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Abstract

We construct injective hulls and projective covers in categories of generalized uniform hypergraphs
which generalizes the constructions in the category of quivers and the category of undirected
graphs. While the constructions are not functorial, they are “sub-functorial”, meaning they are
subobjects of functorial injective and projective refinements.

Keywords: Graph; hypergraph; uniform hypergraph; injective hull; projective cover.

1 Introduction

In Grilliette [1], the construction of injective hulls and projective covers of directed graphs2 are
given. We provide a new approach to this construction by considering categories of generalized
k-uniform hypergraphs. This construction also gives us injective hulls and projective covers of

*Corresponding author: E-mail: martin.schmidt@wnc.edu
2also called quivers

http://www.sciencedomain.org/review-history/27161
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undirected graphs, uniform hypergraphs, as well as a multitude of other kinds of “graphs” which
have a set of vertices, edges, and incidence maps.

We introduce categories of (X,M)-graphs whereM is a monoid and X is a rightM -set. An (X,M)-
graph G consists of a set of arcs G(A) and a set of vertices G(V ) such that each arc is incident
to #X-vertices (multiplicities allowed) and M informs the type of cohesivity between the vertices.
The categories of (X,M)-graphs introduced in this paper are able to describe the types of incidence
in the various definitions of graphs and hypergraphs by taking the monoid M to be a submonoid
of endomaps on a set X. Thus, when X is a two-element set, the categories of (X,M)-graphs
generalize the various categories of graphs and undirected graphs found in Bumby and Latch [2].

By separating syntax ((X,M)-graph theories) from semantics ((X,M)-graph categories), functorial
constructions between (X,M)-graph categories are induced from the appropriate morphisms between
theories. In particular, the constructions of injective hulls and projective covers (Section 3) can be
obtained by using the obvious morphisms of monoid actions as well as obvious interpretations of
(X,M)-graph theories.

2 Categories of (X,M)-Graphs

We begin with a definition.

Definition 2.1. Let M be a monoid and X a right M -set. The theory for (X,M)-graphs, G(X,M),
has two objects V and A with homsets given by

G(X,M)(V,A) := X,

G(X,M)(A, V ) := ∅,
G(X,M)(V, V ) := {idV },
G(X,M)(A,A) :=M.

Composition is defined as m ◦ x = x.m (the right-action via M), m ◦m′ = m′m (monoid operation

of M). The category of (X,M)-graphs is defined to be the category of presheaves Ĝ(X,M) :=
[Gop

(X,M),Set].

We represent the theory for (X,M)-graphs and and reflexive M -graphs as follows.

V X // A Mff

By definition, an (X,M)-graph G : Gop
(X,M) → Set has a set of vertices G(V ) and a set of arcs G(A)

along with right-actions for each morphism in G(X,M). For example, x : V → A in G(X,M) yields a
set map G(x) : G(A) → G(V ) which takes an arc α ∈ G(A) to α.x := G(x)(α) which we think of as
its x-incidence.3 For an element m in the monoid M , the corresponding morphism m : A → A in
G(X,M) yields a right-action α.m := G(m)(α) which we think of as the m-associated partner of α.

Each (X,M)-graph G induces a set map ∂G : G(A) → G(V )X such that ∂G(α) : X → G(V ) is
the parametrized incidence of α, i.e., α.x = ∂G(α)(x). The x-incidence can be recovered from a
parametrized incidence by precomposition of the map _x^ : 1 → X which names the element x in X.
Observe that the m-associated partner of an arc α in G has the parametrized incidence such that

3Note that we use the categorical notation of evaluation of a presheaf as a functor for the set of
vertices G(V ) and set of arcs G(A) rather than the conventional graph theoretic V (G) and E(G)
for the vertex set and edge set.
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the following commutes

X

∂G(α.m)

22
⟨idX ,_m^⟩

// X ×M
action // X

∂G(α)
// G(V ).

Example 2.1. Let X be a set and M a submonoid of endomaps End(X). The right-action of
M ⊆ End(X) on X is given by evaluation, e.g. x.f := f(x). When X is a two-element set the

categories Ĝ({idX},X) and Ĝ(Aut(X),X) are the categories of quivers [1] and symmetric directed graphs
[2]. For example:

1. When X = ∅ and M is the trivial monoid, the category Ĝ(X,M) is Set×Set.

2. When X = 1 is a one element set and M is the trivial monoid, Ĝ(X,M) is the category of

bouquets i.e., the category of presheaves on V
s // A ([3], p 18).

3. When X = {s, t} and M is the submonoid of endomorphisms which exchanges s and t, the

categories Ĝ(X,M) is the category of undirected graphs with involution described in Brown et
al. [4].

