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Abstract 
The color image segmentation problem has two main issues to be solved. The 
proper choice of a color model and the choice of an appropriate image model 
are the key issues in color image segmentation. In this work, Ohta ( )1 2 3, ,I I I  
is taken as the color model and different variants of Markov Random Field 
(MRF) models are proposed. In this regard, a Compound Markov Random 
Field (COMRF) model is porposed to take care of inter-color-plane and in-
tra-color-plane interactions as well. In continuation to this model, a Con-
strained Compound Markov Random Field Model (CCOMRF) has been 
proposed to model the color images. The color image segmentation prob-
lem has been formulated in an unsupervised framework. The performance 
of the above proposed models has been compared with the standard MRF 
model and some of the state-of-the-art methods, and found to exhibit im-
proved performance. 
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1. Introduction 

The problem of image segmentation, is the subject of an active research topic 
over a period of quite a few years. It is connected with object labeling process, 
that is, assigning to each object a different label (all pixel of the object receive the 
same value). The problem is more compounded in the real world environment 
which is colored. Now-a-days, color imagery has become an integral part of hu-
man life, because of its tremendous use in internet as well as social media plat-
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forms. As color Image segmentation, convey much more information about the 
objects in scenes, this is a crucial issue while designing the front end of auto-
mated machine vision system. Even though a good number of image segmenta-
tion techniques and strategies has been reported in the literature [1], problem of 
color image segmentation is a challenging task. Color image segmentation poses 
two major challenges; 1) devise of appropriate representation or modeling of 
color components, and 2) the intrinsic characteristics of the images need to be 
ascertained. There has been conscious effort by researchers to understand the 
underlying notion behind the real world colors. Attempts have been made to de-
vise different color spaces in both linear and nonlinear frame work [2]. Because 
of the complex correlation among different color planes, devising appropriate 
color model for the real world images is a hard task. In color image, besides the 
complexity of color model, an appropriate image model, taking care of spatial 
intrinsic characteristics, needs to be designed for appropriate image analysis. In 
literature, different image models have been proposed for image restoration, fil-
tering, segmentation, object detection, and recognition etc. These models can 
broadly be categorized as deterministic and stochastic models. Stochastic models 
found to be used in various image analysis and computer vision applications. 
Specifically, “Markov Random Field (MRF) models” [3] [4] have the potentiality 
of modeling the spatial intrinsic characteristic, of an image and is extensively 
used in “image processing and computer vision” for nearly three decades. MRF 
model and its variants have been found to be suitable models for many real 
world images. MRF model is a stochastic model with non linear feature and ap-
propriate modeling of a given image needs to have proper MRF model parame-
ters. Because of the availability of different color spaces for real world color 
modeling and MRF model as a suitable image model, many image analysis and 
pattern recognition problems in a real world environment could be addressed. 
Therefore, the model based color image segmentation and restoration could be 
an alternate choice to the non parametric methods [3]. Researchers of the image 
analysis and computer vision community have proposed a wide variety of MRF 
models based on supervised and unsupervised image segmentation schemes [4] 
for automated vision system in real world environment. 

In this work, an unsupervised segmentation algorithm is developed to seg-
ment the different regions of a color image. In this framework the image label as 
well as image model parameters have been estimated in a concurrent manner. 
The current unsupervised algorithm, is successfully tested on different real world 
images, texture images from Berkeley database. However, for the sake of con-
venience, five results are presented and a comparison is made with Kato’s me-
thod and JSEG method. As there is a dependence between, the image label esti-
mates and the model parameter estimates, determination of optimal estimates of 
image labels and model parameters is a hard problem. In order to ameliorate this 
issue, a “recursive scheme” has been presented, where both the image labels and 
model parameters are estimated simultaneously. This recursive scheme yields 
“partial optimal solutions” instead of “global optimal solutions”. As far as the 
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image model is concerned, two different MRF models namely “Compound Mar-
kov Random Field (COMRF) model” and “Constrained Compound Markov Ran-
dom Field (CCOMRF) Model” are proposed. The CCOMRF model has been found 
to posses the “unifying property” of modeling texture and scene as well. In order 
to model the input color image, Ohta ( )1 2 3, ,I I I  color space has been used to 
model the input color image. The Compound MRF model controls the correla-
tion of the color plane for efficient modeling. In both the MRF models two types 
of clique potential functions, namely Weak Membrane Model and Reward-pu- 
nishment model have been used. In the present work, the model parameters are 
estimated in one step and thereafter in the second step these estimated model 
parameters are used to estimate the image label estimates. The parameter esti-
mation problem has been cast using “Maximum Conditional Pseudo Likelihood 
(MCPL)” principle and the estimates of the model parameters have been ob-
tained using the proposed “homotopy continuation algorithm”. The MCPL es-
timation problem reduces to solving a set of nonlinear equations whose zeros are 
the estimates of the MRF parameters. These zeros of the nonlinear function, 
have been found by tracing the zero curves of the homotopy map. Fixed point 
based homotopy continuation method with the homotopy parameter “ λ ” is de-
veloped. An algorithm is developed to trace the zero curve of the homotopy con-
tinuation method to determine the zeros of the desired function and hence the 
parameter estimates. The label estimation problem has been cast using “Maximum 
a Posteriori (MAP)” estimation principle and the proposed hybrid algorithm is 
used to obtain the MAP estimates. 

In the following, Section II describes the related work while Section III 
presents the Compound MRF (COMRF) model. The proposed constrained MRF 
model (CMRF) model has been given in Section IV and Section V deals with the 
Constrained Compound MRF (CCOMRF) model. Section VI consists of the 
formulation in unsupervised framework and Section VII presents image label es-
timation followed by model parameter estimation presented in Section VIII. The 
simulation results are presented in Section IX. The concluding remarks are given 
in Section X. 

Our Contributions 

The list of contributons along with the respective sections can be summerized as 
follows: 
 A Compound Markov Random Field Color Image Model is proposed taking 

into account both the “intra-color-plane” as well as “inter-color-plane” inte-
raction of pixels in RGB and Ohta model (Section 3); 

 A new MRF model called as Constrained Compound MRF (CCOMRF) mod-
el is proposed that is found to possess the unifying property of modeling col-
or texture as well as scene images (Section 5); 

 An “unsupervised color Image Segmentation scheme” using “Homotopy Con-
tinuation method” is proposed for simultaneous estimation of model para-
meters as well as image labels (Section 6); 
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 A MRF-MAP based supervised image segmentation using Homotopy Con-
tinuation Method and hybrid algorithm is proposed (Section 8). 

