of the pdf and cdf of the Lomax-Exponential distribution. 

Given some values of the parameters , &a b l     , we provide some possible graphs for the pdf 
and the cdf of the LED as shown in Figs. 1 and 2. 
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Fig. 1. Graph of PDF of the LED for different parameter values 
 
Fig. 1 indicates that the LED is a skewed distribution and such skewed to the right. This means that 
distribution can be very useful for datasets that are positively skewed.  
 

 
 

Fig. 2. Graph of CDF of the LED for different parameter values 
 
From the Fig. 2 cdf plot, the cdf increases when X increases, and approaches 1 when X becomes large, as 
expected. 
 

3. Statistical Properties of the Led 
 
3.1 The Quantile Function 
 
This function is derived by inverting the cdf of any given continuous probability distribution. It is used for 
obtaining some moments like skewness and kurtosis as well as the median and for generation of random 
variables from the distribution in question. Hyndman and Fan [20] defined the quantile function for any 
distribution in the form 
 

 Q(u) = (u)  where Q(u) is the quantile function of F(x) for  0 < u <1 
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Taking F(x) to be the cdf of the Lomax-Exponential distribution and inverting it as above will give us the 
quantile function as follows: 
 

 ( ) 1F x x u
  


                                                                                                  (3.1) 

 
Simplifying equation (3.1) above, we obtain: 

                        
1

1 1qQ u X u
  


     
  

                                                                             (3.2) 

 

3.2 Skewness and Kurtosis 
 
This paper presents the quantile-based measures of skewness and kurtosis due to the non-existence of the 
classical measures in some cases.  
  
The Bowley’s measure of skewness [21] based on quartiles is given by: 
 

     
   

3 1 12
4 2 4

3 1
4 4

Q Q Q
SK

Q Q

 




                                                                                                 (3.3) 

 
And the [22] kurtosis is on octiles and is given by; 
 

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
KT

Q Q

  




                                                                                         (3.4) 

3.3 Moments 
 
Let X denote a continuous random variable, the nth moment of X is given by; 
 

  



0

'

)( dxxfE xX
nn

n
                                                                                                    (3.5) 

 
Taking f(x) to be the pdf of the LED as given in equation (2.1) and simplifying the integral we have: 

                      

  ' ( 1)

0

nn

n
E x dxxX

   


    
  

 

                      

 
' ( 1)

0

nn

n
E x dxxX

   


    
  

 
Using integration by substitution, let:   
                

 

 1 uu x x

du du
dx

dx


  




     

  
   

 

Now, substituting for u, x  and dx above, we have: 



 
 
 

Ieren and Kuhe; AJPAS, 1(4): 1-13, 2018; Article no.AJPAS.42546 
 
 
 

6 
 
 

                   
    

' ( 1)

0

1
n

n

n

duuE uX
 

 
  




   
   

 

                   

     
' ( 1)

0

1 1
n

nnn u
nn

E u duX












     

  
 

                   

     
1

1 1 1 1 1'

0

1 1
n

nnn u u
nn

E duX


 







    

    
  

 
 

Recall that      
11

0

, , 1
yxB x y B y x t t dt


    and this implies that 

   
'

1 1, 1
n

n

n
E X B n

 


 


  
       

  
                                                                          (3.6) 

 

The mean, variance, skewness and kurtosis measures can also be calculated from the nth ordinary moments 
as well as the moment generating function and characteristics function using some well-known relationships. 

 

4. Some Reliability Functions 

 
In this section, we present some reliability functions associated with LED including the survival and hazard 
functions. 
 

4.1 The Survival Function 
 
The survival function describes the likelihood that a system or an individual will not fail after a given time. 
It tells us about the probability of success or survival of a given product or component. Mathematically, the 
survival function is given by: 
 

   1S x F x                                                                                                                                  (4.1) 

 

Taking F(x) to be the cdf of the Lomax-Exponential distribution, substituting and simplifying (4.1) above, 
we get the survival function of the LED as: 
 

    1 1S x x


  


   
 

 ( )S x x
  


                                                                                                                  (4.2) 

 

Below is a plot of the survival function at chosen parameter values in Fig. 3. 
 

