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Abstract 
 

A non-linear deterministic model was considered to study the dynamics transmission and control of Lassa 
fever virus. The total population was divided into six mutually exclusive classes between human and 
rodents as susceptible human, infected human, treated human, removed human, susceptible rodents and 
infected rodents. Existence and uniqueness of the solution of the model were determined, the model 
threshold parameter was examined using next-generation operator method. The existence of disease-free 
equilibrium point and endemic equilibrium point was carried out. The model result shows that diseases 
free equilibrium is local asymptotically stable at Ro< 1 and unstable at Ro> 1, the model is globally 
asymptotically stable. Sensitivity analysis of the model parameters was carried out in order to identify the 
most sensitive parameters on the disease transmission. The results indicate that, the most sensitive 
parameter is the progression rate to active Lassa fever (), the next is the force of infection the susceptible 
human with the infected individuals’ (). The least sensitive parameter is the treatment rate of infective 
class (). () and () are highly sensitive to the transmission of Lassa fever and every effort must be put in 
place by the agencies concern to check these parameters. 
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1 Introduction  
 
Lassa fever is caused by Lassa virus which belongs to the arena virus family and classified as group V(-)ss 
RNA. A rat that is common in endemic areas, known as masto-mysnatalensis is the natural host of the 
disease [1,2,3,4]. Humans are infected with this disease by eating foods that is contaminated with saliva, 
urine or excreta of the hosted Lassa virus rat. The incubation period of Lassa fever is 6 to 21 days. It can also 
be defined as a viral disease that attacks the liver, nervous system, spleen and kidney, causing them to bleed, 
hence the hemorrhagic fever [5]. Nosocomial transmission may occur through droplets by person to person 
contact or the contamination of needles [1] but the virus cannot be spread through casual contact (including 
skin-to-skin contact without exchange of body fluids) [5]. 
 
The symptoms and signs of the disease are similar to the symptoms and signs of malaria, typhoid and yellow 
fever [13]. The symptoms and signs include fever, nausea, vomiting, chest pain, puffy face, puffy cheeks, 
oedema, dehydration, conjunctiva injection, fainting attacks, bleeding from orifices, hypotension, shock and 
coma [1,6,2,7,8,9,3,10,4]. Approximately 15%- 20% of patients hospitalized for Lassa fever die from the 
illness. Studies show that about 500 000 cases of Lassa fever occur per year in West Africa with 
approximately 5000 death [11].  
 
There is no US approved vaccine for Lassa fever but it can be treated using Ribavirin which is effective 
during an early stage of infectiousness [12]. Lassa fever can be prevented by using: Rodent –proof 
containers for food storage, Rodents control measures such as traps and rodenticides are to be used in and 
around human homes, Avoid eating rodent (rats), Avoid attracting rodents to house by cleanliness and 
healthy waste disposal practices, Isolation of patients till recovery is well advanced, Use of gown, gloves 
mask and cap, Careful segregation of biologically hazardous waste and Sterilizing all equipment used for the 
patients [13]. 
 

2 Mathematical Model 
 
We considered Six (6) compartmental deterministic mathematical model using the 

RRHHHH IandSRTIS ,,,,,  to have a better understanding on the transmission and control of Lassa 

fever virus. The population size  tN  is divided into two population: human population and rodent 

population, that are sub–divided into sub–classes which are Susceptible human HS , Infected human HI , 

Treated human HT ,Removed human HR , Susceptible rodent RS and Infected rodent RI . 

 

Where             RRRHHHHH ISNandRTISN               (1) 

 

2.1 Susceptible human ( HS ) 

 
Susceptible human is a member of a human population who is at risk of becoming infected by a disease. The 

population of susceptible humans increases by the recruitment of sexually-active humans at a rate 1 and the 

ones that are recovery from the disease. The population decreased by natural death at a rate 1  also, by 

force of infection of infected detected .  
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2.2 Infected human ( HI ) 

 
Infected human is a member of a human population who is infected and capable of transmitting the disease. 
The population of infected humans increases through the infection of susceptible human. The population is 

decreased by treatment rate of infectious, natural death and disease-induced death , 1 and d  respectively. 