The following is an example of such an (X,M)-graph where i : X → X denotes the non-trivial
automap.

G a
α0 //

oo
α1

b

β0

BB

β1

\\

γ0 //
oo

γ1

c
G(A) = {α0, α1, β0, β1, γ0, γ1},
G(V ) = {a, b, c}
α0.s = a, α0.t = b, β0.s = b, β0.t = b,

γ0.s = c, γ1.t = b,

α0.i = α1, β0.i = β1, γ0.i = γ1

To connect this definition to undirected graphs, we identify edges which are i-pairs and define
the set of edges G(E) as the quotient of the set of arrows G(A) under this automorphism
defined by the i-action.4 There is an incidence operator ∂ : G(E) → G(V )2 which defines for
an i-pair the set of boundaries. Then an undirected representation for G can be given as

G a
α0∼α1

b

β0∼β1

2

γ0∼γ1
c G(E) = {α0 ∼ α1, β0 ∼ β1, γ0 ∼ γ1},

G(V ) = {a, b, c}
(α0 ∼ α1).∂ = {a, b}, (β0 ∼ β1).∂ = {b, b},
(γ0 ∼ γ1).∂ = {b, c},

We have placed a 2 in the loop which came from the 2-loop β0 ∼ β1 even though the quotient
has identified them.

2.1 Nerve-Realization Adjunctions

The symbols and notation in this section follow from Applegate and Tierney [5] and Riehl [6].

Let I : T → M be functor from a small category T to a cocomplete category M . Since the Yoneda

4In the subsequent, we reserve the term edge for the equivalence class of arcs under the group
s(X).
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embedding y : T → T̂ is the free cocompletion of a small category there is a essentially unique
adjunction R ⊣ N : M → T̂, called the nerve-realization adjunction, such that Ry ∼= I.

T

I
��
??

??
??

??
y

// T̂

R ⊣
��

OO

N

M

The nerve and realization functors are given on objects by N(m) = M(I(−),m),
R(X) = colim(c,φ)∈

∫
F I(c) respectively, where

∫
F is the category of elements of X ([5], Section 2,

pp 124-126).5

We call a functor I : T → M from a small category to a cocomplete category an interpretation
functor. The category T is called the theory for I and M the modeling category for I. An
interpretation I : T → M is dense, i.e., for each M -object m is isomorphic to the colimit of the
diagram I ↓ m → M, (c, φ) 7→ I(c), if and only if the nerve N : M → T̂ is full and faithful ([7],
Section X.6, p 245). When the right adjoint (resp. left adjoint) is full and faithful we call the
adjunction reflective (resp. coreflective).6

A functor F : C → C′ between small categories C and C′ induces an essential geometric morphism
F! ⊣ F ∗ ⊣ F∗ : Ĉ → Ĉ′ where F! is the realization of yC′ ◦ F , F ∗ is the nerve of yC′ ◦ F and F∗ is
the nerve of F ∗ ◦ yC′ where yC : C → Ĉ and yC′ : C′ → Ĉ′ are the Yoneda embeddings (see Reyes
and Reyes [3] pp 194-198, Section 4). On objects W in C and Z in C′, the functors are given by

F!(W ) := colim(C,c)∈
∫
W yC′F (C),

F ∗(Z) := Ĉ′(yC′F (−), Z),

F∗(W ) := Ĉ(F ∗yC′(−),W )

where
∫
A is the category of elements for A ([6], Section 2.4). In the subsequent, we denote the

representables for the vertex and arc object by V and A respectively.

Consider the (X,M)-graph theory G(∅,1), i.e., the discrete category with two objects V and A.
Then for an (X,M)-graph theory G(X,M), there is the inclusion functor ι : G(∅,1) → G(X,M). Thus

there is an essential geometric morphism ι! ⊣ ι∗ ⊣ ι∗ : Set
2 → Ĝ(X,M). The ι-extension ι! takes

the pair of sets (S(V ), S(A)) to the coproduct
⊔

S(V ) V ⊔
⊔

S(A)A since the category of elements

for (S(V ), S(A)) lacks internal cohesion. The ι-restriction ι∗ takes an (X,M)-graph G to the
pair of sets (G(V ), G(A)). By Riehl [6] (Proposition 3.3.9), it creates all limits and colimits.
The ι-coextension ι∗ sends (S(V ), S(A)) to the (X,M)-graph with vertex set S(V ) and arc set
Set2((X, |M |), (S(V ), S(A))) = S(V )X ×S(A)|M| where |M | is the underlying set of M . The right-
actions are given by (f, s).x = f(x), (f, s).m = (f ◦m, s.m) where m : X → X is the right-action
map by m ∈M and s.m : |M | → S(A) is defined s.m(m′) := s(mm′).

