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Abstract

We present a special B-spline tight frame and use it to introduce our numerical approximation
method. We apply our method to investigate Gibbs effects and illustrate some features of the
associated framelet expansion. It is shown that Gibbs effects occurs in the framelet expansion
of a function with a jump discontinuity at 0 for certain classes of framelets. Numerical results
are obtained regarding the behavior of the Gibbs effects. We present the results by expanding
functions using the quasi-affine system. This system is generated by the B-spline tight framelets
with a specific number of generators. We show numerically the existence of Gibbs effects in the
truncated expansion of a given function by using some tight framelet representation.
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1 Introduction

The theory and applications of approximating functions can be traced back to more than one
hundred years ago [1]. Various methods and techniques have been developed in numerical approxi-
mations of functions. Here, we introduce a new method of approximating functions, by means of,
framelet expansion. Frame is a generalization of a basis of a vector space or function space. It maybe
linearly dependent and provides a redundant, stable way of representing a given function. For many
decades, Fourier series was used to approximate functions in terms of simple oscillating sines and
cosines. However, the nonuniform convergence of the classical Fourier series for functions with
jump discontinuities was already analyzed by Wilbraham in 1848. This was later named the Gibbs
phenomenon (effects). The partial sums overshoot the function near the discontinuity, and this
overshoot continues no matter how many terms are taken in the partial sum. This phenomenon is
not the special quirk which occurs only in trigonometric Fourier series. A similar phenomenon exists
in other wavelet series [2, 3], and tight framelet expansions [4, 5]. The numerical approximation
methodology is a broad subject. Here we mainly discuss its applications on the Gibbs phenomenon
which opens a new insight of this study.

Gibbs effect is not simply a mathematical observation; it has many practical applications in applied
science, computer and engineering. For example, The development of radar in Great Britain,
engineers used the square wave function to give x-coordinates on their oscilloscopes regularly. In
doing that, they encountered Gibbs effects [6]. In the digital signals [7], Gibbs effects appear in the
process of the design of digital filters by electrical engineers.

Gibbs effects can be used as techniques for numerical analysis and computation [8, 9], vibration and
stability of complex beams [10], pseudo-spectral time domain analysis [11], string approximation for
spam filtering and malicious URLs classification system [12, 13], and cubic-spline interpolation of
discontinuous functions [14]. It can be viewed as a phenomenon of recovering local information from
global information, or, specifically, as one of recovering point values of a function from its expansion
coefficients. In physical optics, for example, Gibbs effects displayed when a beam irradiance of a
top-hat beam in an aperture is represented as a plot of the beam irradiance cross sectional surface
past an aperture [15].

This article is organized as follows. In Section 2, we recall some preliminary backgrounds by
introducing some notations. Section 3 provides some fundamentals in frame theory. We then begin
the study of Gibbs effects by showing Bessel and Legendre series expansions in Section 4. The main
ingredient in constructing wavelets is multiresolution analysis which is explained in Section 5. We
present the unitary extension principle for constructing tight frames in Section 6. We also introduce
framelet representation and use it to show how to obtain the truncated partial sum of a function.
In Section 7, we present a quasi-affine system to construct a tight framelet. We further construct
B-spline tight frame in Section 8. Moreover, we present the Gibbs effects in B-spline tight frames
using three generators in Section 9. We conclude with several remarks in Section 10.

2 Preliminary Background

The space L2(R) is the set of all functions f(x) such that

∥f∥L2(R) =

(∫
R
|f(x)|2

)1/2

<∞.
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The main feature of a basis {fk}∞k=1 in the Hilbert space L2(R) is that every f ∈ L2(R) can be
represented as an infinite linear combination of the elements fk such that

f =

∞∑
k=1

ckfk. (2.1)

Let ℓ2(Z) be the set of all sequences h[k] defined on Z where:(
∞∑

k=−∞

|h[k]|2
)1/2

<∞.

For any function f ∈ L2(R), the dyadic dilation operator D is defined by

Df(x) =
√
2f(2x).

For a ∈ R, the operator Ta, called translation by a, is defined by

Taf (x) = f(x− a), x ∈ R.

