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ABSTRACT

In this paper, we present an algorithm of the homotopy analysis Elzaki transform method (HAETM)
which is a combination of Elzaki transform method and homotopy analysis method (HAM) to solve
a more general biological population model. The fractional derivatives are described by Caputo
sense. The proposed method presents a procedure of constructing the set of base functions and
gives the high-order deformation equations in a simple form and provides the solution in the form
of a convergent series. Three examples are used to illustrate the preciseness and effectiveness of
the proposed method.
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1 INTRODUCTION
Fractional calculus have gained importance and
popularity due to its various applications in fluid
mechanics, visco-elasticity, biology, electrical
network, optics and signal processing and so
on [1],[2],[3],[4],[5],[6],[7],[8],[9],[10]. Except in
a limited number of these problems, we have
difficulty to find their exact analytic solutions.
An effective and easy method for solving such
equations is needed.

Various powerful methods such as Differential
Transform method (DTM) [11],[12],[13], Adomian
Decomposition method (ADM) [14],[15],[16],
Homotopy Perturbation method (HPM)
[17],[18],[19], Variational Iteration method (VIM)
[20],[21],[22] and other methods have been
proposed to solve linear and nonlinear problems.
Another analytical approach that can be applied
to solve many types of nonlinear fractional
differential equation is Homotopy Analysis
method (HAM) [23],[24],[25],[26],[27],[28], put
forward by Liao in 1992. Very recently, the
Homotopy Analysis method is combined with
Elzaki transform to produce a highly effective
technique called Homotopy Analysis Elzaki
Transform method (HAETM) for handling some
differential equations [29],[30].

In this paper, we consider the nonlinear fractional
order biological population model in the form:

∂αu

∂tα
=

∂2u2

∂x2
+

∂2u2

∂y2
+ f(u), 0 < α ≤ 1

(1.1)

with the initial condition

u(x, y, 0) = f0(x, y) (1.2)

where u denotes the population density,
and f(u) represents the population supply due to
birth and deaths, α is a parameter describing the
order of the fractional derivative. The derivatives
in (1.1) are understood in the Caputo sense.
In this paper, further we apply the homotopy
analysis Elzaki transform method (HAETM) to
solve the fractional biological population
models.

The advantage of this method is its capability
of combing two powerful methods for obtaining
exact and approximate analytical solutions
for nonlinear equations. The fact that the
HAETM solves nonlinear problems without using
Adomian’s polynomials and He’s polynomials is a
clear advantage over the Adomian decomposition
method (ADM) and He’s perturbation transform
method (HPTM) [31],[32]. The plan of our paper
is as follows: Brief definition of fractional calculus
are given in Section 2. Some theorems of Elzaki
transform are given in Section 3. The homotopy
analysis Elzaki transform method is presented
in Section 4. In Section 5, three numerical
examples are solved to illustrate the applicability
of the considered method. Conclusions are
presented in Section 6.

2 BASIC DEFINITIONS

In this section, we mention the following basic definitions of fractional calculus.

Definition 2.1. A real function f(x), x > 0 is said to be in the space Cµ, µ ∈ R, if there exist a real
number p(> µ) such that f(x) = xpf1(x), where f1(x) ∈ C[0,+∞), and it is said to be in the space
Cm

µ if f (m) ∈ Cµ,m ∈ N ∪ {0}.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α > 0, of a function f(x) ∈
Cµ, µ ≥ −1 is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0 (2.1)

J0f(x) = f(x) (2.2)
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For the Riemann-Liouville fractional integral we have:

JαJβf(x) = Jα+βf(x) (2.3)

JαJβf(x) = JβJαf(x) (2.4)

Jαxγ =
Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ (2.5)

For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ > −1.

Definition 2.3. The fractional derivatives of f(x) in the Caputo sense is defined:

Dα
t f(x) = Jm−αDmf(x) =

1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt (2.6)

For m− 1 < α ≤ m, m ∈ N , µ ≥ −1, and f ∈ Cm
µ .

Definition 2.4. The Laplace transform of Caputo derivative is:

L(Dα
t f(x)) = sαL[f(x)]−

m−1∑
k=0

sα−k−1f (k)(0+), m− 1 < α ≤ m. (2.7)

3 ELZAKI TRANSFORM
Recently, Tarig Elzaki introduced a new integral transform, named Elzaki transform [30], and further
applied it to the solution of ordinary and partial differential equations. The Elzaki transform is defined
over the set of functions

A = {f(t) : ∃M,k1, k2 > 0, |f(t)| < Me
|t|
kj , t ∈ (−1)j × [0,+∞)} (3.1)

by the following formula

T (v) = E[f(t)] = v

∫ +∞

0

e
−t
v f(t)dt, v ∈ [k1, k2]. (3.2)

Theorem 3.1. If f(t) = tα,

E[tα] = v

∫ +∞

0

e
−t
v tαdt = vα+2Γ(α+ 1).