 

2.3 Treated human ( HT ) 

 
Treated human is a member of a human population who is infected but not infectious. The population of 
treated human increases through the treatment rate of infectious. The population of treated class diminished 

by the recovery rate of infected human and natural death at a rate 1 . We assume that no one die of the 

disease in this class. 
 

2.4 Susceptible rodent ( RS ) 

 
Susceptible rodent is a member of a rodent population who is at risk of becoming infected by a disease. The 

population of susceptible rodents increases by the recruitment 2 . The population decreased by the rate at 

which susceptible rodents become infected   and natural death at a rate 2 . 

 
2.5 Infected rodent ( RI ) 

 
Infected rodent individual is a member of a rodent population who is infected and capable of transmitting the 
disease. The population of infected rodents’ increases through the rate at which susceptible rodent become 

infected while the population is decreased by rate at which rodent infect human  and natural death 2 . 

 

2.6 Removed human ( HR ) 

 
Recovered human is a member of a human population who recovered from the disease .The population of 

removed human is increased by death rate due to the disease d , this population later decreased by natural 

death at the rate 1 . 

 
Hence, we have the following non-linear system of differential equations: 
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With initial condition 0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  RRHHHH ISRTIS
 

 

Table 1. Description of variables 

 
Variables Definitions 
SH Susceptible human at time t 
IH Infected human at time t 
TH 
RH 
SR 

Treated human at time t 
Removed human at time t 
Susceptible rodent at time t 

IR Infected rodent at time t 
 

 
          

Table 2.  Description of parameters 
 

Parameters Definitions 

1  

2  

1  

2  

Recruitment rate  into Susceptible human 
 

Recruitment rate  into Susceptible rodent 
 

Natural death rate in human 
 

Natural death rate in rodent 

r  
Recovery rate 

  Treatment rate 

d  Death  rate due to the disease 

  Rate at which rodent infect human 
  Rate at which susceptible rodent become infected 
c  Contact rate 
  Progression rate to active Lassa fever 

  Probability of getting Lassa fever infection  

HN  

RN  

  

Total population of human 
 

Total population of rodent 
Force of infection 



 
 
 

Akanni and Adediipo; ARJOM, 9(3): 1-11, 2018; Article no.ARJOM.37441 
 
 
 

5 
 
 

2.7 Existence and Uniqueness of the solution 
 
Lemma 1: The closed set  
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then model in (2) has a unique solution in D  
 

Proof: Consider the biologically-feasible region D , defined above. The model in (2) must be continuous and 
bounded in D. 
 

Therefore, 6,5,4,3,2,1,, ji
dx

dx

j

i  are continuous and bounded. All solution of the model (2) with 

initial conditions in D . Hence the model (2) has a unique solution in D, which means that the model (2) is 
epidemiologically and mathematically well posed. 
 

2.8 Existence of Disease Free Equilibrium (DFE) 
 
When there is no disease in the population, it is called DFE; it implies that 
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Let 0E  denotes the disease free equilibrium. We set 0****  HRHH RITI  
 
The model in (2) has disease free equilibrium given by 
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2.9 Existence of Endemic Equilibrium Point (EEP) 
 
When there is disease in the population, it is called EEP; it implies that 
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And now solve model (2) simultaneously to get the endemic equilibrium point, it given below; 
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Where 
 

N
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2.10 Basic reproduction number ( 0R ) 

 
Using next generation matrix [14], the non-negative matrix F (new infection terms) and non-singular matrix 
V (other transferring terms) of the model are given respectively by; 
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Thus;                           
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The threshold quantity 0R  is the basic reproduction number of the system (2) for Lassa fever virus. It is the 

average number of new secondary infections generated by a single infected individual in his or her infectious 
period [15]. 
 

2.11 Local Stability of the DFE 
 
Theorem 1: The disease free equilibrium of the model (2) is locally asymptotically stable (LAS) if 0R < 1 

and unstable if 0R > 1. 

 

Proof: To determine the local stability of 0E , the following Jacobian matrix is computed corresponding to 

equilibrium point 0E . Considering the local stability of the disease free equilibrium at
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We have  
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The characteristics polynomial of the above matrix is given by 
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Hence 10 R
 

 
The result from Routh Hurwitz criterion shows that, all eigen-values of the polynomial are negative which 
shows that the disease free equilibrium is locally asymptotically stable. 
 