Let j ∈ Z, then we have

TaD
j = DjT2ja and DjTa = T2−jaD

j , where Dj = D ·D · · ·D︸ ︷︷ ︸
j-times

3 Frames in L2(R)
In this section we review some elements and basic information for the frame theory, which is an
active research area dealing with a generalization of the concept of an orthonormal basis. The
idea comes by having an additional lower bound of the Bessel sequences. Frames were introduced
already in 1952 by Duffin and Schaeffer in their paper [16]; they used frames as a tool in the study of
nonharmonic Fourier series. In 1985, Daubechies, Grossmann and Meyer [17] observed that frames
can be used to find series expansions of functions in L2(R).

Definition 3.1. A sequence {fk}∞k=1 of elements in L2(R) is a frame for L2(R) if there exist
constants A,B > 0 such that

A∥f∥2 ≤
∞∑

k=1

|⟨f, fk⟩|2 ≤ B∥f∥2, ∀f ∈ L2(R). (3.1)

The numbers A,B are called frame bounds.

A frame is tight if we can choose A = B as a frame bounds, and it is Parseval frame if A = B = 1.
All frames can be viewed as a generalization of an orthonormal basis. A frame, which is not a basis,
is said to be overcomplete or redundant.

Definition 3.2. A sequence {fk}∞k=1 of elements in L2(R) is a Bessel sequence if there exists a
constant B > 0 such that

∞∑
k=1

|⟨f, fk⟩|2 ≤ B∥f∥2, ∀f ∈ L2(R),

and B is called the Bessel bound of {fk}∞k=1. It is clear that a frame sequence is a Bessel sequence.

Definition 3.3. [18] Let ψ ∈ L2(R). For j, k ∈ L2(Z), define the function ψj,k by

ψj,k = DjTkψ.

Then, we say the function ψ is a wavelet if the set
{
DjTkψ

}
j,k∈Z forms an orthonormal basis for

L2(R).
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The study of wavelet bases began around 1985, but the first example of wavelet is Haar wavelet
which appeared much earlier. We will define the Haar wavelet later in Section 4.

Definition 3.4. [4] Given Ψ = {ψℓ}rℓ=1 ⊂ L2(R), define the affine system

X (Ψ) = {ψℓ,j,k : 1 ≤ ℓ ≤ r ; j, k ∈ Z} ⊂ L2(R),

where
ψℓ,j,k = DjTkψℓ.

The system X (Ψ) is called a tight wavelet frame of L2(R), if the following representation holds for
all f ∈ L2(R). such that

∥f∥2L2(R) =
∑

g∈X(Ψ)

|⟨f, g⟩|2 ,

where ⟨·, ·⟩ is the inner product in L2(R) and ∥ · ∥L2(R) =
√

⟨·, ·⟩. This is equivalent to say that

f =
∑

g∈X(Ψ)

⟨f, g⟩ g, for all f ∈ L2(R).

As we mentioned before, a tight frame is a generalization of an orthonormal basis, so its clear that
an orthonormal basis is a tight frame. When X (Ψ) is an orthonormal basis of L2(R), then we say
that X (Ψ) is an orthonormal wavelet basis.

The Fourier transform of a function f ∈ L2(R) is defined to be

f̂(ω) =

∫
R
f(x) e−iωxdx, ω ∈ R,

and the Fourier series of a sequence h ∈ ℓ2(Z) is defined by

ĥ(ω) =
∑

g∈X(Ψ)

h[k]e−iωk, ω ∈ R.

4 The Gibbs Effects in Orthogonal Expansions

In this section, we begin the study of Gibbs effects in the truncated orthogonal expansion of a
specific function with jump discontinuities. Our example will cover the Bessel and the Legendre
function series expansions.

The Gibbs effects in the orthogonal expansions was implicitly mentioned by Gottlieb and Orszag
[19] in 1977 in a small chapter published for a survey in approximation theory, but they were not
aware of this effect until late 1991. We will consider their setup in our presentation. Let us define
some elements to represent the orthonormal series expansions.

Let {φn}∞n=1 be a complete set of orthonormal functions defined on the interval (a, b), with the
weighted inner product ∫ b

a

ρ(x)φn (x)φm (x)dx =

{
0 if n ̸= m
1 if n = m

,

where ρ(x) is the weight function and φm (x) indicates the complex conjugation of φm (x) . The
orthonormal expansion of a function in terms of the set above is given by,

f (x) =

∞∑
k=1

ckφk (x) ,
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where the coefficients ck are

ck =

∫ b

a

ρ(x) f (x)φk (x)dx.