From the Fig. 3, we observed that the probability of survival for any random variable following a Lomax-
Exponential distribution drops as the time increases, that is, as time or age grows the probability of life or 
survival decreases. This implies that the Lomax-Exponential distribution could be used to model random 
variables whose survival rate decreases as their age or time grows. 
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Fig. 3. Plot of the survival function of the LED for different parameter values 
 

4.2 The Hazard Function 

 
Hazard function as the name implies is also called risk function, it gives us the probability that a component 
will fail or die for an interval of time. The hazard function is defined mathematically as; 
 

 
 
 

 
 1

f x f x
h x

F x S x
 


                                                                                                              (4.3) 

 

Taking f(x) and F(x) to be the pdf and cdf of the proposed Lomax-Exponential distribution given previously, 
we obtain the hazard function as:  

 

               

 
 

 
   

( 1)
1x

h x x
x


 



   
  

  

 
   




  


     

 
1

( )h x x  


                                                                                                                  (4.4) 

 

The following is a plot of the hazard function at chosen parameter values in Fig. 4. 
 

Fig. 4 shows the behaviour of hazard function of the LED and it means that the probability of failure for any 
random variable following a LED decreases as the values of the random variable increases, that is, as the 
time increases, the probability of failure or death decreases.  

 

5. Parameter Estimation via Maximum Likelihood 

 
Let X1, - - -,Xn be a sample of size ‘n’ independently and identically distributed random variables from the 
LED with unknown parameters α, β, and λ defined previously. The pdf of the LED is given as: 

 

 
( 1)

( )f x x
   

 
 

 
 
The likelihood function is given by; 
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 

   

1 2

( 1)

1

, ,....., / , ,n

n n

i

L X X X

x


  


    






                                                                                                          (5.1) 

 

Taking the natural logarithm of the likelihood function, i.e.,  

 

Let
   1 2log , ,....., / , ,nl n L X X X   

, such that 

 

 
1

log log log

( 1) log
n

i

l n n n

x

   

  


   

 
                                                                                           (5.2) 

Differentiating  partially with respect to α, β and λ respectively gives; 
 

 
 

1

log log
n

i

l n n
n x  

  


   


                                                                                                (5.3) 

 

 
  1

1

( 1)
n

i

l n n
x


  

 






   


                                                                                   (5.4) 

 

 
  1

1

( 1)
n

i
i

l n n
x x  

 






   


                                                                                  (5.5) 

 

 
 

Fig. 4. Plot of the hazard function of the LED for different parameter values 

 
Equating equations (5.3), (5.4) and (5.5) to zero and solving for the solution of the non-linear system of 

equations will give us the maximum likelihood estimates of parameters , &   respectively. However, 
the solution cannot be obtained analytically except numerically with the aid of suitable statistical software 
like Python, R, SAS, etc., when data sets are given. 
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6. Applications 
 
This section examines the flexibility of LED while comparing its performance with other distributions such 
as the Weibull-exponential distribution (WED) and the exponential distribution (ED). Three real life data 
sets are employed to show how LED can be applied in practice with better performance than other 
distributions.  
 
Data set I: This data set represents the waiting times (in minutes) before service of 100 Bank customers 
which was examined and analyzed by Ghitany et al. [23] for evaluating the performance of the Lindley 
distribution. It is as follows: 0.8,0.8,1.3,1.5,1.8,1.9,1.9, 2.1,  2.6, 2.7,  2.9,  3.1,  3.2,  3.3,  3.5,  3.6,  4.0,  4.1,  
4.2,  4.2, 4.3, 4.3,  4.4,  4.4,  4.6,  4.7,  4.7,  4.8,  4.9,  4.9,  5.0,  5.3,  5.5,  5.7,  5.7,  6.1,  6.2,  6.2,  6.2,  6.3,  
6.7,  6.9,  7.1,  7.1,  7.1,  7.1,  7.4,  7.6,  7.7,  8.0,  8.2,  8.6,  8.6,  8.6,  8.8,  8.8,  8.9,  8.9,  9.5,  9.6,  9.7,  9.8,  
10.7,  10.9,  11.0,  11.0,  11.1,  11.2,  11.2,  11.5,  11.9,  12.4,  12.5,  12.9,  13.0,  13.1,  13.3,  13.6,  13.7,  
13.9,  14.1,  15.4,  15.4,  17.3,  17.3,  18.1,  18.2,  18.4,  18.9,  19.0,  19.9,  20.6,  21.3,  21.4,  21.9,  23.0,  
27,  31.6,  33.1,  38.5. The computed summary statistics of this dataset is given in Table 1. 
 
Data Set II: This data set is the strength data of glass of the aircraft window reported by Fuller et al. [24]. 
This data is as follows: 18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.69, 26.77, 
26.78, 27.05, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 
44.045, 45.29, 45.38. Its summary is computed and reported in Table 2. 
 
Data set III: This data set represents the relief times (in minutes) of 20 patients receiving an analgesic 
reported by Gross and Clark [25] and has been used by Shanker et al. [26].  
 