2. Related Work 

There has been conscious effort to devise color models which when used cannot 
be distinguished from those in original by a human observer. Towards this end, 
many linear and nonlinear color models have been proposed [2] [5] earlier. The 
most commonly used linear models are RGB and Ohta ( )1 2 3, ,I I I  [5] model.  

Ohta has found out an effective set of color features, that is 
3

R G B+ + , R B−   

and ( )2 2G R B− − , while segmenting eight kinds of color pictures and these 
features, popularly known as Ohta ( )1 2 3, ,I I I  model. In literature, different 
color spaces used for segmentation have been investigated and an overview of 
different color spaces from perceptual, historical and application specific has 
been presented [6]. This overview [6] highlights both potentiality and also the 
limitations of different color spaces. 

For image restoration and segmentation applications, MRF models found to 
be very efficient [3] [4] [7]. Geman and Geman [3] have proposed binary line 
fields together with the random field model of the non edge pixels. Subsequently, 
Besag [4] proposed a segmentation scheme where the segmentation problem has 
been cast as a “pixel labeling problem” and the pixel labels have been estimated 
using “Iterated Conditional Mode (ICM) algorithm”. In Besag’s [4] formulation, 
MRF model parameters have been estimated together with the image labels and 
performed image restoration in MAP framework. MRF model has also been pro-
posed combining color and texture features [8]. Kato et al. [8] have used per-
ceptually uniform CIELUV color values as color features and a set of Gabor fil-
ters as texture features. Kato et al. [9] in their subsequent work have proposed a 
new MRF model based segmentation scheme, where the model consists of three 
layers; two of which correspond to two features and a special layer called the 
combined layer. This scheme has produced quite satisfactory results for multi 
class textured images. 

In addition to the MRF based methods, another method known as JSEG has 
been proposed to segment color images in unsupervised framework [10]. In this 
approach, a multistage “J-image” has been created and region growing strategy 
has been used for segmentation. MRF based clustering approach [11] has been 
proposed for color image segmentation. In MRF based clustering, MRF model 
has been applied over the pre-segmented data obtained by grouping regions over 
similar group of pixels. Therefore, clustering has been carried out on a multidi-
mensional feature space. In another research, the “Hidden Markov Random Field 
(HMRF) model” parameters have been used for segmentation of natural color 
texture images [12]. MRF model parameters have also been estimated by Kato et 
al. [13] for segmentation of color texture images. EM algorithm has successfully 
been used to estimate the model parameters. They have used perceptually uni-
form “CIE-L*U*V*” color values as color features and a set of “Gabor filters” as 
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texture features. The EM algorithm based estimated parameters have yielded ap-
preciable segmentation results. Panjwani et al. [14] have proposed an unsuper-
vised scheme for color textures using MRF model. They have used “Gaussian 
Markov Random Field (GMRF)” model for color textures and the algorithm is a 
region based one. It consists of a region splitting phase and an agglomerative 
clustering phase. Color and motion have jointly been processed in an unsuper-
vised scheme proposed by Lievin et al. [15]. In this work from a logarithmic 
model a non-linear color transform relevant for hue segmentation is derived. 
The proposed “hierarchical segmentation scheme” is based on MRF modeling 
that combines hue and motion detection within a “spatiotemporal neighbor-
hood”. Another “unsupervised color image segmentation scheme”, based on 
feature space, has been proposed by Guo et al. [16], where the feature space con-
sists of two distinct source models and valley. The model parameters have been 
estimated and a “labeling algorithm” has been developed to determine the seg-
mentation. The segmentation process is completely autonomous. 

An unsupervised color segmentation algorithm has been proposed [17] using 
“multiscale texture model”. A new MRF model known as “Associative Hierar-
chical Random Field (AHRF)” has been proposed [18]. They also proposed a 
new algorithm for optimization. This work is a generalization of many previous 
“super-pixel based methods” in a random field framework. Here the MAP esti-
mation is carried out using a graph cut based move making algorithms. Besides, 
another unsupervised algorithm has been proposed [19] in Expectation Max-
imization (EM) framework, where the model parameters and the pixel labels 
have been estimated simultaneously. Very recently, Karadag et al. [20] have pro-
posed an unsupervised segmentation algorithm in MRF framework. The bottom 
up phase takes care of the model parameters while the top down segmentation 
maps are constructed from the domain specific information. Besides, another 
color image segmentation scheme has been proposed by Chen et al. [21] who 
have used both the MRF and Dempster-Shafer evidence theory to obtain seg-
mentation. They have demonstrated for two label segmentation, however, it can 
be extended for multi label case. Abes et al. [22] have proposed a segmentation 
scheme where the image structure has been representated by its segmentation 
graph derived from the low-level hierarchical multi scale image segmentation. A 
novel “Decoupled Active Contour (DAC)” method is proposed [23] to extract 
the boundaries accurately. The notions such as “viterbi search resampling and 
Bayesian estimation” are the key steps of DAC. A method based on a multilocal 
creaseness analysis of the histogram has been proposed for shape extraction [24] 
and the resulting segmentation scheme has been found to be robust. A multis-
cale method using edge and intensity information has been proposed for brain 
MR image segmentation [25]. In [26], the notion of coupled nonlinear diffusion 
has been used for feature extraction and enhancement. These features have sub-
sequently been used for segmentation. A novel technique based on geometrical 
properties of “lattice auto-associative memories” has been proposed [27] for 
color image segmentation adhering to a different color space. Other than MRF 
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model, research has also been focused on using various other methods such as 
Graph Cut based methods, Level set methods, Histogram thresholding based 
methods etc. The review based on segmentation using two powerful attributes, 
that is color and texture has been presented in [28]. An iterated region merging 
based graph cut algorithm has been presented in [29]. This is an extension of 
standard graph cut algorithm. The proposed algorithm starts from the user la-
beled sub-graph and works iteratively to label the surrounding un-segmented 
regions. With the same amount of user input, their algorithm can achieve better 
segmentation results than standard graph cuts, when the object is extracted from 
a complex background. 

A new segmentation algorithm called “Histogram Thresholding-Fuzzy C-means 
Hybrid (HTFCM)” is proposed in [30]. HTFCM consists of two modules 1) 
“histogram thresholding module” and 2) the “FCM module”. Histogram thre-
sholding technique contains three phases 1) peak finding technique, 2) region 
initialization and 3) merging process. An outdoor scene image segmentation al-
gorithm based on “background recognition and perceptual organization” is pro-
posed in [31]. It consists of a “Perceptual Organization Model (POM)” that cap-
tures the structural relationships among the constituent parts of the structured 
objects. Boix et al. [32] have proposed a new consistency potential for image 
labeling, known as the “Harmony Potential”. They have presented a new “Con-
ditional Random Field (CRF) model” for object class image segmentation. 