The counit ε : ι!ι
∗ ⇒ id of the adjunction ι! ⊣ ι∗ on a component εG :

⊔
G(V ) V ⊔

⊔
G(A)A → G is

the epimorphism induced by the classification maps v : V → G and α : A→ G for vertices v ∈ G(V )

and arcs α ∈ G(A). Therefore, the ι-restriction functor is faithful and thus ι∗ : Ĝ(X,M) → Set2 is
monadic ([8], p. 227)

The unit η : id ⇒ ι∗ι
∗ of the adjunction ι∗ ⊣ ι∗ on a component ηG : G→ ι∗ι

∗(G) is the identity on
vertices and sends arc α ∈ G(A) to (∂G(α), α) where α : |M | → G(A) is the constant map. Thus
for each (X,M)-graph G the component ηG is a monomorphism.

5In [5], the nerve functor is called the singular functor.
6since it implies M is equivalent to a reflective (resp. coreflective) subcategory of T̂
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3 Injective and Projective (X,M)-Graphs

We set Proj := ι!ι
∗ and Inj := ι∗ι

∗ where ι : G(∅,X) → G(X,M) is the functor given above. Then
since adjunctions are closed under composition, we have

Proj ⊣ Inj : Ĝ(X,M) → Ĝ(X,M).

We will show in this section that the natural transformations ε : Proj ⇒ id and η : id ⇒ Inj can be
thought of as the functorial projective and injective refinements for non-initial (X,M)-graphs.

We first characterize the class of injective and projective objects. Recall that an object Q in a
category C is injective provided for each monomorphism m : A→ B and morphism f : A→ Q there
exists a morphism (not necessarily unique) k : B → Q such that f = km. Dually, an object P in
C is (regular) projective7 provided for each (regular) epimorphism e : B → A and each morphism
f : P → A there is a morphism k : P → B such that f = ek.8

Proposition 3.1. A (X,M)-graph Q is injective if and only if Q is non-initial and for each set
map f : X → Q(V ), there is an arc α ∈ Q(A) such that the incidence map ∂Q(α) is equal to f .

Proof. Suppose Q is injective and consider the set map f : X → Q(V ). This is equivalent to giving
an (X,M)-graph morphism f :

⊔
x∈X V → Q. Consider the inclusion m :

⊔
x∈X V → A induced by

the morphisms x : V → A. Since Q is injective, there is a morphism α : A → I such that αm = f .
By Yoneda, this is equivalent to an arc α ∈ I(A) with incidence map ∂I(α) = f .

Conversely, let f : G ↩→ H be a monomorphism and g : G→ Q a morphism of (X,M)-graphs. Since
Q is non-initial, there is a vertex v ∈ Q(V ). Each arc α in H has incidence ∂H(α) : X → H(V ) ∼=
fV (G(V ))⊔H(V )\fV (G(V ) where fV (G(V )) is the image of the vertices in G under f . For each arc
α in H not in the image of fA, let jα : X → Q(V ) be the set map [gV , !] ◦ ∂G(α) given by universal
property of the disjoint union

fV (G(V )) ∼= f−1
V (G(V ))

��

��

gV // gV (G(V ))
��

��

X
∂G(α)

// fV (G(V )) ⊔H(V )\fV (G(V ))
[gV ,!]

// Q(V )

H(V )\fV (G(V ))
OO

OO

! // {v}
OO

OO

Thus by assumption, we may choose an arc [α] ∈ Q(A) with incidence equal to jα. We define the
following maps hV : H(V ) → Q(V ) and hA : H(A) → Q(A)

hV (w) :=

{
gV (u) if ∃u ∈ G(V ), fV (u) = w

v if ∀u ∈ G(V ), fV (u) ̸= w

hA(α) :=

{
gA(β) if ∃β ∈ G(A), fA(β) = α

[α] if ∀β ∈ G(A), fA(β) ̸= α

By construction this defines a morphism h : H → Q such that h ◦ f = g. Therefore Q is injective.

7Note that since regular epimorphisms are equivalent to epimorphisms in categories of presheaves,
a regular projective object is equivalent to a projective object.

8The results in this section generalize the results of Grilliette [1] and Williams [9].
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Corollary 3.1. The class of injective objects in Ĝ(X,M) is precisely the class of non-initial split
subobjects9 of objects in the essential image of the functor Inj.

Proof. Let Q be an injective object in Ĝ(X,M). Hence Q is non-initial and thus by the previous
lemma, we have Inj(Q) is an injective object. Then since ηQ : Q → Inj(Q) is a monomorphism,
there must be a split epimorphism r : Inj(Q) → Q such that rηQ = id by the property of Q being
injective.