If the set {φn}∞n=1 is orthogonal (but not orthonormal), i.e., ∥φn∥ ̸= 1, for any n. Then∫ b

a

ρ(x)φn (x)φm (x)dx =

{
0 if n ̸= m

∥φn∥2 if n = m
,

and

ck =

∫ b

a
ρ(x) f (x)φk (x)dx

∥φk∥2
.

4.1 The Bessel series expansion

The differential equation

d

dx

(
x
du

dx

)
− n2

x
u(x) + µ2xu(x) = 0, 0 < x < a,

can be considered to generate the solution as an infinite series expansion about x = 0 by using the
Frobenius method. This series solution give us the Bessel function Jn (x) of the first kind of order
n ≥ 0 (n not necessarily an integer), which has the following popular representation,

Jn (x) =

∞∑
k=0

(−1)k x2k+n

22k+nk! (n+ k)!
.

It is given that u(a) = 0, known as the vanishing boundary condition, which means

u(a) = Jn(jn,k) = 0, k = 1, 2, 3, · · ·,

where {jn,k, k = 1, 2, · · ·} are the zeros of the Bessel function Jn(x).

4.1.1 Some properties of the Bessel functions.

For any n > 0, there are many properties of the Bessel functions [20], the most useful ones are:

• Jn(−x) = (−1)n Jn(x).

• d
dx
Jn(x) = −n

x
Jn(x) + Jn−1(x) =

n
x
Jn(x)− Jn+1(x).

• d
dx

(xnJn(x)) = xnJn−1(x).

• d
dx

(
x−nJn(x)

)
= −x−nJn+1(x).

• Jn−1 (x) + Jn+1 (x) =
2n
x
Jn (x) .

Definition 4.1. The Bessel series expansion in general is given by,

f (x) =

∞∑
k=1

ckJn(
jn,kx

a
), 0 < x < a

where f (x) defined on (0, a) and,

ck =

∫ a

0
x f (x) Jn(

jn,kx

a
)dx∫ a

0
x
∣∣∣Jn( jn,kx

a
)
∣∣∣2 dx .
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Using the properties of Bessel functions, we have∫ a

0

x

∣∣∣∣Jn( jn,kx

a
)

∣∣∣∣2 dx =
a2

2
(Jn+1(jn,k))

2 .

The truncated Bessel series of f(x) of order N is given by,

SN (x) =

N∑
k=1

ckJn(
jn,kx

a
).

4.2 Some illustration

We give some simple illustrations of the Gibbs effects in the Bessel functions of the function f(x),
where

f (x) =

{
−2x if 0 < x < 1/2
2− 2x if 1/2 < x < 1

.

Fig. 1 illustrates the Gibbs effects near the jump discontinuity point x = 1/2 in the domain (0, 1).
We used N = 10, 20, 50 terms in the N th partial sum SN (x) .

Fig. 1. The effects of the truncated Bessel series SN (x), N = 10, 20, 50 with f(x)

Fig. 2 is obtained by showing all graphs together including f .

Fig. 2. The effects of the truncated Bessel series SN (x), N = 10, 20, 50 with f(x)

4.3 The Legendre series expansion

One of the solutions of the differential equation

d

dx

((
1− x2

) du
dx

)
+ n (n+ 1)u(x) = 0, − 1 < x < 1,
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is the Legendre polynomial Pn(x) which is a polynomial of degree n which can be expressed by the
Rodrigues rule, namely,

Pn(x) =
1

2nn!

dn

dxn
(
1− x2

)n
.

This family of polynomials is orthogonal on the interval (−1, 1), such that ∥Pn∥2 = 2
2n+1

. More
precisely,

2n+ 1

2

∫ 1

−1

ρ(x)Pn (x)Pm (x) dx = δn,m,

where δn,m is the Kronecker delta function and ρ(x) = 1.

The Legendre series expansion in general is given by,

f (x) =

∞∑
k=1

ckPk(x), for x ∈ (−1, 1),

where,

ck =
2n+ 1

2

∫ 1

−1

f(x) Pn (x) dx.