3. Compound Markov Random Field (COMRF) Model 

Stochastic models such as MRF models have been extensively used in image 
analysis [3] [4]. Over the last two decades, there have been extensive applications 
of MRF models and towards this end many variants of MRF models have been 
proposed for gray scale as well as color images [2]. In case of color images, the 
accuracy of color image segmentation greatly depends upon appropriate color 
model as well as proper image model. Therefore, in this work attempts have 
been made to develop appropriate color as well as image models for image seg-
mentation. It is known that the RGB color model is not a suitable color model 
for image segmentation because of the existence of “strong correlation” among 
the different color planes where as Ohta model, because of its “weak correlation” 
among different planes, has been widely used for color image segmentation. 
Therefore, a Compound Markov Random Field model has been proposed to in-
troduce controlled correlation among different color planes through MRF model 
parameter. This model with Ohta color model proved to be quite effective for 
image segmentation. In Ohta color space. 

In the present section, a compound MRF model is deveioped which is based 
on both spatial and temporal modeling. In otherwords a spatio temporal MRF 
modeling is developed in the color space. In our earlier work [33], the notion of 
Constrained Compound MRF model has been proposed, but in this section, the 
clique potential function is provided in more detail. Since, the Ohta color model 
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is considered in this research, each plane, for example ( )1 2 3, ,I I I  has been 
modeled as MRF and the inter plane interactions among different planes have 
also been modeled as MRF. This model takes care of the “intra color plane and 
inter color plane interactions” ( 1 2I I−  or 2 3I I−  or 3 1I I− ) as MRF model. 
The above has been motivated because of the existence of “strong correlation” in 
between different color planes of RGB and “weak correlation” among different 
color planes of Ohta ( )1 2 3, ,I I I  model. The above spatio temporal MRF model 
is mooted to ameliorate the above limitation and thus introduce the notion of 
controlled correlation among different planes. This controlled correlation has 
been expected to achieve superior segmentation results to the existing RGB or 
OHTA model. Hence, the proposed COMRF model takes care of “controlled 
correlation” among different planes and the “degree of correlation” has been 
monitored by the associated parameters of “clique potential function”. All the 
images have been assumed to be defined on a “discrete rectangular lattice” of 
size M N× . Each site ( ),i jx  of the input image X is modeled as a random va-
riable taking a value from 0 to G (gray values). Since, the image has been defined 
over two dimensions, the observed imgae X has been modeled as a random field 
and x denotes the realization, the given image. Similarly the segmented images is 
modeled as the label process Z with the number of labels as L. The three color 
planes of Ohta model has been presented in Figure 1(a) and we model each col-
or plane i.e. ( 1I  or 2I  or 3I ) separately as MRF model. The kth plane (k = 1, 2, 
3) label process is denoted as Z ′  and then the spatial interaction of Z ′  plane 
has been modeled as MRF, the joint probability distribution ( )1 1P Z z=  is known 
to be “Gibbs distributed” and can be presented as follows  

( ) ( )1 ,1 1 1| e
U z

P Z z
Z

θ
θ

−
= =

′
                  (1) 

where, ( )1

1
,

e
U z

zZ
θ−

′ = ∑  is the “partition function”, ( )1,U z θ  is called the ener-
gy function and is of the form ( ) ( )1 1, ,cc CU z V zθ θ

∈
= ∑ , with ( )1,cV z θ  known 

as the “clique potential function” and θ  is the associated “clique parameter  
 

   
(a)                                  (b) 

Figure 1. (a) Interaction of 1 2 3, ,I I I  plane (b) Interaction of single pixel of 1I  plane 
with 2I  plane.  
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vector”. Analogously the spatial interactions of 2I  and 3I  planes can be de-
fined. This prior MRF model incorpating the three spatial planes would result in 
the “energy function” of the following form  

( ) ( )
,

, ,c
i j

U z V zθ θ= ∑                     (2) 

where, ( ),cV z θ  denotes the “clique potential function” for the three color 
planes 1I , 2I  and 3I  respectively. In order to complete the model, the “inter 
plane interactions together with the intra plane interactions” have been taken 
care. Thus Z has been modeled as a compound MRF where the “spatio temporal 
MRF model” takes care of the spatial as well as the temporal interactions. Figure 
1(a) shows the interaction among different color planes and as an illustration 
Figure 1(b) represents interaction of ( )th,i j  pixel of 2I  plane with the cor-
responding pixel of 1I  plane taking the first order neighborhood structure. The 
MRF prior with the above interaction can be presented as 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 2 1 1
, , , ,

2 2 1 1 1
, , , , ,

| , , , , ,

| , , , , , .

i j i j k l k l

i j i j k l k l i j

P Z z Z z k l i j k l M N

P Z z Z z k l i j k l η

= = ≠ ∀ ∈ ×

= = = ≠ ∈
 

Let z denote the labels of pixels taking care of all three color planes. In other 
words, z denotes the pixel labels of the input color image. For example, ,i jz  re-
fers to the ( )th,i j  pixel label comprising of three color components. The “prior 
probability” of z has been contributed by the “intra color plane interactions and 
inter color plane interactions” of pixels. Hence, the prior model of z consists of 
the “clique potential functions ( )

scV z  and ( )
tcV z ” corresponding to “intra 

color plane interactions and inter color plane interactions” respectively. The ver-
tical and horizontal line fields for different color planes ( 1,2,3k = ) are denoted 
as kv  and kh  respectively. Both horizontal and vertical line fields are defined 
as follows. Let ( ), , 1,k k

v i j i jf z z −  for the kth color plane be defined as  

( ), , 1 , , 1,k k k k
v i j i j i j i jf z z z z− −= − . Vertical line field for each plane is set i.e. , 1k

i jv =  
for 1,2,3k = , if ( ), , 1,k k

v i j i jf z z Threshold− > , else , 0k
i jv = . Similarly, in case of 

horizontal line field let ( ), 1,,k k
h i j i jf z z −  be defined as ( ), 1, , 1,,k k k k

h i j i j i j i jf z z z z− −= − . 
Horizontal line field for kth plane is set, i.e. , 1k

i jh =  for 1,2,3k = , if  

( ), 1,,h i j i jf z z Threshold− >  else , 0k
i jh = . Since the COMRF model takes care of 

“intra color plane as well as inter color plane interactions” the prior probability 
distribution equation is given by (1), where the energy function is represented 
as,  