We also have the dual argument that the class of projective objects in the category of (X,M)-graphs
is precisely the split quotients of objects in the essential image of Proj.

Proposition 3.2. A (X,M)-graph P is projective if and only if it is a coproduct of representables.

Proof. Suppose P is projective. Since εP : Proj(P ) → P is an epimorphism, there must exist a
section s : P → Proj(P ) such that εP s = id by the property that P is projective. Since Proj(P )
is a coproduct of representables and s is a split monomorphism, P must also be a coproduct of
representables. Conversely, representables V and A in a category of presheaves are always projective.
Since projective objects are closed under coproducts, the reverse condition is also true.

Corollary 3.2. The class of projective objects in Ĝ(X,M) is the object class of the essential image
of the functor Proj.

Proof. Given a coproduct of representables
⊔

S V ⊔
⊔

T A, let H be the (X,M)-graph with vertex
set H(V ) := S and arc set H(A) = T . Take some s ∈ S and define right-actions t.x := s and
t.m = t for each t ∈ T , x ∈ X and m ∈M . Then Proj(H) ∼=

⊔
S V ⊔

⊔
T A.

Next, we construct injective hulls and projective covers for (X,M)-graphs. Recall that a monomorphism

i : G→ G̃ is essential provided for each morphism h : G→ H such that hi is a monomorphism implies
h is a monomorphism. An injective hull of an object G is an essential monomorphism i : G → G̃
where G̃ is injective. Dually, an epimorphism e : G → G is essential provided for each morphism
h : H → G such that eh is an epimorphism implies h is an epimorphism. A projective cover of an
object G is an essential epimorphism e : G→ G where G is projective.

In the case of the initial (X,M)-graph 0, it is straightforward to verify the terminal morphism 0 → 1

is the injective hull. For a non-initial (X,M)-graph G we define G̃ to be the (X,M)-graph with

vertex set G̃(V ) := G(V ) and arcs set G̃(A) := G(A) ⊔ { f : X → G(V ) | ∀α ∈ G(A), ∂G(α) ̸= f }
with the obvious right-action. Then G̃ is an injective object and there is an obvious inclusion i : G→
G̃. To show that it is essential, let h : G̃ → H be a morphism such that hi is a monomorphism.
Then since i is bijective on vertices, hV must be injective. On arcs, it is enough to show that hA is
injective on G̃(A)\G(A). However, this is trivial since there is only one arc f ∈ G̃(A)\G(A) with
incidence f : X → G(V ). Hence h is a monomorphism.

For the projective cover, we define G :=
⊔

S V ⊔
⊔

T A where
S := { v ∈ G(V ) | ∀α ∈ G(A),∀x ∈ X, α.x ̸= v }, i.e., S is the set of isolated vertices in G, and T
is a generating subset of G(A) for the right M -action G(A)×M → G(A) of minimal cardinality,
i.e., for each α ∈ G(A) there exists a β ∈ T and an element m ∈ M such that β.m = α. Since T
generates G(A) under the right-action of M and S is the set of vertices of G which are not incident
to an arc, the restriction of εG|G : G → G is an epimorphism. It is clear that if h : H → G is a

9An object H is a split subobject of G provided it admits a split monomorphism s : H → G.
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morphism such that he is an epimorphism, then h must be an epimorphism since G is a coproduct
of representables of minimal size.

G̃ ��

��
??

??

G
??

??�����
//

ηG // Inj(G)

G��

����
��

�� ��
??

??
?

Proj(G)
εG // // G

Note that these assignments G̃ and G do not extend to functors since there is choice involved.
However, by construction we see that both the injective hull G̃ and projective cover G embed into
Inj(G) and Proj(G) which are functorial constructions.

4 Applications

We follow the definition given in Jakel [10].

Definition 4.1. Let F : Set → Set be an endofunctor. The category of F -graphs GF is defined to
be the comma category GF := Set ↓ F .

In other words, an F -graph G = (G(E), G(V ), ∂G) consists of a set of edges G(E), a set of vertices
G(V ) and an incidence map ∂G : G(E) → F (G(V )). A morphism (fE , fV ) : (G(E), G(V ), ∂G) →
(H(E), H(V ), ∂H) is a pair of set maps fE : G(E) → H(E) and fV : G(V ) → H(V ) such that the
following square commutes

G(E)

∂G

��

fE // H(E)

∂H

��

F (G(V ))
F (fV )

// F (H(V )).

It is well-known that the category of F -graphs is cocomplete with the forgetful functor U : GF →
Set×Set creating colimits [10].