The N-th partial sum of the Legendre series is defined by

SN (x) =

N∑
k=0

(−1)k (4k + 3)! (2k)!

22k+1 (k + 1)!
P2n+1(x), − 1 < x < 1.

4.4 Some illustration

We give some simple illustrations of the Gibbs effects for the Legendre series approximation of the
wave (square) function g(x), where

g (x) =

{
−1 if 0 ≤ x < 1/2
1 if 1/2 < x < 1

.

Fig. 3 illustrates the Gibbs effects near the jump discontinuity point x = 1/2 of the domain (0, 1).
We used N = 10, 20, 50 terms in the Nth partial sum SN (x) .

Fig. 3. The effects of the truncated Legendre series SN (x), N = 10, 20, 50

Fig. 4 is obtained by showing all graphs together including g.
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Fig. 4. The effects of the truncated Bessel series SN (x), N = 10, 20, 50 with f(x)

5 MRA, FMRA and Framelets Generated by the UEP

Multiresolution analysis (MRA) is a tool to construct orthonormal bases for L2(R) of the form
DjTkψ; j, k ∈ Z for a suitably chosen function ψ ∈ L2(R). Such a function is called a wavelet. The
introduction of MRA by Mallat and Meyer [21, 22] was the beginning of a new era, in fact the
concept of a multiresolution analysis is fundamental in wavelet theory. It consists of a collection of
conditions on certain subspaces of L2(R).

Frame MRA was introduced by Benedetto and Li [23, 24]. The theory provides conceptually new
mathematical and signal processing results, which go beyond the simple combination of frame and
MRA techniques.

Definition 5.1. A frame multiresolution analysis (FMRA) {Vj , ϕ}j∈Z for L2(R) is a sequence of

closed subspaces Vj ⊆ L2(R) and an element ϕ ∈ V0 such that:

(i) · · ·V−1 ⊂ V0 ⊂ V1 · ··, (Nested sequence).

(ii) ∪jVj = L2(R) and ∩jVj = 0, (Density and Separation).

(iii) f ∈ V0 =⇒ Tkf ∈ V0, ∀k ∈ Z, (Translation).
(iv) Vj+1 = D (Vj), i.e., f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1, (Scaling).

(v) {Tkϕ}k∈Z is a frame for V0.

The function ϕ is called the generator of the frame multiresolution analysis. Alternatively, a FMRA
is defined as a MRA, with the condition (v) and the orthonormal basis for V0 replaced by a frame
condition. So we can start the construction of a FMRA with a subspace V0 ⊂ L2(R) satisfying
conditions (i)-(iii) and then try to find a function ϕ such that {Tkϕ}k∈Z is a frame for V0.

Example 5.1. (Haar MRA) We can define a MRA by,

ϕ = 1[0,1);

Vj =
{
f ∈ L2 (R) : f is constant on [2−jk, 2−j (k + 1)], ∀k ∈ Z

}
.

Note that the Haar wavelet can be written as,

ψ (x) = 1[0,1/2) (x)− 1[1/2,1) (x)

= 1[0,1) (2x)− 1[0,1) (2x− 1)

=
1√
2

(
D1[0,1) (x)−DT11[0,1) (x)

)
.

8
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Fig. 5 is for the graph of the Haar scaling function with its wavelet.

Fig. 5. The scaling function ϕ with its wavelet ψ

6 Unitary Extension Principle (UEP)

The Unitary Extension Principle is a principle for construction a tight frame for L2(R). We will
recall a result by Ron and Shen, which constructs tight wavelet frames from the UEP generated by
a collections {ψℓ}rℓ=1 called framelet.

Definition 6.1. A compactly supported function ϕ ∈ L2(R) is said to be refinable if

ϕ(x) = 2
∑
k∈Z

h0[k] ϕ(2x− k), (6.1)

for some finite supported sequence h0[k] ∈ ℓ2(Z). The sequence h0 is called the low pass filter of ϕ.