( ) ( ) ( ), , ,s tU z U z U zθ θ θ= +                   (3) 

where,  

( ) ( ),
,

,
ss c i j

i j
U z V zθ = ∑                      (4) 

( ) ( ),
,

,
tt c i j

i j
U z V zθ = ∑                      (5) 

Here, ( ),sU z θ  and ( ),tU z θ  represents the energy function of “intra-co- 
lor-plane and inter-color-plane” respectively. ( ),sc i jV z  corresponds to the “in-
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tra-color-plane pixels” and ( ),tc i jV z  corresponds to “inter-color-plane pixels”. 
Let k

sh  for 1,2,3k =  denote the “horizontal line field” for each color plane in 
intra-color-plane and k

th  for 1,2,3k =  denote the “vertical line fields” for in-
ter-color-plane directions. Thus the compound MRF model will have the energy 
function given by (3). The (4) can be presented as,  

( ) ( ) ( ) ( ) ( )
3 2 2

, , , 1 , , 1, ,
1

, ,

1 1

.

s

k k k k k k k
c i j i j i j i j i j i j i j

k

k k k
i j i j

V z z z v z z h

v h

α

β

− −
=

 = − − + − −  

 + + 

∑
   (6) 

Here 1 2 3, ,z z z  refers to ( )1 2 3, ,I I I  planes respectively. Equation (5) can be 
expressed as,  

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 21 1 2 1 1 1 2 1
, , , 1 , , 1, ,

21 1 1 2 2 3 2
, , , , 1 ,

22 2 3 2 2 2 2
, 1, , , ,

23 3 1 3 3
, , 1 , ,

1 1

1

1

1

tc i j i j i j i j i j i j i j

i j i j i j i j i j

i j i j i j i j i j

i j i j i j i j

V z z z v z z h

v h z z v

z z h v h

z z v z

α α

β α

α β

α α

− −

−

−

−

   = − − + − −      
  + + + − −    

   + − − + +   
 + − − +   ( ) ( )23 1 3

1, ,

3 3 3
, ,

1

.

i j i j

i j i j

z h

v hβ

−
 − −  

 + + 

   (7) 

where 1z  shows the interaction between 1 2I I−  color planes, 2z  denotes the 
interaction between 2 3I I−  color planes and 3z  represents the interaction be-
tween 3 1I I−  color planes respectively. Here we have assumed,  

1 2 3α α α α= = =  and 1 2 3β β β β= = = . The unknown parameters [ ]T,α β  
have been chosen on an adhoc manner. The boundary of a given segment is 
represented by edge pixels and the line fields correspond to the edge pixels. Hence, 
it is not necessary to have the similarity measure for boundary pixels and thus 
the “clique potential function” given by (7) shall consist of penalty functions on-
ly. Therefore, region formation, with similarity measure, should not be contri-
buted by the boundary pixels. 

4. Constrained Markov Random Field (CMRF) Model 

In order to model textures besides the scene the model need to take care local 
properties of a given pixel. MRF takes care of the spatial neighborhood, however, 
it is needed to reinforces the dependency of the pixel on the neighborhood. This 
will give rise to a new a priori model for the label process. 

A “discrete-time martingale” is a discrete-time “stochastic process” (i.e., a se-
quence of random variables 1 2 3, , ,X X X ) which satisfies for all n, 

( )nE X < ∞  

( )1 1 2 3| , , , ,n n nE X X X X X X+ =  

i.e., the “conditional expected value” of the next observation, given all of the past 
observations, is equal to the last observation. Let ( ) , 1, 2, ,Z i i n=  , be a “mar-
tingale sequence”. For all 1,2, ,i n=  , ( )E Z n  < ∞   and  
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( ) ( ) ( ) ( )1 / 1 , ,E Z n Z Z n Z n+ =   . Now, let 1 2, , , nZ Z Z  be the random va-
riables associated with the labels of image of size 2n N= . Therefore,  

, , 1,/ , , ,i j k l i jE Z Z k l i j Z − ≠ =   for any ,, i jk l η∈ , where ,i jη  is the neighbor-
hood of ,i j .  

,

, , , , , , ,| , , , | , , ,
i j

i j k l i j i j i j k l k l
z L

E Z Z k l i j z P Z z Z z k l i j
∈

   ≠ = = = ≠   ∑     (8) 

Assuming that Z is a “Markov process”, one obtains,  

( )
( )

,

, ,

, , , , , , , ,

,

| , , , | , ,

.

i j

i j i j

i j k l i j i j i j k l k l i j
z L

i j
z L z l

E Z Z k l i j z P Z z Z z k l

P Z z
z

P Z z

η
∈

∈ ∈

   ≠ = = = ∈   

=
=

=

∑

∑ ∑

   (9) 

Since Z is a MRF,  
( )

( )
,

,

, , ,
e| , , ,

ei j
i j

U z

i j k l i j U z
z L z L

E Z Z k l i j z
−

−
∈ ∈

 ≠ =  ∑
∑

           (10) 

Since ,i jZ  is a “martingle sequence” , , ,| , , ,i j k l k lE Z Z k l i j z ≠ =   ,, i jk l η∀ ∈  
( )

( )
,

,

, ,
e

ei j
i j

U z

k l i j U z
z L z L

z z
−

−
∈ ∈

= ∑
∑

                  (11) 

Considering first order neighborhood and choosing one of the neighborhood 
pixels for example 1,i jz − , Equation (11) can be expressed as  

( )

( )
,

,

1, ,
e

ei j
i j

U z

i j i j U z
z L z L

z z
−

− −
∈ ∈

= ∑
∑

 

Instead of taking a given pixel from the neighborhood 1,i jz − , the average of 
the neighborhood pixels is computed. 

5. Constrained Compound (CCOMRF) Model 

The constrained model proposed in the previous section need to be used with 
the COMRF taking care of the spatial and temporal interaction. Thus the con-
strained compound MRF model proposed by [34] [35] has the following energy 
function. The following model corresponds to only the constrained neighbor-
hood in the spatial framework.  

( ) ( )
( )

( )

,

, ,
,

,

2

, ,
,

e

e

i j

i j i j
i j

i j

U z

sc s s c i javg i j U z
i j z L

z L

U z U z z zλ
−

−
∈

∈

 
 = + − 
 
 

∑ ∑
∑

     (12) 

where  

( ) ( )
( )

( )

,

,
,

,

2

, , , ,
e

e

i j

s i j
i j

i j

U z

sc i j c i j c i javg i j U z
z L

z L

U z V z z zλ
−

−
∈

∈

 
 = + − 
 
 

∑
∑

      (13) 

where scU  denote the energy function corresponding to “intra color plane in-
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teractions” and ( ),sc i jV z  is defined by (6). Where,  
( )

( ),

,

, ,
e

ei j

i j

U z

i javg i jz L U z
z L

z z
−

∈ −
∈

= ∑
∑

 and cλ  is the constrained model parameter.  