Let G(X,M) be a theory for (X,M)-graphs and q an element in F (X) such that F (m)(q) = q for
each m ∈ M where m : X → X is the right-action map. We define I(V ) := (∅, 1, !1), and
I(A) := (1, X, _q^) where !1 : ∅ → 1 is the initial map and _x^ : 1 → X the set map with evaluation
at x ∈ X. On morphisms, we set

(x : V → A) 7→ I(x) := (!1, _x^) : (∅, 1, !1) → (1, X, _q^),

(m : A→ A) 7→ I(m) := (id1, F (m)) : (1, X, _q^) → (1,X, _q^).

Verification that I : G(X,M) → GF is a well-defined interpretation functor is straightforward.

4.1 The Category of Hypergraphs

We recall that a hypergraph H = (H(V ), H(E), φ) consists of a set of vertices H(V ), a set of edges
H(E) and an incidence map φ : H(E) → P (H(V )) where P : Set → Set is the covariant power-set
functor. In other words, we allow infinite vertex and edge sets, multiple edges, loops, empty edges
and empty vertices.10 In other words the category of hypergraphs H is the category of P -graphs.

Let X be a set and apply the definition for the interpretation given above in 4 for G(X,Aut(X)) with

10An empty vertex is a vertex not incident to any edge in H(E). An empty edge is an edge e
such that φ(e) = ∅.
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q := X in P (X). Note that for each automap σ : X → X, P (σ) is the identity map. Thus the
interpretation I : G(X,Aut(X)) → H defined in Section 4 is a well-defined functor.

The nerve N : H → Ĝ(X,Aut(X)) induced by I takes a hypergraph
H = (H(E), H(V ), φ) to the (X,Aut(X))-graph N(H) with vertex and arc set given by

N(H)(V ) = H(I(V ), H) = H(V ),

N(H)(A) = H(I(A),H) =
{
(β, f) ∈ H(E)×H(V )X

∣∣∣P (f) = φ(β)
}

Notice that in the case a hyperedge e has less than #X incidence vertices the nerve creates multiple
edges and if a hyperedge has more than #X incidence vertices there is no arc in the correponding
(X,Aut(X))-graph given by the nerve (see Example 4.1 below).

The realization R : Ĝ(X,Aut(X)) → H sends a (X,Aut(X))-graph G to the hypergraph R(G) =
(R(G)(E), R(G)(V ), ψ) with vertex, edge sets and incidence map given by

R(G)(V ) = G(V ),

R(G)(E) = G(A)/ ∼, (∼ induced by Aut(X)),

ψ : R(G)(E) → P (R(G)(V )), [γ] 7→ { v ∈ G(V ) | ∃x ∈ X, γ.x = v }

For a (X,Aut(X))-graph morphism f : G→ G′, the hypergraph morphism

R(f) : R(G) → R(G′) has R(f)V := fV and R(f)E := [fA] where [fA] :
G(A)
∼ → G′(A)

∼ is induced by
the quotient.

Example 4.1.

1. Let X = {a, b, c} and consider the hypergraph H with two vertices 0 and 1 and one hyperedge
α between them. Then the nerve N(H) has two vertices 0 and 1 and arc set N(H)(A) =
{001, 010, 100, 011, 101, 110} with a pair of Aut(X)-partners 001 ∼ 010 ∼ 100 and 011 ∼
101 ∼ 110. The realization identifies the Aut(X)-partners and thus RN(H) has two vertices
0 and 1 and two edges [001] and [011] between them. The counit εH : RN(H) → H is bijective
on vertex set and sends [001] and [011] to α.

2. Let X = {a, b, c} and consider the hypergraph H with four vertices and one hyperedge α
connecting them. The nerve N(H) has vertex set equal to H(V ) but empty arc set N(H)(A) =
∅. The counit εH : RN(H) → H is the inclusion of vertices.

We are able to use the adjunction above to classify the projective objects in the category of
hypergraphs. Recall that a right adjoint functor is faithful if and only if the counit is an epimorphism.

Lemma 4.2. Let X be a set with cardinality κ greater than 1. Then the nerve N : H → Ĝ(X,Aut(X))

of the interpretation I : G(X,Aut(X)) → H is faithful on the full subcategory Hκ consisting of hypergraphs
H with maxe∈H(E) φ(e) at most of cardinality κ.

Proof. Given hypergraph H in the subcategory Hκ the counit εH : RN(H) → H of the adjunction

R ⊣ N : H → Ĝ(X,Aut(X)) at component H is an epimorphism since for each hyperedge e ∈ H(E),
there is a (X,Aut(X))-graph morphism f : I(A) → H such that fE takes the lone hyperedge in
I(A) to e.