Theorem 3.2. Elzaki transform on the Riemann-Liouville fractional integral operator of a function
f(t):

E[Jαf(t)] = vα+1T (v).

Theorem 3.3. Elzaki transform on the Caputo fractional derivative of f(t):

E[Dnα
x u(x, t)] =

T (v)

vnα
−

n−1∑
k=0

v2−nαu(0, t), n− 1 < nα ≤ n

3
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4 HAETM FOR GENERALIZED BIOLOGICAL POPULATION
MODEL

To illustrate the basic idea of this method, let us consider the generalized biological population model:

∂αu

∂tα
=

∂2u2

∂x2
+

∂2u2

∂y2
+ kua(1− rub) (4.1)

t > 0, x, y ∈ R, 0 < α ≤ 1, k, a, r, b are real numbers, with the initial condition

u(x, y, 0) = f0(x, y) (4.2)

Now taking the Elzaki transform of both side of (4.1), we get

E[u(x, y, t)]

vα
− v2−αu(x, y, 0)− E[

∂2u2

∂x2
+

∂2u2

∂y2
+ kua(1− rub)] = 0 (4.3)

We define the nonlinear operator

N [ϕ(x, y, t; q)] =E[ϕ(x, y, t; q)]− v2u(x, y, 0)− vαE[
∂2

∂x2
(ϕ2(x, y, t; q)) +

∂2

∂y2
(ϕ2(x, y, t; q))

+ kϕa(x, y, t; q)(1− r)ϕb(x, y, t; q)]

(4.4)

where q ∈ [0, 1] and ϕ(x, y, t; q) is a real function of x, y, t, q.

The zero-order deformation equation of the (4.3) has the form

(1− q)E[ϕ(x, y, t; q)− u0(x, y, t)] = ~qH(t)N [ϕ(x, y, t; q)] (4.5)

where E is the Elzaki transform, q ∈ [0, 1] is the embedding parameter, H(t) denotes a nonzero
auxiliary function, ~ ̸= 0 is an auxiliary parameter, u0(x, y, t) is an initial guess of u(x, y, t) and
ϕ(x, y, t; q) is an unknown function. Obviously,when the parameter q = 0 and q = 1, it holds

ϕ(x, y, t; 0) = u0(x, y, t), ϕ(x, y, t; 1) = u(x, y, t) (4.6)

respectively. Thus, as q increase from 0 to 1, the solution ϕ(x, y, t; q) varies from the initial guess
u0(x, y, t) to the solution u(x, y, t). Expanding ϕ(x, y, t; q) in Taylor series with respect to q, we have

ϕ(x, y, t; q) = u0(x, y, t) +

∞∑
m=1

um(x, y, t)qm (4.7)

where
um(x, y, t) =

1

m!

∂mϕ(x, y, t; q)

∂qm
|q=0 (4.8)

Differentiating the zero-order deformation equation (4.5) m times with respect to q and then dividing
by m! and finally setting q = 0 we get the following mth-order deformation equation:

E[um(x, y, t)− χmum−1(x, y, t)] = ~qH(t)Rm(−→u m−1(x, y, t)). (4.9)

Define the vectors

−→u m = {u0(x, y, t), u1(x, y, t), u2(x, y, t), · · · , um(x, y, t)} (4.10)

Applying the inverse Elzaiki transform on (4.9), we have

um(x, y, t) = χmum−1(x, y, t) + ~qE−1[H(t)Rm(−→u m−1(x, y, t))] (4.11)
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where

Rm(−→u m−1(x, y, t)) =
1

(m− 1)!

∂m−1N [ϕ(x, y, t; q)]

∂qm−1
|q=0 (4.12)

and

χm =

{
0 m ≤ 1
1 m > 1

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function
are properly chosen, the series (4.7) converges at q = 1, then we have

u(x, y, t) = u0(x, y, t) +
∞∑

m=1

um(x, y, t) (4.13)

which must be one of the solutions of the original nonlinear equation.

5 NUMERICAL RESULTS

In this section, we use homotopy analysis Elzaki transform method to solve nonlinear fractional
biological population equation.