The resultant energy function taking care of both “intra-color-plane and inter- 
color-plane interactions” with intra plane constraints is represented by  

( ) ( ) ( ), ,, ,sc i j tc i jU z U z U zθ θ= +                  (14) 

where ( ), ,sc i jU z θ  is defined by (13) and ( ), ,tc i jU z θ  is defined by (5) and 

( ),sc i jV z  and ( ),tc i jV z  are given by (6) and (7) respectively. Different variants 
of MRF models are considered with two types of clique potential functions i.e. 
Weak Membrane Model and Reward-punishment model. The clique potential 
function and the a priori energy function for Weak Membrane Model defined by 
Equations (12)-(16) have been used in our simulation. The energy function in 
case of the first order an isotropic weak membrane model is given by  

( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

3 2 2

1 , 1, , 2 , , 1 ,
, 1

2 2

3 , 1, 1 , 4 , 1, 1 ,

, , , ,

, 1 1

1 1

k k k k k k k k
i j i j i j i j i j i j

i j k

k k k k k k k k
i j i j i j i j i j i j

k k k k k
i j i j i j i j

U z z z v z z h

z z v z z h

h v h v

θ α α

α α

β

− −
=

′ ′
− − + −

′ ′

= − − + − −

+ − − + − − 
 + + + + 

∑∑

 (15) 

where ,i jh , ,i jv  and ,i jh′ , ,i jv′  are the horizontal and vertical line fields for the 
first order an isotropic weak membrane model. Besides the reward punishment 
model is also considered in our simulation. The corresponding clique potential 
function in general is defined as  

( ) { }, 1, , 1,if 0 if 0c c i j i j c i j i jV z z z z zδ δ− −= − − = + − ≠         (16) 

where ,i jz  and 1,i jz −  denote the pixel values of the sites ( ),i j  and ( )1,i j−  
respectively. The clique potential function for the first order an isotropic reward 
punishment model can be expressed as follows  

( )

1 , 1, 1 , 1,

2 , , 1 2 , , 1

3 , 1, 3 , 1,

4 , , 1 4 , , 1

if 0 if 0

if 0 if 0

if 0 if 0

if 0 if 0

i j i j i j i j

i j i j i j i j
c

i j i j i j i j

i j i j i j i j

z z z z

z z z z
V z

z z z z

z z z z

δ δ

δ δ

δ δ

δ δ

− −

− −

+ +

+ +

 − − = + − ≠
 
 − − = + − ≠ =  
− − = + − ≠ 
 
− − = + − ≠  

       (17) 

The “local reinforcement” is also extended to the inter-color-plane interac-
tions and hence introduce the notion of constrained model in the inter-color- 
plane interactions. Thus, there is one clique potential corresponding to intra- 
color-plane interactions and another clique potential function corresponding to 
inter-color-plane interactions. In the line of the constrained model according to 
(12) is now applied to intra as well as inter color plane processes. The constrained 
condition is among 1 2I I− , 2 3I I−  and 3 1I I−  color planes. The energy func-
tion for constrained compound model can be expressed as follows.  
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( ) ( )
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∑

∑
∑

∑
∑

       (18) 

Accordingly ( )2U z  and ( )3U z  are defined. 

6. Unsupervised Framework 

In this framework, neither the model parameters nor the image labels are as-
sumed to be known. Both the estimate of the model parameters and image labels 
are interdependent. Therefore, in an unsupervised scheme, the MAP estimates of 
the labels and the estimates of the model parameters are carried out concurrently. 
Thus, an estimation strategy need to be developed which, using the observed 
image X, will yield an optimal pair ( ),opt optZ θ . Towards this end, the following 
joint optimality criterion is considered,  

( ) ( )
,

, arg max | ,opt opt

z
Z P Z z X x

θ
θ θ= = =               (19) 

The pair ( ),opt optZ θ  estimated using (19) is the global optimal estimates. But 
the image labels Z and the model parameter θ  are unknown initially and they 
are interdependent, thus compounding the problem to be very hard. In order to 
handle this situation, the problem can be reformulated to achieve sub optimal 
solutions instead of optimal ones. It may be noted, this function  
( )/ ,P Z z X x θ= =  in (19) is maximized with parameter Z and θ . The inter-

dependency of parameters that makes the problem intractable can be handled 
using the notion of parameter spliting proposed by Wendell and Horter [36] in 
deterministic framework. The approach suggested by Wendell and Horter [36] 
yields suboptimal solution instead of optimal solution. Their approach is to split 
the parameter set into two sets and estimate the parameter recursively and it has 
been shown that this recursive estimation eventually leads to partial optimal so-
lutions. Since our formulation is in stochastic framework, the same notion is 
adhered to and it is attempted to split the above problem into two separate 
problems of estimating labels Z and paramters θ  separately. This can be ex-
pressed as follows.  

( ) ( )* *arg max | ,
z

Z P Z z X x θ= = =                (20) 

( ) ( )* *arg max | , .P Z z X x
θ

θ θ= = =                (21) 

The estimated parameters *Z  and *θ  are not global maxima, but are almost 
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always local optimal solutions [36]. But with *θ θ= , the estimate *z  is global 
optimal satisfying Equation (20) and analogously for *z z= , *θ  is global op-
timal satisfying Equation (21). Since neither *θ  nor *z  is known, a recursive 
scheme is adopted where the model parameter estimation and segmentation is 
alternated. Let at the kth iteration 

T
,k k kθ α β =    be the estimate of model pa-

rameters and kz  be the estimate of the labels of the observed image. Since, both 
*Z  and *θ  are unknown, a recursive scheme has been proposed to estimate 

the model parameters θ  and image labels Z recursively,  

( ) ( )1 arg max | ,k k

z
Z P Z z X x θ+ = = =                (22) 

( ) ( )1 1arg max | , .k kP Z z X x
θ

θ θ+ += = =               (23) 

The image labels 1kZ +  at the th1k +  iterartion have been estimated using 
Bayesian approach [3]. The MAP estimates Z in the Bayesian framework has 
been obtained by proposed hybrid algorithm, a combination of SA and ICM. In 
one combined iteration, estimate of kz  and kθ  are obtained. This recursion 
has been continued and after a finite number of steps *z  and *θ  are obtained, 
which are the partial optimal solutions of Z and θ . But the problem in (22) has 
been solved by maximum conditional pseudolikelihood approach. This pseudo-
likelihood estimates of θ  has been obtained by the proposed Homotopy con-
tinuation method. The flow chart of the unsupervised algorithm is shown in 
Figure 2. 