Let I(V ) be the hypergraph with one vertex and no hyperedges. For each cardinal number k, let
Ek := I(A) be the hypergraph where I : sGk → H is the interpretation functor above.

Lemma 4.3. The proper class of objects consisting of the vertex object I(V ) and hyperedge objects
(Ek)k∈Set is a family of separators for the category of hypergraphs.

8
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Proof. Let f, g : H → H ′ be distinct hypergraph morphisms. Let κ be the maximum of the
cardinalities such that H and H ′ are in the subcategory Hκ. By the lemma above, the nerve
N : H → Ĝ(X,Aut(X)) is faithful on Hκ. Thus we have N(f) ̸= N(g). Therefore, either I(V )
separates f and g or I(A) = Ek separates f and g by definition of the nerve functor.

Proposition 4.1. A hypergraph H is (regular) projective if and only if it has no hyperedges.

Proof. If a hypergraph has no edges it is projective since it is a coproduct of the vertex object I(V )
which is clearly projective. Conversely, by the lemma above it is enough to show that each hyperedge
object Ek is not projective. Let 1 be the terminal hypergraph with one vertex and one hyperedge.
Then every morphism Ek → 1 is a (regular) epimorphism. Let Er be the hyperedge object with r
vertices where r is of cardinality strictly greater than k. Since there is no morphism from Ek to Er

there is no factorization of Ek → 1 through Er showing Ek is not (regular) projective.

For each set X, the interpretation functor I : G(X,Aut(X)) → H factors through the full subcategory
Hk of hypergraphs consisting of hypergraphs H such that the incidence of each edge is of cardinality
less than or equal to the cardinality k of X. In other words, Hk is the slice category Set ↓ Pk where
Pk is the covariant k-power set functor which takes a set to the set of all subsets with cardinality
less than or equal to k. The inclusion functor i : Hk ↩→ H admits a coreflector r : H → Hk which
takes a hypergraph H to the hypergraph r(H) with vertex set r(H)(V ) = H(V ) and edge set
r(H)(E) := {α ∈ H(E) |#φ(α) ≤ k }. Therefore the nerve realization for the interpretation Ik :=

rRy : G(X,Aut(X)) → Hk is Rk ⊣ Nk : Hk → Ĝ(X,Aut(X)) where Rk = rR and Nk = Ni. Moreover,
by restricting to the subcategory Hk the counit εH : rRNi(H) ⇒ H is now an epimorphism.

Proposition 4.2. For a cardinal number k, the class of projective objects in Hk are precisely the
coproducts of Ik(V ) and Ik(A) where Ik : G(X,Aut(X)) → Hk is the interpretation functor described
above.

Proof. It is clear that Ik(V ) is projective. Since a hypergraph H in Hk has an edge if and only if it
admits a morphism from Ik(A) to it and since epimorphisms in Hk are those morphisms surjective
on vertex and edge sets, it is clear Ik(A) is projective. Therefore the coproducts of Ik(V ) and Ik(A)
are projective. Conversely, consider the following composition

Rk(Proj(N(H))) // // RkNk(H)
εH // // H

where the morphism Rk(Proj(N(H))) // // RkNk(H) is the application ofRk on the epimorphism

Proj(N(H)) → N(H) described in Section 3. Note that since Rk is a left adjoint, it preserves
epimorphisms. Moreover, Rk preserves colimits, therefore Rk(Proj(N(H))) =

⊔
N(H)(V )RkV ⊔⊔

N(H)(A)RkA. Then since Rky = Ik where y is the Yoneda embedding, we have Rk(Proj(N(H))) =⊔
N(H)(V )RkIk(V )⊔

⊔
N(H)(A) Ik(A). Therefore, every object in Hk admits an epimorphism from a

projective object (i.e., Hk has enough projectives). Thus every projective in Hk is a split subobject

of the essential image of the functor Rk Proj : Ĝ(X,Aut(X)) → Hk. However it is clear that the only
split subobjects are coproducts of Ik(V ) and Ik(A).

Proposition 4.3. A hypergraph Q is injective if and only if Q is non-initial and for each subset of
S ⊆ Q(V ), there is an edge α ∈ Q(E) with incidence equal to S.

Proof. Suppose Q is injective. For each subset S ⊆ Q(V ), let ES be the hypergraph with one edge
e with incident equal to φ(e) = S. Let f :

⊔
S I(V ) ↩→ ES and g :

⊔
S I(V ) → Q be the inclusions of

vertices. Since Q is injective there is a morphism h : ES → Q which necessarily is a monomorphism.
Hence Q must have an edge q with incidence φ(q) = S.