Example 5.1. Consider the equation (4.1) with k = 1, a = 1, r = 0, we have the following fractional
biological population equation:

∂αu

∂tα
=

∂2u2

∂x2
+

∂2u2

∂y2
+ u (5.1)

with the initial condition
u(x, y, 0) =

√
sinx · sinh y (5.2)

Applying the Elzaki transform to (5.1) and using (5.2), we have

E[u(x, y, t)]

vα
− v2−α

√
sinx · sinh y − E[

∂2u2

∂x2
+

∂2u2

∂y2
+ u] = 0 (5.3)

The nonlinear operator is

N [ϕ(x, y, t; q)] =E[ϕ(x, y, t; q)]− v2
√

sinx · sinh y − vαE[
∂2

∂x2
(ϕ2(x, y, t; q))+

∂2

∂y2
(ϕ2(x, y, t; q)) + ϕ(x, y, t; q)]

(5.4)

and thus
Rm(−→u m−1) =E[um−1]− (1− χm)v2

√
sinx · sinh y−

vαE[
∂2

∂x2
(

m−1∑
r=0

urum−1−r) +
∂2

∂y2
(

m−1∑
r=0

urum−1−r) + um−1]
(5.5)

The mth-order deformation equation is given by

E[um(x, y, t)− χmum−1(x, y, t)] = ~Rm(−→u m−1(x, y, t)) (5.6)

Applying the inverse Elzaki transform, we have

um(x, y, t) = χmum−1(x, y, t) + ~E−1[Rm(−→u m−1(x, y, t))] (5.7)
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Solving the above equation (5.7), for m = 1, 2, 3, · · · , we get

u1(x, y, t) =− ~
√

sinx · sinh y tα

Γ(α+ 1)

u2(x, y, t) =− ~(1 + ~)
√

sinx · sinh y tα

Γ(α+ 1)

+ ~2
√

sinx · sinh y t2α

Γ(2α+ 1)

u3(x, y, t) =− ~(1 + ~)2
√

sinx · sinh y tα

Γ(α+ 1)

+ 2~2(1 + ~)
√

sinx · sinh y t2α

Γ(2α+ 1)

− ~3
√

sinx · sinh y t3α

Γ(3α+ 1)

(5.8)

and so on.

Substituting u1, u2, u3, · · · into equation (4.13) gives the solution in series form, by ~ = −1, we have

u(x, y, t) =
√

sinx · sinh y[1 + tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
+

t3α

Γ(1 + 3α)
+ · · · ] (5.9)

If we put α = 1, we have

u(x, y, t) =
√

sinx · sinh y[1 + t+
t2

2!
+

t3

3!
+ · · · ] (5.10)

u(x, y, t) =
√

sinx · sinh y · et (5.11)

which is an exact solution.

Example 5.2. Consider the equation (4.1) with a = 1, r = 0, we have the following fractional biological
population equation:

∂αu

∂tα
=

∂2u2

∂x2
+

∂2u2

∂y2
+ ku (5.12)

with the initial condition
u(x, y, 0) =

√
xy (5.13)

Applying the Elzaki transform to (5.12) and using (5.13), we have

E[u(x, y, t)]

vα
− v2−α√xy − E[

∂2u2

∂x2
+

∂2u2

∂y2
+ ku] = 0 (5.14)

The nonlinear operator is

N [ϕ(x, y, t; q)] =E[ϕ(x, y, t; q)]− v2
√
xy − vαE[

∂2

∂x2
(ϕ2(x, y, t; q))

+
∂2

∂y2
(ϕ2(x, y, t; q)) + kϕ(x, y, t; q)]

(5.15)

and thus

Rm(−→u m−1) =E[um−1]− (1− χm)v2
√
xy

− vαE[
∂2

∂x2
(

m−1∑
r=0

urum−1−r) +
∂2

∂y2
(

m−1∑
r=0

urum−1−r) + kum−1]
(5.16)
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The mth-order deformation equation is given by

E[um(x, y, t)− χmum−1(x, y, t)] = ~Rm(−→u m−1(x, y, t)) (5.17)

Applying the inverse Elzaki transform, we have

um(x, y, t) = χmum−1(x, y, t) + ~E−1[Rm(−→u m−1(x, y, t))] (5.18)

Solving the above equation (5.18), for m = 1, 2, 3, · · · , we get

u1(x, y, t) =− k~
√
xy

tα

Γ(α+ 1)

u2(x, y, t) =− k~(1 + ~)
√
xy

tα

Γ(α+ 1)

+ k2~2
√
xy

t2α

Γ(2α+ 1)

u3(x, y, t) =− k~(1 + ~)2
√
xy

tα

Γ(α+ 1)

+ 2k2~2(1 + ~)
√
xy

t2α

Γ(2α+ 1)

− k3~3
√
xy

t3α

Γ(3α+ 1)

(5.19)

and so on.