2.12 Global Stability of the DFE 
 
Theorem 2: The disease free-equilibrium of the system in (2) is globally asymptotically stable(GAS) 

whenever 10 R and unstable if 10 R . 

 
Proof: The proof is based on using the comparison theorem [16]. The rate of change of the variables 
representing the infected component of the system can be written as follows. 
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Consequently, equation (14) becomes 
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According to [14], all eigenvalues of the matrix F – V have negative real parts. i.e 0)(  IVF 
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The characteristics polynomial of the above matrix was found and can be written as 
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Since, ,0,0,0,0 4321  FandFFF
 

 
Hence, all eigen-values are negative which implies that disease-free equilibrium is globally asymptotically 
stable. 
 

2.13 Sensitivity analysis 
 
Sensitivity analysis is a crucial analysis that shows the importance of each parameter to disease transmission 
[14]. The sensitivity index of parameters with respect to the basic reproduction number was calculated, to 
know how crucial each parameter is to the disease transmission; intervention control strategies that target 
such parameter should be employed in the control/prevention of Lassa fever virus. 
 
Definition 1.The normalized forward sensitivity index of a variable   that depends differentiable on a 
parameter p is defined as: 
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As we have explicit formula for oR , we derive an analytical expression for the sensitivity of oR as  
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The signs of the sensitivity index of 0R are as shown in Table 3. 
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Table 3. Signs of sensitivity index of 0R
 

 

Parameter Parameter value Sensitivity value Sensitivity index 

  0.0712 (Assumed) 0.99999999999 Positive 

  0.72 (Assumed) 1 Positive 

1  0.000215 [17] 0 Positive 

1  0.0000548 [17] -1.000101 Negative 

d  0.01 [13] -0.0185166 Negative 

  0.53 (Assumed) -0.981 Negative 

 

2.14 Numerical Simulation 
 
Numerical simulation was carried out by MAPLE 18 software using Runge-Kutta method of order four with 
the set of parameter values given in Table 3. Control and dynamic spread of Lassa fever virus are checked 
simultaneously on susceptible human, infected human, treated human, susceptible rodent, infected rodent 
and removed human, since the spread of Lassa fever virus is a function of time. 
SH(0)=10000,IH(0)=2000,TH(0)=600 ,SR(0)=200,IR(0)=125, RH(0)=500. Figs. 1-4 below are the results 
obtained from numerical simulation of the Lassa fever virus model with the dynamic spread and control. 

 
 

            Fig. 1. Suscetipible human                                              Fig. 2. Infected human                                                                                  

 
 

        Fig. 3. Treatment human                                              Fig. 4. Removed human 
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Fig. 5. Suscetipible rodents                                                Fig. 6. Infected rodents                                                                                  
 

3 Results and Discussion 
 
In this study, Six (6) deterministic epidemiological model of (SH, IH, TH, SR, IR, RH) are presented to gain 
insight into the control and dynamical spread of Lassa fever virus disease. Fig. 1; the population of 
susceptible human continue to increase with time in the presence of good medical control, Fig. 2; the 
population of infected human decrease continually with time in the presence of good medical control, 
meaning that the disease can be controlled and over time the disease will fade out. Fig. 3; the population of 
the treated human firstly increase between the 1st two month of the infection and later decrease after the 2nd 
month when good control has been put in place and good medical care while in Fig. 4, the population of 
removed human increase steady with time also in Fig. 5, the population of susceptible rodent decrease steady 
with time, controlling the population of the rodent that can be affected with the disease. Fig. 6; the 
population of the infected rodent firstly increases and after the 7th month the population start to decrease 
which indicate the population of the rodent that affected with the disease is under control 
 

4 Conclusion 
 
In conclusion, Sensitivity analysis of the model parameters was carried out in order to identify the most 
sensitive parameters on the disease transmission. The results indicate that the most sensitive parameter is the 
progression rate to active Lassa fever (), the next is the force of infection the susceptible human with the 
infected individuals’ (). The least sensitive parameter is the treatment rate of infective class (). () and () 
parameters that are highly sensitive to the transmission of Lassa fever and every effort must be put in place 
by the agencies concern to check these parameters. 
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