Salient Steps of the Unsupervised Algorithm  
1) Initialize parameter vector as 0θ , pixel label estimates 0z  for  

0,1,2, ,k N=   do  
 

 

Figure 2. Flow chart of unsupervised image segmentation scheme. 

https://doi.org/10.4236/jcc.2022.106012


S. Panda, P. K. Nanda 
 

 

DOI: 10.4236/jcc.2022.106012 152 Journal of Computer and Communications 
 

2) Using kθ , observed image x and initial segmented image kz , obtain the 
MAP estimate of the labels 1ˆkz + .  

3) With 1ˆkz + , obtain the MCPL estimate of the parameter vector 1ˆkθ + , using 
homotopy continuation based algorithm.  

4) Compare 1ˆkθ +  with the previous estimate of ˆkθ , if 1ˆ ˆk k thresholdθ θ+ − < , 
set 1k kθ θ +=  go to step 2 else go to step 5.  

5) Set estimate of parameter vector * 1ˆkθ θ += .  
6) Estimate *z  (segmented image) using *θ , 1ˆkz +  and observed image x. 

7. Image Label Estimation 

The segmentation problem is formulated as a pixel labelling problem, where 
each pixel can be assigned a label from the set of lebels 0-L. All our labels are de-
fined over an image of size S M N= × . Let every pixel (i, j) is modeled as a 
random variable denoted as ,i jZ . Thus, the given image has been viewed as a 
realization z from the label process Z. The posterior probability ( )ˆ| ,P Z z X x θ= =  
has been maximized to obtain the label estimates ẑ . Thus, the optimality crite-
rion at the kth combined iteration, can be expressed as follows,  

( )1 ˆˆ arg max | ,k k

z
z P Z z X x θ+ = = =                  (24) 

where, θ̂  denotes the estimates of the associated parameter vector of the MRF 
model and 1ˆkz +  denotes the estimates of the labels. Since z is unknown,  

( )ˆ| , kP Z z X x θ= =  in (24) cannot be computed. Using Bayes’s theorem,  

( )ˆ| , kP Z z X x θ= =  can be expressed as  

( ) ( ) ( )

( )
ˆ| ,

ˆ| ,
ˆ|

k
k

k

P X x Z z P Z z
P Z z X x

P X x

θ
θ

θ

= = =
= = =

=
        (25) 

Since the observed image X has been provided, the denominator in (25) i.e. 

( )ˆ| kP X x θ=  becomes a constant quantity. ( )P Z z=  is the a priori proba-
bility distribution of the labels. The degradation process is assumed to be a 
Gaussian process, denoted by W and the corresponding realization is w. Hence 

( )| , kP X x Z z θ= =  of (25) can be written as  

( ) ( ) ( )1 1 1 1 1| , | , | ,k k k k k k k kP X x Z z P X z w Z P W x z Zθ θ θ+ + + + += = = = + = = − . 
Since, W is a Gaussian process, and there are three spectral components present 
in a color image, one obtains,  

( )
( )

( ) ( )T 11
21| , e

2 det

x z x zk

n
P W x z Z θ

−− − −
= − =

  π

K

K
       (26) 

where K  is the covariance matrix. Hence, this minimization can be expressed 
as, 

( ) ( ) ( )
2

3

, ,2
, 1

ˆ arg min ,
2 s t

k k
k k

c i j c i j
z i j k

x z
z V z V z

σ=

−
= + +∑∑         (27) 

where ( ),sc i jV z  and ( ),tc i jV z  are as defined by (6) and (7) respectively. Solv-
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ing (27) yields the MAP estimates of the image labels and hence segmentation. 
The color image has three spectral components kx , kz , 1,2,3k = , cV  is the 
clique potential function for all the three spectral components. 

8. Model Parameter Estimation 

Using the “ground truth” image z, the a priori model parameters are estimated. 
The associated MRF parameters of this “ground truth” image is θ . Therefore, 
the problem can be stated as the follows  

( )1 1arg max |k kP Z z
θ

φ θ+ += =                   (28) 

Since Z is a MRF, we have,  

( )( )
( )( )

1
1

exp ,
arg max

exp ,

k
k

U z

Uθ
ξ

θ
φ

ξ θ

+

+
−

=
−∑

                (29) 

where ξ  ranges over all realizations of the image z. Because of the denomina-
tor of (29), computation of the joint probability ( )1 |kP Z z θ+=  is extremely dif-
ficult task. Here, the “pseudolikelihood function” is maximized ( )1ˆ |kP Z z θ+=  
instead of the “likelihood function” ( )|P Z z θ=  where, 

( )
( )( ) ( )1 1 1

, , , , ,
,

ˆ| , , , |k k k
i j i j m n m n i j

i j L
P Z z Z z m n P Z zη θ θ+ + +

∈

= = ∈ =∏      (30) 

From the definition of “marginal conditional probability”, it can be written as,  

( ) ( ) ( )( ) ( )
( )

,

1
1 1

, , , ,

|
| , , , , , ,

|
i j

k
k k

i j i j k l k l
z M

P Z z
P Z z Z z k l i j i j L

P X x

θ
θ

θ

+
+ +

∈

=
= = ≠ ∀ ∈ =

=∑
(31) 

Because of MRF assumption,  

( ) ( )( )
( )( )

,

1
1 1

, , , , , 1

exp ,
| , , ,

exp ,
i j

k
cc Ck k

i j i j m n m n i j k
cz M c C

V z
P Z z Z z m n

V z

θ
η θ

θ

+
∈+ +

+
∈ ∈

−
= = ∈ =

−

∑
∑ ∑

 (32) 

Substituting Equation (32) in (30), the following is obtained. 