The general setup is to construct tight frame for L2(R) of the form

{ψℓ,j,k : 1 ≤ l ≤ r ; j, k ∈ Z}

which can be summarized as follows: Let V0 be the closed space generated by {Tkϕ}k∈Z , i.e.,

V0 = span {Tkϕ}k∈Z, and Vj =
{
f(2jx) : f(x) ∈ V0 where x ∈ R

}
. Let {Vj , ϕ}j∈Z be the MRA

generated by the function ϕ and Ψ = {ψℓ}rℓ=1 ⊂ V1 such that

ψℓ = 2
∑
k∈Z

hℓ[k] ϕ(2 · −k), (6.2)

where{hℓ[k], k ∈ Z}rℓ=1 is a finitely supported sequences and called high pass filters of the system.

Theorem 6.1. (Unitary Extension Principle)[25] Let ϕ ∈ L2(R) be the compactly supported refinable
function with its finitely supported low pass filter h0. Let

{hℓ[k], k ∈ Z}rℓ=1

be a set of finitely supported sequences, then the system

X (Ψ) = {ψℓ,j,k : 1 ≤ ℓ ≤ r ; j, k ∈ Z} (6.3)

forms a tight frame for L2(R) provided the equalities

r∑
ℓ=0

∑
k∈Z

hℓ[k]hℓ[k − p] = δ0,p (6.4)

9
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and
r∑

ℓ=0

∑
k∈Z

(−1)k−p hℓ[k]hℓ[k − p] = 0 (6.5)

hold for all p∈ Z, where δ0,p =

{
0, if p ̸= 0
1, if p = 0

. Particularly, if r = 1 and ∥ϕ∥2 = 1, then X (Ψ)

is an orthonormal wavelet bases of L2(R).

For the proof, please see [25]. By looking to the proof of Theorem 6.1, we have the following framelet
representation,

f =
r∑

ℓ=1

∑
j∈Z

∑
k∈Z

⟨f, ψℓ,j,k⟩ψℓ,j,k. (6.6)

For a given ϕ, we define the projection operator by

Pj : f 7→
∑
k∈Z

⟨f, ϕj,k⟩ ϕj,k,

for any f ∈ L2(R), where ϕj,k = DjTkϕ. Since ϕ ∈ V0, its clear that Pjf ∈ Vj . By the refinablity
of ϕ we have ∑

k∈Z

ϕ(x+ k) = 1,

and,
lim
j→∞

Pjf = f
(
or ∥Pjf − f∥L2(R) −→ 0 as j −→ ∞

)
.

We provide a precise definition of the Gibbs effects for framelet expansion of a given function
f : R −→ R, such that f ∈ L2(R) has a compact support and a jump discontinuity at the origin as
follows.

Definition 6.2. Suppose a function f has a jump discontinuity at x = 0, i.e., limits limx→0+ f(x)
and limx→0− f(x) exist, and that f

(
0+
)
̸= f

(
0−
)
. Define Sn,mf to be the truncated partial sum of

Equation (6.6) where j and k are up to n and m respectively. We say that the framelet expansion of
f exhibits the Gibbs effects at the right hand side of x = 0 if there is a sequence xs > 0 converging
to 0, and

lim
n,m→∞

Sn,mf(xs)

{
> f(0+), if f

(
0+
)
> f

(
0−
)

< f(0+), if f
(
0+
)
< f

(
0−
) .

Similarly, we can define the Gibbs effects on the left-hand side of x = 0.

7 Quasi-affine Systems

The notion of quasi-affine systems was first introduced in [26]. We present a quasi-affine system
that allows us to construct a tight framelet that is not an orthonormal basis. We use the Haar
scaling function to generate a quasi-affine system to investigate the Gibbs effects.

Definition 7.1. Let Ψ be defined as in the UEP. The corresponding quasi-affine system XJ (Ψ)
generated by Ψ is defined by a collection of translations and dilations of the elements in Ψ such that

XJ(Ψ) = {ψℓ,j,k : 1 ≤ ℓ ≤ r, j, k ∈ Z, }

where,

ψℓ,j,k =

{
2j/2ψℓ(2

j · −k), j ≥ J
2jψℓ(2

j (· − k)), j < J
.

10
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When XJ (Ψ) forms a tight frame of L2(R) , we call the function ψℓ a tight framelet and XJ (Ψ)
a tight quasi-affine framelet system. With this definition one can see that the quasi-affine system
is constructed by changing the basic definition of ψℓ,j,k in the UEP, i.e. by sampling the wavelet
frame system starting from the level J − 1 and downward. The framelet representation will not
change with this definition, however, we have a tight frame instead of the orthonormal system [25].