9
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Conversely, let f : G → H be a monomorphism and g : G → Q be a morphism in the category of
hypergraphs. Since Q is non-initial, there is a vertex v ∈ Q(V ). We define the morphism h : H → Q
on vertices

hV (w) :=

{
gV (u) if ∃u ∈ G(V ), gV (u) = w

v if ∀u ∈ G(V ), gV (u) ̸= w.

Each edge e in H not in the image of fA has incidence subset S ⊆ H(V ) which can be decomposed
S ∼= S0 ⊔S1 such that S0 is in the image of fV and S1 is disjoint to the image of fV . Then for such
an edge e in H(E), choose an edge [e] ∈ Q(E) with incidence g(f−1

V (S0)) ∪ {v} where gV (f−1
V (S0))

is the image of f−1
V (S0) under gV . Then we define

hE(e) :=

{
gE(b) if ∃b ∈ G(E), gE(b) = e

[e] if ∀b ∈ G(E), gE(b) ̸= e

Then hV and hE describe a morphism of hypergraphs h : H → Q such that h ◦ f = g. Therefore,
Q is injective.

Corollary 4.4. Let Q be a hypergraph and X := Q(V ). Then Q is injective if and only if N(Q)
is injective as a (X,Aut(X))-graph where N is the nerve of the interpretation I : G(X,Aut(X)) → H
defined above.

Proof. Let Q be an injective hypergraph. By Proposition 3.1, it is enough to show that for each set
map j : X → N(Q)(V ), there is an arc α ∈ N(Q)(A) such that ∂(α) = j. The image of j describes
a subset S of vertices in Q. Therefore by the result above, there is a hyperedge e with incidence
equal to S. Let α : I(A) → Q be the arc in N(Q) corresponding to the hypergraph morphism which
takes the vertex x to j(x) for each x ∈ X and the single hyperedge a ∈ I(A) to e. Then ∂(α) = j
and thus N(Q) is an injective (X,Aut(X))-graph.

Conversely, suppose N(Q) is injective and let S ⊆ Q(V ) a subset of vertices. Let j : X → N(Q)(V )
be a set map with image equal to S. Then there is an arc α ∈ N(Q)(A) with incidence ∂Q(α) = j.
Since α corresponds to the hypergraph morphism α : I(A) → Q, there must be an edge e ∈ Q
such that a ∈ I(A) is mapped to e, i.e., e has incident equal to S. Therefore, Q is an injective
hypergraph.

4.1.1 The Category of ΠX-Graphs

Let X and Y be sets. We define the symmetric X-power of Y , denoted ΠX(Y ), as the multiple
coequalizer of (σ : ΠX(Y ) → ΠX(Y ))σ∈Aut(X) where σ is the σ-shuffle of coordinates in the product.
This definition extends to a functor ΠX : Set → Set. Note that if j : X ′ → X is a set map, then
there is a natural transformation ΠX ⇒ ΠX′ induced by the universal mapping property of the
product. In particular, when X → X ′ = 1 is the terminal map, we have idSet = Π1 ⇒ ΠX which
we denote by η : idSet ⇒ ΠX .11

To define an interpretation functor I : G(X,Aut(X)) → GΠX
, we let q be the unordered set (x)x∈X

in ΠX(X). Since ΠX(σ)(x)x∈X = (x)x∈X for each automap σ : X → X, the interpretation is
well-defined.

Proposition 4.4. The interpretation I : G(X,Aut(X)) → GΠX
is dense.

11Note that in the case X = 2, the category of ΠX -graphs is the category of undirected graphs
in the conventional sense in which morphisms are required to map edges to edges.
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Proof. Let (E, V, φ) and (K,L, ψ) be GΠX
-objects and λ : D ⇒ ∆(K,L, ψ) a cocone on the diagram

D : I ↓ (E, V, φ) → GΠX
. Let e be an edge in E and f : X → V be the set morphism with

ΠXf = φ(e). Then (_e^, f) : I(A) = (1,X,⊤) → (E, V, φ) is an object in I ↓ (E, V, φ) and thus
there is a morphism λ(_e^,f) =: (_e′^, g) : D(_e^, f) = (1,X,⊤) → (K,L, ψ). By the compatibility
of the cocone, this gives us a uniquely defined h : E → K, e 7→ e′ on edges. Similarly for each
vertex v ∈ V , there is a morphism (!E , _v^) : I(V ) = (∅, 1, !1) → (E, V, φ) and a cocone inclusion
(!K , _w^) : D(!E , _v^) = (∅, 1, !1) → (K,L, ψ) giving us a factorization on vertices k : V → L. Since
ψ◦h(e) = ΠX(kf)◦⊤ = ΠX(k)◦φ(e) for each edge E, (h, k) : (E, V, φ) → (K,L, ψ) is a well-defined
GΠX

-morphism which necessarily is the unique factorization of the cocone. Therefore, I is dense.