( )
( )

( )( )
( )( )

,

1
1

1
,

exp ,
ˆ |

exp ,
i j

k
cc Ck

k
i j L cz M c C

V z
P Z z

V z

θ
θ

θ

+
∈+

+
∈

∈ ∈

−
= ≈

−

∑
∏

∑ ∑
          (33) 

So, the problem of maximization (34) reduces to  

( )
( )

( )( )
( )( )

,

1
1

1
,

exp ,
ˆarg max | arg max

exp ,
i j

k
cc Ck

k
i j L cz M c C

V z
P Z z

V zθ θ

θ
θ

θ

+
∈+

+
∈

∈ ∈

−
= =

−

∑
∏

∑ ∑
  (34) 

In (34), the summation is taken over all possible labels M. (34) is “highly non-
linear” in nature and no “a priori knowledge” of the solution is available. As θ  
is the parameter vector [ ], , ,θ α β σ γ∈ , (34) reduces to a set of complex non-linear 
equations ( )f θ . Since, no “a priori knowledge” about the initial guess for de-
termining the solution is available, we have developed a “globally convergent 
homotopy map” to find out the solution starting from an arbitrary initial guess. 
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It is very difficult to solve the resulting non-linear equations and therefore a 
globally convergent based “Homotopy Continuation method” is developed. The 
homotopy curve is shown in Figure 3. 

9. Simulation 

A wide variety of examples are considered in simulation, but for the sake of illu-
stration of the potentiality of the proposed models and the algorithm, two tex-
tured images and three general images have been presented in this paper. 

9.1. Synthetic Images 

Texture images having two and five classes have been considered and are shown 
in Figure 4 and Figure 5. The proposed Compound Constrained MRF model 
has the unifying property of modeling texture as well as scene images. In this re-
search, the texture and the scene images are considered to validate this unifying 
modeling property. The two class synthetic image is shown in Figure 4(a) and 
the corresponding ground truth image is shown in Figure 4(b). Two types of 
clique potential functions namely Weak Membrane model and Reward Punish-
ment model have been considered. Figures 4(c)-(j) show the results obtained by 
MRF, COMRF and CCOMRF (with Weak Membrane model and Reward Pu-
nishment model) and JSEG and Kato’s method. As observed from these figures, 
MRF model with weak membrane clique potential function could not classify the 
texture. This result is improved, but misclassification persisted, with the com-
pound MRF model with same weak membrane model. As observed from Fig-
ure 4(f), the classification with Reward Punishment model is better than that 
of Weak Membrane model. The two classes could be classified properly with 
CCOMRF model and also by JSEG and Kato’s method. Since this is unsuper-
vised algorithm, the model parameters and the image labels have been estimated 
alternately. One combined iteration consists of one step of parameter estimation 
and one step of image label estimation. The model parameters obtained from 
our unsupervised algorithm are given in Table 1. These optimal values of the 
model parameters have been used to obtain the MAP estimate of the image la-
bels by hybrid algorithm. Our hybrid algorithm [34] consists of few iterations of 
Simulated Annealing (SA) and thereafter the Iterated Conditional Mode (ICM) 
algorithm. 
 

 

Figure 3. Homotopy curve. 
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Figure 4. (a) Original “two texture” image (200 × 200); (b) ground truth; (c) weak membrane 
MRF model using Hybrid Algorithm; (d) weak membrane COMRF model using Hybrid 
Algorithm; (e) weak membrane CCOMRF model using Hybrid Algorithm; (f) reward 
punishment MRF model using Hybrid Algorithm; (g) reward punishment COMRF 
model using Hybrid Algorithm; (h) reward punishment CCOMRF model using Hybrid 
Algorithm; (i) segmentation result showing JSEG method; (j) segmentation result showing 
kato method. 
 
Table 1. Parameters for images of different classes. 

Images 
( )1 2 3, ,I I I  Intraplane parameters 

α  β  σ  λ  

Figure 4 0.0022 4.74 0.7546 0.08 

Figure 5 0.1025 2.28 0.4 0.06 

Figure 6 0.00066 10.9245 1.7864 0.0035 

Figure 7 0.0027 8.98 0.5 0.08 

Figure 8 0.0023 6.76 0.5 0.08 
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Figure 5. (a) Original “five Texture” image (128 × 128); (b) ground truth; (c) weak membrane 
MRF model using Hybrid Algorithm; (d) weak membrane COMRF model using Hybrid 
Algorithm; (e) weak membrane CCOMRF model using Hybrid Algorithm; (f) reward 
punishment MRF model using Hybrid Algorithm; (g) reward punishment COMRF model 
using Hybrid Algorithm; (h) reward punishment CCOMRF model using Hybrid Algorithm; 
(i) segmentation result showing JSEG method; (j) segmentation result showing Kato 
method. 
 

As observed from Figure 4, the CCOMRF based algorithm with both the cli-
que potential functions yielded accurate classification and this is reflected in the 
misclassification error, which is very low. The “Percentage of Misclassification 
Error (PME)” in comparison with Ground Truth image is defined as 

number of misclassified pixels in all the classes 100
total number of pixels of the ima

M
ge

P E = × . 

These are shown in Figure 4(e) and Figure 4(h). Even Kato’s method classi-
fied the two classes accurately. Other models did not produce the appropriate 
results. These have been reflected in the table showing misclassification error. 
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The next example considered is a five class textured image shown in Figure 5. 
The results obtained are shown in Figure 5(c) and Figure 5(g). As observed 
from Table 2 and Table 3, the CCOMRF model produced five classes and the 
percentage of misclassification error in Weak Membrane Model and Reward-Pu- 
nishment model are 4.25 and 3.25 respectively. As seen from Table 3, the per-
centages of misclassification for MRF and COMRF model were 11.58 and 8.11 
respectively. These were much higher than those of the CCOMRF model. As far 
as all these three models are concerned, the CCOMRF model could efficiently 
model the textures. In this particular example the result obtained by CCOMRF 
model is comparable to those of JSEG and Kato’s methods. 

9.2. Real Images 

The next image to be considered for experiment is the Red-house image shown 
in Figure 6(a) and this image has both textural background with other scene 
objects. The unifying property of our proposed Constrained Compound model  
 

 

Figure 6. (a) “Red house” image (256 × 256); (b) ground truth; (c) weak membrane MRF 
model using Hybrid Algorithm; (d) weak membrane COMRF model using Hybrid 
Algorithm; (e) weak membrane CCOMRF model using Hybrid Algorithm; (f) reward 
punishment MRF model using Hybrid Algorithm; (g) reward punishment COMRF model 
using Hybrid Algorithm; (h) reward punishment CCOMRF model using Hybrid Algorithm; 
(i) segmentation result showing JSEG method; (j) segmentation result showing kato 
method. 
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Table 2. Comparison of results with JSEG method and Kato’s method. 

Images 
JSEG KATO 

RESULT RESULT 

Figure 4 1.2 2.1 

Figure 5 1.3 1.2 

Figure 6 9.37 11.05 

Figure 7 9.45 12.25 

Figure 8 10.55 17.25 

 
Table 3. Percentage (% age) of missclassification error for different images using “re- 
ward-punishment Model”. 