In the study of our expansion, we consider J = 0 where

X0(Ψ) = {ψℓ,j,k : j, k ∈ Z}

generates a tight frame for L2(R) but not an orthonormal basis. If we consider ψm, then this
system uses the B-splines scaling functions to construct the generator ψℓ,j,k, and we refer to it as
the B-splines tight framelet system.

8 Construction of B-splines Tight Framelet Using UEP

The choice of the number r for Ψ in the UEP, requires a little exertion to construct the framelets.
We will give some examples of constructing B-spline tight framelet.

Definition 8.1 (B-splines). The B-spline Nm+1 is defined as follows by using the convolution

Nm+1(x) := (Nm ∗N1)(x), x ∈ R (8.1)

where, N1(x) is defined to be χ
[0,1)

(x) (the characteristic function for the interval [0, 1)).

The B-spline Nm is said to have order m. By definition of the convolution, we have that

Nm+1 (x) =

∫ 1

0

Nm (x− t) dt.

The B-splines are well studied, and have many desirable properties [27]. Note that Nm is symmetric
with respect to the center of its support: Nm(m

2
+x) = Nm(m

2
−x). Nm(x) has the following dyadic

dilation relation

Nm(x) =

m∑
k=0

2−m+1

(
m

k

)
Nm(2x− k), (8.2)

where (
m

k

)
=

m!

k! (m− k)!
.

Explicit formula for the B-spline is given by

Nm(x) =
1

(m− 1)!

m∑
k=0

(−1)k
(
m

k

)
(x− k)m−1

+ ,

where
(x− k)m−1

+ = (max (0, x− k))m−1 , m = 2, 3, 4, · · · .

Definition 8.2 (The Centered B-splines [28]). For m ∈ N, the centered B-spline Bm is defined
by

Bm (x) := T−m
2
Nm (x) .

Alternatively, the B-spline Bm can be defined by

B1(x) = χ
[−1/2,1/2]

(x) , Bm+1 := Bm ∗B1,m ∈ N.

11
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It is clear that this definition leads to the same functions. Thus, for any m ∈ N, we have:

Bm+1 (x) =

∫ 1/2

−1/2

Bm (x− t) dt.

Note that an explicit expression for Bm can be obtained easily from the explicit expression of Nm

above.

Lemma 8.1. The low pass filter h0[k] of Nm is equal to 2−m
(
m
k

)
.

Proof. Obvious by looking to Equation (8.2) and Definition 6.1

Example 8.1. Let ϕ (x) = N2 (x) be the piecewise linear function (the hat function) defined on
[0, 2], we have

N2 (x) = N1 ∗N1 (x) =

∫ 1

0

N1 (x− t) dt.

Then,

N2 (x) =


x if 0 ≤ x ≤ 1

2− x if 1 ≤ x ≤ 2
0 otherwise

.

Similar calculation, from Equation 8.1, we can find the quadratic and cubic piecewise B-splines
N3 (x) and N4 (x), respectively :

N3 (x) =


1
2
x2 if 0 ≤ x ≤ 1

−x2 + 3x− 3
2

if 1 ≤ x ≤ 2
1
2
x2 − 3x+ 9

2
if 2 ≤ x ≤ 3

0 if x < 0 and x > 3

,

N4 (x) =
1

6


x3 if 0 ≤ x ≤ 1

4− 6 (x− 2)2 − 3 (x− 2)3 if 1 ≤ x ≤ 2

4− 6 (x− 2)2 + 3 (x− 2)3 if 2 ≤ x ≤ 3

− (x− 4)3 if 3 ≤ x ≤ 4
0 if x ∈ R− [0, 4]

Fig. 6 shows these B-splines of order 2 and 4.

Fig. 6. The B-splines of order 2 and 4

The absence of Gibbs effect has been examined and proven in [5] for fixed number of generators. In
this paper, we will use different number of generators by taking r = 3. Then we will have different
generators for the space L2 (R). Let’s consider the B-spline of order 2 and 4 to find a set of three
generators.

As an application, we present a construction of compactly supported B-spline framelet.