It is as follows: 1.1,  1.4,  1.3,  1.7,  1.9,  1.8,  1.6,  2.2,  1.7,  2.7,  4.1, 1.8,  1.5,  1.2,  1.4,  3.0,  1.7,  2.3,  1.6,  
2.0.  The summary of the data set is provided in Table 3. 
 
We also provide some histograms and densities for the three data sets as shown in Figs. 5, 6 and 7 
respectively. 
 
From the descriptive statistics in Tables 1, 2 and 3 and the histograms and densities shown in Figs. 5, 6 and 7 
for the three datasets respectively, we observed that the three data sets are positively skewed, though, the 
third data set is highly peaked with a higher skewness coefficient followed by the first and then the second 
with a very low peak. 
 
To evaluate the performance of these distributions, we have considered a goodness-of-fit test in order to 
know which distribution has a better fit given some datasets. Hence, we apply the Kolmogorov-Smirnov (K-
S) test statistic. Further information about this statistic can be obtained from [27]. These statistics can be 
computed as: 
 

   0sup nK S D F x F x                                                                                               (6.1) 

 

where  nF x  is the empirical distribution function and n  is the sample size 

 
Note: In decision making, a model with the lowest values for these statistics would be chosen as the best 
model to fit the data set in question. 
 

Table 1. Summary statistics for data set I 
 

Param. N Min 
1Q

 
Median 

3Q
 

Mean Max. Var. Skew Kurt. 

Values 100 0.80 4.675 8.10 13.02 9.877 38.500 52.3741 1.4953 5.7345 
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Table 2. Summary Statistics for data set II 
 

Param. N Min. 
1Q

 
Median 

3Q
 

Mean Max. Var. Skew. Kurt. 

Values 31 18.83 25.51 29.90 35.83 30.81 45.38 52.61 0.43 2.38 
 

Table 3. Summary Statistics for the Data set III 
 

Param. N Min. 
1Q

 
Median 

3Q
 

Mean Max. Var. Skew. Kurt. 

Values 20 1.10 1.475 1.70 2.05 1.90 4.10 0.4958 1.8625 7.1854 

 

 
 

Fig. 5. A histogram and density plot for the waiting times of bank customers (Dataset I) 
 

 
 

Fig. 6. A Histogram and density plot for the strength of glass of windows (Data set II) 
 

 
 

Fig. 7. A Histogram and density plot for the Relief times of 20 patients (Data set III) 
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The Table 4 shows the K-S values of the models with their corresponding p-values based on datasets I, II and 
III. From the result of Table 4, it is clearly seen that the LED has smaller or lower values of the K-S statistic 
with higher p-values for all the three datasets which is an indication that it has a better performance 
compared to the WED and the ED. Hence, we can confidently conclude that the LED is better than the WED 
and the ED. This also provides additional evidence to the fact that generalizing probability distributions 
provides compound distributions that are more flexible and better compared to their conventional 
counterparts. 

 
Table 4. Performance evaluation of the LED with some generalizations of the Exponential distribution 

using the K-S values of the models with their corresponding p-values based on datasets I, II and III 
 

Distributions Dataset I Dataset II Dataset III Ranks 
 LED D = 0.1612  

(0.01107) 
D = 0.48213 
(3.74*10^-07) 

D = 0.43029 
(0.001215) 

1 

WED D = 0.55247 
(2.2*10^-16) 

D = 0.93961 
(3.331*10^-16) 

D = 0.34966 
 (0.01503) 

2 

ED D = 0.9582 
(2.2*10^-16) 

D = 1.1842 
(3.331*10^-16) 

D = 0.62988 
 (2.564*10^-07) 

3 

Note: Values in parenthesis (.) are p-values 
 

7. Conclusion 
 
This paper presented a three-parameter Lomax-based Exponential distribution using a Lomax generator 
proposed by Cordeiro et al. [1]. Some statistical properties of the proposed distribution have been studied 
appropriately. We have derived explicit expressions for its quantile, moments, survival function and hazard 
functions with useful discussions. Some plots of the distribution indicated that the LED is a valid model and 
is skewed to the right. The implications of the plots for the survival and hazard functions showed that the 
LED could be appropriate for modelling time or age-dependent events, where survival and failure decrease 
with time or age. We estimated the model parameters using the method of maximum likelihood estimation. 
Finally, the performance of the new model has been tested based on some applications to three-lifetime 
datasets, and the results show that the LED performs satisfactorily better than the exponential distribution 
and Weibull-Exponential distribution. 
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