Images 
MRF COMRF CCOMRF 

Hybrid Hybrid Hybrid 

Figure 4 16.89 9.46 2.33 

Figure 5 11.58 8.11 3.25 

Figure 6 25.01 6.95 2.5 

Figure 7 14.64 5.59 3.18 

Figure 8 15.64 7.59 3.56 

 
have been validated and the corresponding ground truth image is shown in Fig-
ure 6(b). The unsupervised algorithm has been applied for this image and the 
model parameters of the proposed COMRF and CCOMRF model have been es-
timated together with the image labels. The model parameters are given in Table 
1. Figures 6(c)-(j) show the results obtained by our unsupervised algorithm and 
also JSEG and Kato’s method. The results obtained by the CCOMRF model with 
the Weak Membrane and the Reward Punishment clique potential model are 
shown in Figure 6(e) and Figure 6(h) respectively. In case of Figure 6(e), it can 
be observed that the grass portion in the ground has been classified while some 
portions of the roof of the house has been misclassified thereby leading the mis-
classsification error to 2.31%. In case of Reward Punishment model, as observed 
from Figure 6(h), the roof portion has been classified properly while some por-
tions of the grass background, which is having textural ones, has been misclassi-
fied. However the major portions of the grass background have been segmented 
properly. Thus, the percentage of misclassification error is 2.5%. Figure 6(d) 
shows results obtained by the COMRF model with weak membrane clique po-
tential and it can be observed that some portions of the grass has been misclassi-
fied and hence the misclassification error is 7.95 percent and this misclassifica-
tion increased with only MRF model as shown in Figure 6(f). This indicates that 
use of only MRF model does not possess the potentiality of modeling textured as 
well as non-textured objects in the scene. The results obtained JSEG and Kato’s 
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method are also presented in Figure 6 and are not properly segmented. The 
percentage of misclassification errors are also more than those of CCOMRF 
models. 

The other two examples considered are shown in Figure 7 and Figure 8. Fig-
ure 7 is the boat image where the water and the reflection of the boat in the wa-
ter pose problem. The corresponding ground truth is shown in Figure 7(b). It 
has the texture as well as non textured objects as seen from Figure 7(a). The pa-
rameters estimated by the unsupervised algorithm are presented in Figures 
9(d)-(f) respectively. These figure show the convergence of the parameters for 7  
 

 

Figure 7. (a) “Water boat” image (348 × 522); (b) ground truth; (c) weak membrane MRF 
model using Hybrid Algorithm; (d) weak membrane COMRF model using Hybrid 
Algorithm; (e) weak membrane CCOMRF model using Hybrid Algorithm; (f) reward 
punishment MRF model using Hybrid Algorithm; (g) reward punishment COMRF model 
using Hybrid Algorithm; (h) reward punishment CCOMRF model using Hybrid Algorithm; 
(i) segmentation result showing JSEG method; (j) segmentation result showing kato 
method. 
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Figure 8. (a) “Berkley crow” image (481 × 321); (b) ground truth; (c) weak membrane 
MRF model using Hybrid Algorithm; (d) weak membrane COMRF model using Hybrid 
Algorithm; (e) weak membrane CCOMRF model using Hybrid Algorithm; (f) reward 
punishment MRF model using Hybrid Algorithm; (g) reward punishment COMRF model 
using Hybrid Algorithm; (h) reward punishment CCOMRF model using Hybrid Algorithm; 
(i) segmentation result showing JSEG method; (j) segmentation result showing kato 
method. 
 
combined iterations while Figures 9(a)-(c) show the estimates of the parameters 
for one combined iteration with homotopy continuation method. Figure 7(e) 
shows the result with CCOMRF model and Weak Membrane model and it could 
segment with few misclassified pixels and with PME 2.67. The result shown in 
Figure 7(h) has not improved and the PME is 3.18. In this case also, the 
CCOMRF model exhibited the potentiality of modeling both texture and scene 
as well. The proposed CCOMRF model’s performance has been found to best 
among other models. The model parameters and the misclassification errors 
have been presented in Tables 1-3 respectively. The fourth example considered 
was the crow image from the Berkeley data base and this image has non-uniform 
lighting conditions. This is shown in Figure 8(a). The corresponding ground 
truth, manually constructed, is shown in Figure 8(b). In this case also the results 
obtained by CCOMRF model have been superior to the use of other models. 
These are shown in Figure 8(e) and Figure 8(h) respectively. This has also re-
flected in the percentage of misclassification error. The proposed unsupervised 
algorithm has been applied with all the proposed MRF models. The model pa-
rameters α , β  and σ  as obtained by the homotopy continuation algorithm 
are shown in Figures 9(a)-(c) respectively. The x-axis parameter λ  denotes  
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Figure 9. (a) Estimation of alpha for “Five Texture” image; (b) estimation of beta for “Five Texture” image; (c) estimation of lambda 
for “Five Texture” image; (d) combined iteration of alpha for “Water-boat” image; (e) combined iteration of beta for “water-boat” 
image; (f) combined iteration of lambda for “water-boat” image. 

 
the homotopy parameter λ  and varies from 0 to 1. The value at zero corres-
ponds to the arbitrary starting point and the value at 1λ =  corresponds to the 
solution of unknown function and hence MCPL estimates. Similarly Figure 9(b) 
and Figure 9(c) corresponds to the MCPL estimates obtained at 1λ = . These 
values have been used to obtain the image label estimates by the hybrid algo-
rithm. 

Thus, from our simulation results, it has been concluded that the proposed 
CCOMRF model with the reward punishment model performed well as com-
pared to others. It has also been demonstrated that this model possess the unify-
ing property of modeling texture and non textured objects in the scene as well. 

10. Conclusion 

In this work, an unsupervised color image segmentation algoritm is proposed 
with two new image models such as COMRF and CCOMRF models. Here, im-
age segmentation is viewed as the problem of recovering a “true” image consist-
ing of a few “homogeneous regions” from a noisy image by labeling individual 
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pixels according to region type. The proposed CCOMRF model is found to have 
the unifying property of modeling scene and texture image as well. The proposed 
compound MRF model has the potentiality of modeling color with the notion of 
controlled correlations. The model parameters have been estimated by the pro-
posed “Homotopy Continuation method”. It has been found that CCOMRF model 
produced better results visually and numerically, than those of other models. Fur-
ther this model was found to possess “unifying property” of modeling scenes as 
well as texture images. The only parameter that was selected on trial and error 
basis was σ , the degradation parameter. Currently, attempts are made to re-
formulate the problem to estimate σ  with all other associated model parame-
ters. 
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