12
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Example 8.2. The linear B-spline B2 (x) when r = 3 has three high pass filters, {h1[k], h2[k], h3[k], k ∈ Z} .
Let h0 = [ 1

4
, 1
2
, 1
4
] be the low pass filter of B2 (x). Consider the system

Ψ = {ψℓ}3ℓ=1

to be defined as Theorem 6.1. Now we need to find

{hℓ[k], k ∈ Z}2ℓ=1

such that Equation (6.4) and Equation (6.5) hold. This generates the following nonlinear system of
equations:

∑
k∈Z

(
h2
1[k] + h2

2[k] + h2
3[k]
)
= d1,∑

k∈Z (h1[k]h1[k − 1] + h2[k]h2[k − 1] + h3[k]h3[k − 1]) = d2,∑
k∈Z (h1[k]h1[k − 2] + h2[k]h2[k − 2] + h3[k]h3[k − 2]) = d3,∑
k∈Z (h1[k]h1[k − 3] + h2[k]h2[k − 3] + h3[k]h3[k − 3]) = d4,∑
k∈Z (−1)k

(
h2
1[k] + h2

2[k] + h2
3[k]
)
= d5,∑

k∈Z (−1)k−1 (h1[k]h1[k − 1] + h2[k]h2[k − 1] + h3[k]h3[k − 1])) = d6,∑
k∈Z (−1)k−2 (h1[k]h1[k − 2] + h2[k]h2[k − 2] + h3[k]h3[k − 2])) = d7,∑
k∈Z (−1)k−2 (h1[k]h1[k − 3] + h2[k]h2[k − 3] + h3[k]h3[k − 3])) = d8,

for some constants di, i = 1, · · · , 8 . We use MATHEMATICA software and obtain different choices
of solutions for h1, h2, and h3, namely,

h1 = [
−
√
2

16
,
−
√
2

8
,
3
√
2

8
,
−
√
2

8
,
−
√
2

16
],

h2 = [
−
√
2

8
,

√
2

4
,
−
√
2

8
],

h3 = [
−
√
2

16
,
−
√
2

8
,

√
2

8
,

√
2

16
].

Using Theorem 6.1 together with the filters {hℓ[k], k ∈ Z}3ℓ=1 and B2 (x) , then, the corresponding
X({ψℓ}3ℓ=1) generates a tight framelet for L2(R).

The graphs of the generators are shown in Fig. 7.

Fig. 7. The generators using, ψ1(x), ψ2 (x) and ψ3(x), B2(x)

Example 8.3. For B4 (x), the cubic B-spline, and when r = 3, then we have the B-spline tight
framelets {ψℓ}3ℓ=1. Let h0 = [ 1

16
, 1
4
, 3
8
, 1
4
, 1
16
] be the low pass filter of B4 (x).
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Define

h1 = [
−
√
2

256
,
−
√
2

64
,
−3

√
2

64
,
−7

√
2

64
,
45

√
2

128
,
−7

√
2

64
,
−3

√
2

64
,
−
√
2

64
,
−
√
2

256
],

h2 = [
−
√
2

64
,
−
√
2

16
,
−7

√
2

64
,
3
√
2

8
,
−7

√
2

64
,
−
√
2

16
,
−
√
2

64
],

h3 = [(
1

64
+

√
14

256
), (

1

16
+

√
14

64
), (

3

32
+

√
14

64
), (

1

16
−

√
14

64
),−5

√
14

128
,−(

1

16
+

√
14

64
),

−(
3

32
−

√
14

64
), (

−1

16
+

√
14

64
),−(

1

64
−

√
14

256
)].

Then, h0, h1, h2, and h3 satisfied by Equations 6.3 and 6.4. Hence, the system X(Ψ) is a tight
framelet of L2(R). Again, this is due to Theorem 6.1.

We illustrate the generators ψ1, ψ2, and ψ3 in Fig. 8.