Substituting u1, u2, u3, · · · into equation (4.13) gives the solution in series form, by ~ = −1, we have

u(x, y, t) =
√
xy[1 + k

tα

Γ(1 + α)
+ k2 t2α

Γ(1 + 2α)
+ k3 t3α

Γ(1 + 3α)
+ · · · ] (5.20)

If we put α = 1, we have

u(x, y, t) =
√
xy[1 + kt+

k2t2

2!
+

k3t3

3!
+ · · · ] (5.21)

u(x, y, t) =
√
xy · ekt (5.22)

which is an exact solution.

The evolution results for the exact solution (5.22) and the approximate solution (5.20), for the case
α = 1, are shown in Figure 1. It can be seen from Figure 1 that the solution obtained by the HAETM
is nearly identical with the exact solution.
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Example 5.3. Consider the equation (4.1) with a = −1, b = 1, we have the following fractional
biological population equation:

∂αu

∂tα
=

∂2u2

∂x2
+

∂2u2

∂y2
+ ku−1 − kr (5.23)

with the initial condition

u(x, y, 0) =

√
kr

4
x2 +

kr

4
y2 + y + 5 (5.24)

Applying the Elzaki transform to (5.23) and using (5.24), we have

E[u(x, y, t)]

vα
− v2−α

√
kr

4
x2 +

kr

4
y2 + y + 5− E[

∂2u2

∂x2
+

∂2u2

∂y2
+ ku−1 − kr] = 0 (5.25)

The nonlinear operator is

N [ϕ(x, y, t; q)] =E[ϕ(x, y, t; q)]− v2
√

kr

4
x2 +

kr

4
y2 + y + 5− vαE[

∂2

∂x2
(ϕ2(x, y, t; q))

+
∂2

∂y2
(ϕ2(x, y, t; q)) + kϕ−1(x, y, t; q)− kr]

(5.26)

and thus

Rm(−→u m−1) =E[um−1]− (1− χm)v2
√

kr

4
x2 +

kr

4
y2 + y + 5

− vαE[
∂2

∂x2
(

m−1∑
r=0

urum−1−r) +
∂2

∂y2
(

m−1∑
r=0

urum−1−r) +
k

um−1
− kr]

(5.27)

The mth-order deformation equation is given by

E[um(x, y, t)− χmum−1(x, y, t)] = ~Rm(−→u m−1(x, y, t)) (5.28)

Applying the inverse Elzaki transform, we have

um(x, y, t) = χmum−1(x, y, t) + ~E−1[Rm(−→u m−1(x, y, t))] (5.29)
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Solving the above equation (5.29), for m = 1, 2, 3, · · · , we get

u1(x, y, t) =
−k~tα

Γ(1 + α)
√

kr
4
x2 + kr

4
y2 + y + 5

u2(x, y, t) =
−2k2~2t2α

Γ(1 + 2α)(
√

kr
4
x2 + kr

4
y2 + y + 5)3

u3(x, y, t) =
−3k3~3t3α

Γ(1 + 3α)(
√

kr
4
x2 + kr

4
y2 + y + 5)5

(5.30)

and so on.

Substituting u1, u2, u3, · · · into equation (4.13) gives the solution in series form, by ~ = −1, we have

u(x, y, t) = u0 +
ktα

u0
[

1

Γ(1 + α)
+

2

Γ(1 + 2α)

−ktα

u2
0

+
3

Γ(1 + 3α)

k2t2α

u4
0

+ · · · ] (5.31)

namely

u(x, y, t) = u0 +
ktα

u0

∞∑
n=0

n+ 1

Γ(1 + (n+ 1)α)
(
−ktα

u2
0

)n (5.32)

If we put α = 1, we have

u(x, y, t) = u0 +
kt

u0
e

−kt

u2
0 (5.33)

which is an exact solution.

The evolution results for the exact solution (5.33) and the approximate solution (5.31), for the special
case α = 1, k = 0.05, r = 45, t = 10 are shown in Figure 2. It can be seen from Figure 2 that the
solution obtained by the HAETM is nearly identical with the exact solution.

6 CONCLUSIONS

In this paper, the homotopy analysis Elzaki
transform method has been successfully applied
to derive approximate solutions of the fractional

order biological population equations subject to
some initial conditions. The results obtained by
this method agree well with the results obtained
by ADM, VIM, HPM. The reliability of HAETM
and reduction in computations give this method

9
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a wider applicability. Finally, we conclude that
the HAETM is very powerful and efficient in
finding analytical and numerical solutions for
wider classes of linear and nonlinear fractional
differential equations. It provides us with a simple
way to adjust and control the convergence region
of solution series by choosing proper values for
auxiliary parameter ~ and auxiliary function H(t).
The corresponding solutions and 3D graphs are
obtained according to the recurrence relation
using Mathematica.
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