Corollary 4.5. The nerve N : GΠX
→ Ĝ(X,Aut(X)) is full and faithful.

Note that the realization functor takes a Ĝ(X,Aut(X))-object and quotients out the set of arcs by
Aut(X). Hence the unit of the adjunction ηP : P → NR(P ) is bijective on vertices and surjective
on arcs. Hence the adjunction is epi-reflective.

For a GΠX
-object (B,C, φ), the embedding given by the nerve functor is given by

N(B,C, φ)(V ) = GΠX
(I(V ), (B,C, φ)) ∼= C,

N(B,C, φ)(A) = GΠX
(I(A), (B,C, φ))

= { (e, g) | e ∈ B, g : X → C s.t. ΠXg = φ(e) }

The right-actions are by precomposition, i.e., (e, g).x = (e, g ◦ _x^), (e, g).σ = (e, g ◦ σ).

Next, we show that injective and projectives in the category of GΠX
-graphs are precisely those

objects which are taken to injective and projective objects in the category of (X,Aut(X))-graphs.

Proposition 4.5. A ΠX-graph Q is injective if and only if N(Q) is an injective (X,Aut(X))-graph.

Proof. IfN(Q) is injective, thenQ is injective sinceN is full and faithful and preserves monomorphisms.
Conversely, let Q be an injective ΠX -graph and consider the monomorphism f : G → H and
morphism g : G→ N(Q) of (X,Aut(X))-graphs. The realization preserves monomorphisms, hence
R(f) : R(G) → R(H) is a monomorphism. Since the counit εQ : RN(Q) → Q is an isomorphism,
RN(Q) is injective and thus there is a morphism h : R(H) → RN(Q) such that h ◦ R(f) = R(g).
Therefore, the following diagram commutes

G

g

**

//
f

//

ηG

��

H

h

tt

ηH

��

NR(G) //
NR(f)

//

NR(g)
  
BB

BB
BB

BB
NR(H)

N(h)
~~||
||
||
||

NRN(Q)

N(εQ) ∼=
��

N(Q)

where h := εQ ◦N(h) ◦ ηH . Thus, h ◦ f = g and hence N(Q) is injective.
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Proposition 4.6. A ΠX-graph P is projective if and only if N(P ) is a projective (X,Aut(X))-
graph.

Proof. IfN(P ) is projective, then P is projective sinceN is full and faithful and preserves epimorphisms.
Conversely, let P be a projective ΠX -graph. It is clear that I(V ) and I(A) are projective objects
in GΠX

, thus R(Proj(N(P ))) ∼=
⊔

N(P )(V ) I(V ) ⊔
⊔

N(P )(A) I(A) is projective. Since the projective
refinement.

Proj(N(P ))) → N(P ) (see Section 3) is an epimorphism and εP : RN(P ) → P is an isomorphism,
the composition R(Proj(N(P ))) → RN(P ) → P is an epimorphism. Thus, P is a split subobject
of a coproduct of I(V ) and I(A). However, the only split subobjects of such a coproduct is itself a
coproduct of I(V ) and I(A). Then since N preserves coproducts and NI(V ) = V and NI(A) = A,
N(P ) is projective.

5 Conclusion

The categories of (X,M)-graphs we introduced in this paper are a step towards a “universal graph
theory”, where questions about the various kinds of graphs can be posed in a general way. The
formal structures contained in graph and hypergraph theory can be investigated in this general
setting thus unifying and simplifying many results and constructions found in their separate settings.
In this paper, we looked at one example, namely the construction of injective hulls and projective
covers of objects. However, many other categorical constructions can be obtained by the methods
introduced in this paper. For example, in Schmidt [11] and [12], we construct exponential objects
in categories of (X,M)-graphs.

The categories of presheaves we use can be thought of as a category of variable sets which two levels
(determined by the objects of the (X,M)-graph theories) of variability. This allows us to talk about
the categories of (X,M)-graphs as (intuitionistic) set theories.

It can also be shown that the metacategory of (X,M)-graph theories is equivalent to the category
of monoid actions on sets. Thus each monoid action on a set gives rise to a category which can
be used to investigate monoid actions. This is similar to associating a presheaf category to an
algebraic variety in algebraic geometry. Thus we are able to connect algebra (monoid actions) with
logic (intuitionistic set theory) and geometry (graph theory) in a new way.
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