Fig. 8. The generators, ψ1(x), ψ2 (x) and ψ3(x), using B4(x)

9 The Gibbs Effects in B-spline Tight Framelets Using
Three Generators

It is well known that the Fourier series of a function with jump discontinuity exhibits Gibbs effects
[20]. The partial sums overshoot the function near the discontinuity, and this overshoot continues
no matter how many terms are taken in the partial sum. More precisely, if f is a piecewise Lipschitz
continuous function with a (positive ) jump discontinuity at x = a, then there is a sequence
xn > a→ a+ such that

lim
n→∞

Sn(x) > f(a+),

where Sn is the sequence of partial sums of the Fourier series. Gibbs effects does not occur if the
partial sums replaced by the average of the partial sums σn(x) =

Sn(x)
n

, [29].

It has been shown in [2] that all standard wavelet expansions do exhibit this overshoot effects at the
origin. Also, in [5] similar results for B-spline framelets has been examined, we will present similar
numerical result for B-splines tight framelets constructed from the quasi-affine system using UEP
and with a fixed number of generators, r = 3.

Definition 9.1. For any function f ∈ L2(R), f can be expanded by:

f =
r∑

ℓ=1

∑
j∈Z

∑
k∈Z

⟨
f,DjTkψℓ

⟩
DjTkψℓ.

The standard approximation is the series given by,

Sr
n,mf =

r∑
ℓ=1

∑
j<m

n∑
k=−n

⟨f, ψℓ,j,k⟩ψℓ,j,k.

14
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Consider the B-spline, BM , for fixed M ≥ 2. Then, we have the truncated B-spline tight framelet
expansion given by,

Sr,M
n f (·) =

∫
R
f (y)Kr,M

n (x, y) dy,

where

Kr,M
n (x, y) =

r∑
ℓ=1

∑
j

∑
k

ψM
ℓ,j,k (x)ψ

M
ℓ,j,k (y) .

In what follows, we study the Gibbs effects of functions that have a jump discontinuity at 0, by
considering the following function,

f (x) =


1− x, 0 < x ≤ 1
−1− x, −1 ≤ x < 0

0, else
.

Changing the number of generators for the B-spline tight framelet will not change the absence of
Gibbs effects. When we changed the number of generators we found different tight framelets for
the linear B-spline tight framelet of order 2 and 4. However, the numerical errors were very close
to each other. Table 1 and Table 2 showing an approximation of the Gibbs effects (by finding the
maximum overshoots and undershoots) for Sr,2

n f , Sr,4
n f , when r = 3 at the neighborhood of the

jump x = 0.

Table 1. Approximate maximum overshoot and undershoot in neighborhoods of x = 0
using S3,2

n f

Level Maximum Minimum

n = 1 0.693359 −0.703125
n = 5 0.984375 −0.984375
n = 10 0.999512 −0.999512
n = 15 0.999998 −0.999998
n = 20 ≈ 1 ≈ −1

Table 2. Approximate maximum overshoot and undershoot in neighborhoods of x = 0
using S3,4

n f

Level Maximum Minimum

n = 1 0.38512 −0.125626
n = 5 0.959504 −0.959401
n = 10 0.998570 −0.998570
n = 20 ≈ 1 ≈ −1

Fig. 9 illustrates the absence of the Gibbs effects for a set of three generators using the linear
B-spline tight framelet.
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Fig. 9. Illustration for the non-overshoot and non-undershoot of the S3,2
n f (x)

Fig. 10 illustrates the absence of the Gibbs effects for a set of three generators using the cubic
B-spline tight framelet.

Fig. 10. Illustration for the non-overshoot and non-undershoot of the S3,4
n f (x)

10 Conclusion

The method of numerical approximation is a rich subject. It gives a powerful tool and has many
applications. Here, we have presented our numerical approximation method by using framelet
representations. This not only gives a new way to do approximation but also show many options
and useful methods to do applications. Some features of the given object may not be discovered by
using orthogonal expansions, alternatively, the redundant systems may help to keep the originality
of the object. It is anticipated this new method will be applied to many applications in various
areas.

It is known that the key property of frames is the possibility of redundancy. Actually it can be
a useful and even essential property in many settings and have found many practical applications
both in mathematics and engineering. For example, the redundant system offered by framelets
has already been put to good use for signal denoising, in the context of signal transmission, and
image compression [25]. The redundant system leads to a reduction in the inevitable quantization
error [18], which appears in all applications of series representations. Furthermore, If we have this
redundancy that built into the coefficients in the representation, then we might still be able to
reconstruct the function (signal, image) f well from the remaining coefficients.
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